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Problem Background

Solve Ax = b. That’s it.

Given a linear system Ax = b, where A is:

sparse,
symmetric,
indefinite, and
nonsingular,

find an accurate and efficient way to solve the system.

Accuracy is measured by the ∞-norm relative error:

εrel :=
‖x̃ − x‖∞
‖x‖∞

,

where x̃ is the solution obtained by the solver.
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Why sparse?

Linear systems from many applications are sparse
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General dense solvers run in O(n3) and scale badly

Sparse solvers: solvers that exploit sparsity
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Exploiting Symmetry

Symmetric matrices are simpler for factorization-based solvers.

Generally:
A = LDU,

where:

L is lower triangular,
D is diagonal, and
U is upper triangular.

For symmetric A, it becomes:

A = LDLT .
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Focusing on indefinite matrices

For (positive- or negative-) definite matrices, Cholesky factorization
works well

The indefinite case is more interesting!
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Focusing on nonsingular matrices

If A is singular, there can be infinitely many solutions!

Even if A is near-singular, it is hard to measure accuracy...

‖Av‖∞ can be small even if ‖v‖∞ is large

There is a reason why the residual

rrel :=
‖b − Ax̃‖∞
‖b‖∞

,

is not used to measure performance. More on that later.
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General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Determine a
“good” ordering

Symbolic factorization

Numerical factorization

Solve system

Find ordering that minimizes the number
of nonzeros of L (denoted by |L|)
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General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Symbolic factorizationSymbolic factorization

Numerical factorization

Solve system

Perform symbolic factorization to
determine data structure
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General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Symbolic factorization

Numerical factorizationNumerical factorization

Solve system

Avoid pivoting to utilize the fixed data
structure

Factorizing SPD matrices is stable
without pivoting

Factorizing indefinite matrices may fail
without pivoting!
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General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Symbolic factorization

Numerical factorization

Solve systemSolve system

Triangular solves only

Possibly with iterative refinement
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Previous Work

[Bunch, Kaufman]: Use 1x1 and 2x2 pivots

Does not exploit sparsity

[Duff, Reid]: Multifrontal Method

Sparse solver
Uses idea from Bunch-Kaufman to handle indefinite case

[Li, Demmel]: Change the value of pivot if it is too small

Works for nonsymmetric A

[Egidi, Maponi]: Use Sherman-Morrison formula to update solution

Breaks system into rank-1 components
Does not exploit sparsity
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Overview

Properties:

Left-looking LDLT factorization

Avoids pivoting
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Overview

Properties:

Left-looking LDLT factorization

Avoids pivoting

Key Idea:

If pivot too small, change it and record the change

In the end, we get LDLT factorization of B := A + UCUT

C is a k × k diagonal matrix storing the changes

U is n × k; maps C from Rk×k back to Rn×n

Use Sherman-Morrison-Woodbury formula to compute A−1b
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The Sherman-Morrison-Woodbury (SMW) Formula

From last slide, we have

A = B − UCUT ,

where A,B are n × n, U is n × k , and C is k × k.
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The Sherman-Morrison-Woodbury (SMW) Formula

From last slide, we have

A = B − UCUT ,

where A,B are n × n, U is n × k , and C is k × k.

Sherman-Morrison formula deals with k = 1 (rank-1 update):

A−1 = B−1 +
B−1uuTB−1

c−1 − uTB−1u
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The Sherman-Morrison-Woodbury (SMW) Formula

From last slide, we have

A = B − UCUT ,

where A,B are n × n, U is n × k , and C is k × k.

Woodbury formula deals with the general case:

A−1 = B−1 + B−1UW−1UTB−1,

where
W := C−1 − UTB−1U

is the “Woodbury matrix”.
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Proof of SMW Formula

Based on blockwise matrix inversion

A−1 is the solution X of the matrix equation(
B U
UT C−1

)(
X
Y

)
=

(
I
O

)

Solving {
BX + UY = I

UTX + C−1Y = O

gives

X = B−1(I − UY )
=⇒ Y = −(C−1 − UTB−1U)−1UTB−1

=⇒ X = B−1 + B−1U(C−1 − UTB−1U)−1UTB−1
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Factorization Step — Algorithm I

1: sigma← 10−3

2: threshold ← 10−4 . Parameter values are changeable
3: nchanges ← 0
4: L← tril(A) . Lower triangular part of A
5: for i ← 1 to n do . Currently on i-th column
6: for j : 1 ≤ j < i , lij 6= 0 do . Elimination step
7: λ← djj × lij
8: for k : i ≤ k ≤ n do
9: lki ← lki − λ× lkj

10: end for
11: end for
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Factorization Step — Algorithm II

12: α← lii
13: if |α| < threshold then . Change pivot value
14: if α < 0 then
15: t ← −sigma
16: else
17: t ← sigma
18: end if
19: nchanges ← nchanges + 1
20: changes[nchanges]← t − α . Record change value
21: locs[nchanges]← i . Record change index
22: α← t
23: end if
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Factorization Step — Algorithm III

24: djj ← α, ljj ← 1 . Update D and L
25: for j ← i + 1 to n do

26: lji ←
lji
α

27: end for
28: end for

Now what?

In the end, we obtain the LDLT factorization of B, where B differs
from A in nchanges diagonal entries.

changes[ ] and locs[ ] can be used to form U and C , such that
B = A + UCUT .
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Forming U and C

Let k := nchanges. Given changes[ ] and locs[ ].

Then C is just a k × k diagonal matrix with cii = changes[i ].

U is a n × k binary matrix with uij = 1 ⇐⇒ locs[j ] = i .
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Forming U and C

Let k := nchanges. Given changes[ ] and locs[ ].

Then C is just a k × k diagonal matrix with cii = changes[i ].

U is a n × k binary matrix with uij = 1 ⇐⇒ locs[j ] = i .

For example,
if n = 5, changes[ ] = [−0.1, 1.2, 1.0], locs[ ] = [1, 4, 5], then

C =

 −0.1 0 0
0 1.2 0
0 0 1.0

 and U =


1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 .
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Solution Step — Algorithm

Let SMW (b) be a subroutine that, given B = LDLT and A = B − UCUT ,
computes A−1b, using:

triangular solves, and

builtin algorithm for computing W−1 = (C−1 − UTB−1U)−1.
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Solution Step — Algorithm

Let SMW (b) be a subroutine that, given B = LDLT and A = B − UCUT ,
computes A−1b, using:

triangular solves, and

builtin algorithm for computing W−1 = (C−1 − UTB−1U)−1.

Here is the solution step:

1: Form U and C from changes[ ] and locs[ ]
2: x ← SMW (b)
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Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with extended precision is
used.
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Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with extended precision is
used.

Let SMW 128(b) be a subroutine that, given B = LDLT and
A = B − UCUT , computes A−1b, using:

triangular solves, and

builtin algorithm for computing W−1, to 128-bit precision.
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Here is the solution step:

1: Form U and C from changes[ ] and locs[ ]
2: x ← 0
3: residual ← ‖Ax−b‖∞

‖b‖∞
4: tolerance ← 10−16, maxit ← 10 . Parameters, changeable
5: numit ← 0
6: while numit < maxit do
7: r ← b − Ax
8: correction← SMW 128(r) . Using extended precision
9: x ← x + correction

10: newresidual ← ‖Ax−b‖∞
‖b‖∞

11: if newresidual < tolerance or 2 · newresidual > residual then
12: break
13: end if
14: residual ← newresidual
15: numit ← numit + 1
16: end while
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Computing SMW (b) and SMW 128(b)

For SMW (b),

1: v ← LT \D \ L \ b . v = B−1b
2: Y ← LT \D \ L \U . Y = B−1U
3: W ← C−1 − UTY . Forming Woodbury matrix
4: z ←W \ (UT v)
5: x ← v + Yz

For SMW 128(b),

1: v ← LT \D \ L \ b . v = B−1b
2: Y ← LT \D \ L \U . Y = B−1U
3: W ← mp(C )−1 −mp(U)Tmp(Y ) . Forming W in 128-bit
4: z ←W \ (mp(U)Tmp(v))
5: x ← v + Yz

Here, mp() converts a matrix to 128-bit precision.
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Software and Tools

MATLAB R2018a Student License

Advanpix Multiprecision Computing Toolbox, 7-day trial license
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Test Matrices

78 matrices from SuiteSparse (https://sparse.tamu.edu/)

Selection criteria:

Manually removed matrices that are:

singular, or
“not meant to be solved” (e.g. random graphs)

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 22 / 46
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Test Matrices

For each SuiteSparse matrix A, a random symmetric matrix with the
same nonzero patterns and fixed (approximate) condition number
cond is generated

Command used: sprandsym(A, [], cond, 3)
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Parameter Overview

Parameter Description

threshold Pivots smaller than threshold is too small

sigma Small thresholds will be changed to ±sigma

tolerance IR should stop if residual smaller than tolerance

maxit Maximum number of IR steps

Use 128 bit? Whether SMW 128() is used in lieu of SMW ()

Notice that maxit = 1 is equivalent to not using IR.
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Parameter Choice

A total of 1× 2× 2× 7 = 28 parameter sets are tested.

threshold = 10−16

maxit = 1 (no IR) or maxit = 10 (with IR)

Use SMW () or SMW 128()

As for threshold and sigma,

No. threshold sigma

1 10−3 10−3

2 10−4 10−3

3 10−6 10−6

4 10−9 10−9

5 10−8 × ‖A‖ 10−8 × ‖A‖
6 10−12 × ‖A‖ 10−12 × ‖A‖
7 10−16 × ‖A‖ 10−16 × ‖A‖
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The Competition

1 Bunch-Kaufman

The default MATLAB full matrix solver in our case

2 MA57 algorithm

Multifrontal method
With scaling and pivoting
The default MATLAB sparse matrix solver in our case

For fairness, we test the algorithms both with and without IR.
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Comparing the Algorithms

Relative residual is used for IR terminating condition

Compare relative error instead

Performance profile ([Dolan, More]) is used for visualizing the results

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 27 / 46



Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT ).
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Failure Condition

Say the algorithm fails, if at least one of the following happens:

1 Relative error is too big
2 nchanges is too big (for SMW-based algorithms only)

Need to take inverse of W , where dim(W ) = nchanges
nchanges ≈ n→ forced to solve a huge dense system!

3 Runtime is too long

For our test matrices, n ≤ 5000
Consider > 3 minutes as too long
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Part 1: Effect of improving the SMW algorithm

First, we compare SMW algorithms with:
1 No IR, no 128-bit
2 IR, no 128-bit
3 IR, 128-bit

Parameters:

threshold = 10−4, sigma = 10−3

tolerance = 10−16

maxit = 1 (no IR) or maxit = 10 (with IR)

Fail conditions:

Relative error > 1
Runtime > 3 minutes

Test matrices: 78 SuiteSparse matrices
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Figure 1-1: No IR, no 128-bit
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Figure 1-2: IR, no 128-bit
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Figure 1-3: IR, 128-bit
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Figure 1-4: IR, 128-bit, versus LDL with IR
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Figure 1-5: All three settings, versus LDL with IR
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Part 2: Comparing different sigma and threshold

Parameters:

tolerance = 10−16

maxit = 10 (with IR)
Use SMW 128() whenever applicable

Choose different values of threshold and sigma

Fail conditions:

Relative error > 1
Runtime > 3 minutes

Test matrices: 78 SuiteSparse matrices
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Figure 2-1: Constant values
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Figure 2-2: Nonconstant values (depends on ‖A‖∞)
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Figure 2-3: Some constant & some nonconstant
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Part 3: Taking nchanges into account

Parameters:

tolerance = 10−16

maxit = 10 (with IR)
Use SMW 128() whenever applicable

Choose different values of threshold and sigma

Fail conditions:

Relative error > 1
Runtime > 3 minutes
(NEW!) nchanges

n > cf , where cf ∈ {0.1, 0.25, 0.5, 1.0}
Test matrices: 78 SuiteSparse matrices
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Figure 3-1: cf = 1.0
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Figure 3-2: cf = 0.5
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Figure 3-3: cf = 0.25
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Figure 3-4: cf = 0.1
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Part 4: Testing on sprandsym() Matrices

We shall repeat the previous parts on matrices generated using
sprandsym(A, [], cond, 3) command.

Choices of cond : 108, 1010.
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Figure 4-1-1: cond ≈ 108, focus on IR / 128-bit
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Figure 4-1-2: cond ≈ 1010, focus on IR / 128-bit
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Figure 4-2: cond ≈ 1010, focus on sigma and threshold

Notice that the choice of paramters matters little!

Same for cond ≈ 108 and other parameter choices

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 38 / 46



Background Approach Experimentation Results Conclusion References

Figure 4-3-1: cond ≈ 1010, cf = 1.0, focus on nchanges
n
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Figure 4-3-2: cond ≈ 1010, cf = 0.5, focus on nchanges
n
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Figure 4-3-3: cond ≈ 1010, cf = 0.25, focus on nchanges
n
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Figure 4-3-4: cond ≈ 1010, cf = 0.1, focus on nchanges
n
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Part 5: The effect of tolerance

What if tolerance = 10−14, instead of 10−16?
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Figure 5-1-1: tolerance = 10−16, SuiteSparse
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Figure 5-1-2: tolerance = 10−14, SuiteSparse
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Figure 5-2-1: tolerance = 10−16, sprandsym, cond ≈ 1010
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Figure 5-2-2: tolerance = 10−14, sprandsym, cond ≈ 1010
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Summary

What does each part tells us?

1 SMW with IR performs competitively against built-in algorithms.
SMW 128() is nice to have, but not strictly necessary.

2 Smaller sigma and threshold =⇒ slightly worse accuracy.

3 Smaller sigma and threshold =⇒ slightly smaller nchanges.
4 On sprandsym() matrices:

Parameters do not affect accuracy by much;
Parameters do affect nchanges significantly.

5 Choice of tolerance may have a tremendous impact on relative
performance.
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Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
!
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Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
! Find provable error bounds?

Investigate the major source of error?
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