
Background Approach Experimentation Results Conclusion References

Solving Symmetric Indefinite Linear Systems with a
Sherman-Morrison-Woodbury-based Algorithm

Kam Chuen (Alex) Tung

The Chinese University of Hong Kong

30 August 2018

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 1 / 46

Background Approach Experimentation Results Conclusion References

Table of Contents

1 Background

2 Approach

3 Experimentation

4 Results

5 Conclusion

6 References

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 2 / 46

Background Approach Experimentation Results Conclusion References

Problem Background

Solve Ax = b. That’s it.

Given a linear system Ax = b, where A is:

sparse,
symmetric,
indefinite, and
nonsingular,

find an accurate and efficient way to solve the system.

Accuracy is measured by the ∞-norm relative error:

εrel :=
‖x̃ − x‖∞
‖x‖∞

,

where x̃ is the solution obtained by the solver.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 3 / 46

Background Approach Experimentation Results Conclusion References

Problem Background

Solve Ax = b. That’s it.

Given a linear system Ax = b, where A is:

sparse,
symmetric,
indefinite, and
nonsingular,

find an accurate and efficient way to solve the system.

Accuracy is measured by the ∞-norm relative error:

εrel :=
‖x̃ − x‖∞
‖x‖∞

,

where x̃ is the solution obtained by the solver.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 3 / 46

Background Approach Experimentation Results Conclusion References

Problem Background

Solve Ax = b. That’s it.

Given a linear system Ax = b, where A is:

sparse,
symmetric,
indefinite, and
nonsingular,

find an accurate and efficient way to solve the system.

Accuracy is measured by the ∞-norm relative error:

εrel :=
‖x̃ − x‖∞
‖x‖∞

,

where x̃ is the solution obtained by the solver.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 3 / 46

Background Approach Experimentation Results Conclusion References

Why sparse?

Linear systems from many applications are sparse

1

6

11

16

2

7

12

17

3

8

13

18

4

9

14

19

5

10

15

20

1 2

6

3

7

10

4

8

11

13

5

9

12

14

15

General dense solvers run in O(n3) and scale badly

Sparse solvers: solvers that exploit sparsity

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 4 / 46

Background Approach Experimentation Results Conclusion References

Exploiting Symmetry

Symmetric matrices are simpler for factorization-based solvers.

Generally:
A = LDU,

where:

L is lower triangular,
D is diagonal, and
U is upper triangular.

For symmetric A, it becomes:

A = LDLT .

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 5 / 46

Background Approach Experimentation Results Conclusion References

Focusing on indefinite matrices

For (positive- or negative-) definite matrices, Cholesky factorization
works well

The indefinite case is more interesting!

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 6 / 46

Background Approach Experimentation Results Conclusion References

Focusing on nonsingular matrices

If A is singular, there can be infinitely many solutions!

Even if A is near-singular, it is hard to measure accuracy...

‖Av‖∞ can be small even if ‖v‖∞ is large

There is a reason why the residual

rrel :=
‖b − Ax̃‖∞
‖b‖∞

,

is not used to measure performance. More on that later.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 7 / 46

Background Approach Experimentation Results Conclusion References

Focusing on nonsingular matrices

If A is singular, there can be infinitely many solutions!

Even if A is near-singular, it is hard to measure accuracy...

‖Av‖∞ can be small even if ‖v‖∞ is large

There is a reason why the residual

rrel :=
‖b − Ax̃‖∞
‖b‖∞

,

is not used to measure performance. More on that later.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 7 / 46

Background Approach Experimentation Results Conclusion References

General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Determine a
“good” ordering

Symbolic factorization

Numerical factorization

Solve system

Find ordering that minimizes the number
of nonzeros of L (denoted by |L|)

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 8 / 46

Background Approach Experimentation Results Conclusion References

General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Symbolic factorizationSymbolic factorization

Numerical factorization

Solve system

Perform symbolic factorization to
determine data structure

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 8 / 46

Background Approach Experimentation Results Conclusion References

General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Symbolic factorization

Numerical factorizationNumerical factorization

Solve system

Avoid pivoting to utilize the fixed data
structure

Factorizing SPD matrices is stable
without pivoting

Factorizing indefinite matrices may fail
without pivoting!

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 8 / 46

Background Approach Experimentation Results Conclusion References

General Framework

Aim: Solve Ax = b based on LDLT factorization.

Determine a
“good” ordering

Symbolic factorization

Numerical factorization

Solve systemSolve system

Triangular solves only

Possibly with iterative refinement

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 8 / 46

Background Approach Experimentation Results Conclusion References

Previous Work

[Bunch, Kaufman]: Use 1x1 and 2x2 pivots

Does not exploit sparsity

[Duff, Reid]: Multifrontal Method

Sparse solver
Uses idea from Bunch-Kaufman to handle indefinite case

[Li, Demmel]: Change the value of pivot if it is too small

Works for nonsymmetric A

[Egidi, Maponi]: Use Sherman-Morrison formula to update solution

Breaks system into rank-1 components
Does not exploit sparsity

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 9 / 46

Background Approach Experimentation Results Conclusion References

Overview

Properties:

Left-looking LDLT factorization

Avoids pivoting

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 10 / 46

Background Approach Experimentation Results Conclusion References

Overview

Properties:

Left-looking LDLT factorization

Avoids pivoting

Key Idea:

If pivot too small, change it and record the change

In the end, we get LDLT factorization of B := A + UCUT

C is a k × k diagonal matrix storing the changes

U is n × k; maps C from Rk×k back to Rn×n

Use Sherman-Morrison-Woodbury formula to compute A−1b

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 10 / 46

Background Approach Experimentation Results Conclusion References

The Sherman-Morrison-Woodbury (SMW) Formula

From last slide, we have

A = B − UCUT ,

where A,B are n × n, U is n × k , and C is k × k.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 11 / 46

Background Approach Experimentation Results Conclusion References

The Sherman-Morrison-Woodbury (SMW) Formula

From last slide, we have

A = B − UCUT ,

where A,B are n × n, U is n × k , and C is k × k.

Sherman-Morrison formula deals with k = 1 (rank-1 update):

A−1 = B−1 +
B−1uuTB−1

c−1 − uTB−1u

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 11 / 46

Background Approach Experimentation Results Conclusion References

The Sherman-Morrison-Woodbury (SMW) Formula

From last slide, we have

A = B − UCUT ,

where A,B are n × n, U is n × k , and C is k × k.

Woodbury formula deals with the general case:

A−1 = B−1 + B−1UW−1UTB−1,

where
W := C−1 − UTB−1U

is the “Woodbury matrix”.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 11 / 46

Background Approach Experimentation Results Conclusion References

Proof of SMW Formula

Based on blockwise matrix inversion

A−1 is the solution X of the matrix equation(
B U
UT C−1

)(
X
Y

)
=

(
I
O

)

Solving {
BX + UY = I

UTX + C−1Y = O

gives

X = B−1(I − UY)
=⇒ Y = −(C−1 − UTB−1U)−1UTB−1

=⇒ X = B−1 + B−1U(C−1 − UTB−1U)−1UTB−1

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 12 / 46

Background Approach Experimentation Results Conclusion References

Proof of SMW Formula

Based on blockwise matrix inversion

A−1 is the solution X of the matrix equation(
B U
UT C−1

)(
X
Y

)
=

(
I
O

)
Solving {

BX + UY = I
UTX + C−1Y = O

gives

X = B−1(I − UY)
=⇒ Y = −(C−1 − UTB−1U)−1UTB−1

=⇒ X = B−1 + B−1U(C−1 − UTB−1U)−1UTB−1

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 12 / 46

Background Approach Experimentation Results Conclusion References

Factorization Step — Algorithm I

1: sigma← 10−3

2: threshold ← 10−4 . Parameter values are changeable
3: nchanges ← 0
4: L← tril(A) . Lower triangular part of A
5: for i ← 1 to n do . Currently on i-th column
6: for j : 1 ≤ j < i , lij 6= 0 do . Elimination step
7: λ← djj × lij
8: for k : i ≤ k ≤ n do
9: lki ← lki − λ× lkj

10: end for
11: end for

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 13 / 46

Background Approach Experimentation Results Conclusion References

Factorization Step — Algorithm II

12: α← lii
13: if |α| < threshold then . Change pivot value
14: if α < 0 then
15: t ← −sigma
16: else
17: t ← sigma
18: end if
19: nchanges ← nchanges + 1
20: changes[nchanges]← t − α . Record change value
21: locs[nchanges]← i . Record change index
22: α← t
23: end if

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 14 / 46

Background Approach Experimentation Results Conclusion References

Factorization Step — Algorithm III

24: djj ← α, ljj ← 1 . Update D and L
25: for j ← i + 1 to n do

26: lji ←
lji
α

27: end for
28: end for

Now what?

In the end, we obtain the LDLT factorization of B, where B differs
from A in nchanges diagonal entries.

changes[] and locs[] can be used to form U and C , such that
B = A + UCUT .

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 15 / 46

Background Approach Experimentation Results Conclusion References

Forming U and C

Let k := nchanges. Given changes[] and locs[].

Then C is just a k × k diagonal matrix with cii = changes[i].

U is a n × k binary matrix with uij = 1 ⇐⇒ locs[j] = i .

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 16 / 46

Background Approach Experimentation Results Conclusion References

Forming U and C

Let k := nchanges. Given changes[] and locs[].

Then C is just a k × k diagonal matrix with cii = changes[i].

U is a n × k binary matrix with uij = 1 ⇐⇒ locs[j] = i .

For example,
if n = 5, changes[] = [−0.1, 1.2, 1.0], locs[] = [1, 4, 5], then

C =

 −0.1 0 0
0 1.2 0
0 0 1.0

 and U =

1 0 0
0 0 0
0 0 0
0 1 0
0 0 1

 .

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 16 / 46

Background Approach Experimentation Results Conclusion References

Solution Step — Algorithm

Let SMW (b) be a subroutine that, given B = LDLT and A = B − UCUT ,
computes A−1b, using:

triangular solves, and

builtin algorithm for computing W−1 = (C−1 − UTB−1U)−1.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 17 / 46

Background Approach Experimentation Results Conclusion References

Solution Step — Algorithm

Let SMW (b) be a subroutine that, given B = LDLT and A = B − UCUT ,
computes A−1b, using:

triangular solves, and

builtin algorithm for computing W−1 = (C−1 − UTB−1U)−1.

Here is the solution step:

1: Form U and C from changes[] and locs[]
2: x ← SMW (b)

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 17 / 46

Background Approach Experimentation Results Conclusion References

Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with extended precision is
used.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 18 / 46

Background Approach Experimentation Results Conclusion References

Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with extended precision is
used.

Let SMW 128(b) be a subroutine that, given B = LDLT and
A = B − UCUT , computes A−1b, using:

triangular solves, and

builtin algorithm for computing W−1, to 128-bit precision.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 18 / 46

Background Approach Experimentation Results Conclusion References

Here is the solution step:

1: Form U and C from changes[] and locs[]
2: x ← 0
3: residual ← ‖Ax−b‖∞

‖b‖∞
4: tolerance ← 10−16, maxit ← 10 . Parameters, changeable
5: numit ← 0
6: while numit < maxit do
7: r ← b − Ax
8: correction← SMW 128(r) . Using extended precision
9: x ← x + correction

10: newresidual ← ‖Ax−b‖∞
‖b‖∞

11: if newresidual < tolerance or 2 · newresidual > residual then
12: break
13: end if
14: residual ← newresidual
15: numit ← numit + 1
16: end while

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 19 / 46

Background Approach Experimentation Results Conclusion References

Computing SMW (b) and SMW 128(b)

For SMW (b),

1: v ← LT \D \ L \ b . v = B−1b
2: Y ← LT \D \ L \U . Y = B−1U
3: W ← C−1 − UTY . Forming Woodbury matrix
4: z ←W \ (UT v)
5: x ← v + Yz

For SMW 128(b),

1: v ← LT \D \ L \ b . v = B−1b
2: Y ← LT \D \ L \U . Y = B−1U
3: W ← mp(C)−1 −mp(U)Tmp(Y) . Forming W in 128-bit
4: z ←W \ (mp(U)Tmp(v))
5: x ← v + Yz

Here, mp() converts a matrix to 128-bit precision.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 20 / 46

Background Approach Experimentation Results Conclusion References

Software and Tools

MATLAB R2018a Student License

Advanpix Multiprecision Computing Toolbox, 7-day trial license

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 21 / 46

Background Approach Experimentation Results Conclusion References

Test Matrices

78 matrices from SuiteSparse (https://sparse.tamu.edu/)

Selection criteria:

Manually removed matrices that are:

singular, or
“not meant to be solved” (e.g. random graphs)

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 22 / 46

https://sparse.tamu.edu/

Background Approach Experimentation Results Conclusion References

Test Matrices

For each SuiteSparse matrix A, a random symmetric matrix with the
same nonzero patterns and fixed (approximate) condition number
cond is generated

Command used: sprandsym(A, [], cond, 3)

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 23 / 46

Background Approach Experimentation Results Conclusion References

Parameter Overview

Parameter Description

threshold Pivots smaller than threshold is too small

sigma Small thresholds will be changed to ±sigma

tolerance IR should stop if residual smaller than tolerance

maxit Maximum number of IR steps

Use 128 bit? Whether SMW 128() is used in lieu of SMW ()

Notice that maxit = 1 is equivalent to not using IR.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 24 / 46

Background Approach Experimentation Results Conclusion References

Parameter Choice

A total of 1× 2× 2× 7 = 28 parameter sets are tested.

threshold = 10−16

maxit = 1 (no IR) or maxit = 10 (with IR)

Use SMW () or SMW 128()

As for threshold and sigma,

No. threshold sigma

1 10−3 10−3

2 10−4 10−3

3 10−6 10−6

4 10−9 10−9

5 10−8 × ‖A‖ 10−8 × ‖A‖
6 10−12 × ‖A‖ 10−12 × ‖A‖
7 10−16 × ‖A‖ 10−16 × ‖A‖

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 25 / 46

Background Approach Experimentation Results Conclusion References

The Competition

1 Bunch-Kaufman

The default MATLAB full matrix solver in our case

2 MA57 algorithm

Multifrontal method
With scaling and pivoting
The default MATLAB sparse matrix solver in our case

For fairness, we test the algorithms both with and without IR.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 26 / 46

Background Approach Experimentation Results Conclusion References

Comparing the Algorithms

Relative residual is used for IR terminating condition

Compare relative error instead

Performance profile ([Dolan, More]) is used for visualizing the results

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 27 / 46

Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 28 / 46

Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 28 / 46

Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 28 / 46

Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 28 / 46

Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 28 / 46

Background Approach Experimentation Results Conclusion References

Performance Profile

Suppose there are X algorithms and T tests.

The i-th algorithm gives relative error εij on test j .

If “fail”, εij is set to ∞.

For 1 ≤ j ≤ T , set bestj := mini εij .

Set ratioij :=
εij

bestj
. (Assume ∞∞ =∞)

For each algorithm i , plot the cumulative frequency of the data
log10(ratioi1), log10(ratioi2), . . . , log10(ratioiT).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 28 / 46

Background Approach Experimentation Results Conclusion References

Failure Condition

Say the algorithm fails, if at least one of the following happens:

1 Relative error is too big
2 nchanges is too big (for SMW-based algorithms only)

Need to take inverse of W , where dim(W) = nchanges
nchanges ≈ n→ forced to solve a huge dense system!

3 Runtime is too long

For our test matrices, n ≤ 5000
Consider > 3 minutes as too long

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 29 / 46

Background Approach Experimentation Results Conclusion References

Part 1: Effect of improving the SMW algorithm

First, we compare SMW algorithms with:
1 No IR, no 128-bit
2 IR, no 128-bit
3 IR, 128-bit

Parameters:

threshold = 10−4, sigma = 10−3

tolerance = 10−16

maxit = 1 (no IR) or maxit = 10 (with IR)

Fail conditions:

Relative error > 1
Runtime > 3 minutes

Test matrices: 78 SuiteSparse matrices

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 30 / 46

Background Approach Experimentation Results Conclusion References

Figure 1-1: No IR, no 128-bit

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 31 / 46

Background Approach Experimentation Results Conclusion References

Figure 1-2: IR, no 128-bit

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 31 / 46

Background Approach Experimentation Results Conclusion References

Figure 1-3: IR, 128-bit

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 31 / 46

Background Approach Experimentation Results Conclusion References

Figure 1-4: IR, 128-bit, versus LDL with IR

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 31 / 46

Background Approach Experimentation Results Conclusion References

Figure 1-5: All three settings, versus LDL with IR

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 31 / 46

Background Approach Experimentation Results Conclusion References

Part 2: Comparing different sigma and threshold

Parameters:

tolerance = 10−16

maxit = 10 (with IR)
Use SMW 128() whenever applicable

Choose different values of threshold and sigma

Fail conditions:

Relative error > 1
Runtime > 3 minutes

Test matrices: 78 SuiteSparse matrices

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 32 / 46

Background Approach Experimentation Results Conclusion References

Figure 2-1: Constant values

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 33 / 46

Background Approach Experimentation Results Conclusion References

Figure 2-2: Nonconstant values (depends on ‖A‖∞)

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 33 / 46

Background Approach Experimentation Results Conclusion References

Figure 2-3: Some constant & some nonconstant

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 33 / 46

Background Approach Experimentation Results Conclusion References

Part 3: Taking nchanges into account

Parameters:

tolerance = 10−16

maxit = 10 (with IR)
Use SMW 128() whenever applicable

Choose different values of threshold and sigma

Fail conditions:

Relative error > 1
Runtime > 3 minutes
(NEW!) nchanges

n > cf , where cf ∈ {0.1, 0.25, 0.5, 1.0}
Test matrices: 78 SuiteSparse matrices

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 34 / 46

Background Approach Experimentation Results Conclusion References

Figure 3-1: cf = 1.0

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 35 / 46

Background Approach Experimentation Results Conclusion References

Figure 3-2: cf = 0.5

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 35 / 46

Background Approach Experimentation Results Conclusion References

Figure 3-3: cf = 0.25

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 35 / 46

Background Approach Experimentation Results Conclusion References

Figure 3-4: cf = 0.1

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 35 / 46

Background Approach Experimentation Results Conclusion References

Part 4: Testing on sprandsym() Matrices

We shall repeat the previous parts on matrices generated using
sprandsym(A, [], cond, 3) command.

Choices of cond : 108, 1010.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 36 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-1-1: cond ≈ 108, focus on IR / 128-bit

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 37 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-1-2: cond ≈ 1010, focus on IR / 128-bit

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 37 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-2: cond ≈ 1010, focus on sigma and threshold

Notice that the choice of paramters matters little!

Same for cond ≈ 108 and other parameter choices

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 38 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-3-1: cond ≈ 1010, cf = 1.0, focus on nchanges
n

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 39 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-3-2: cond ≈ 1010, cf = 0.5, focus on nchanges
n

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 39 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-3-3: cond ≈ 1010, cf = 0.25, focus on nchanges
n

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 39 / 46

Background Approach Experimentation Results Conclusion References

Figure 4-3-4: cond ≈ 1010, cf = 0.1, focus on nchanges
n

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 39 / 46

Background Approach Experimentation Results Conclusion References

Part 5: The effect of tolerance

What if tolerance = 10−14, instead of 10−16?

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 40 / 46

Background Approach Experimentation Results Conclusion References

Figure 5-1-1: tolerance = 10−16, SuiteSparse

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 41 / 46

Background Approach Experimentation Results Conclusion References

Figure 5-1-2: tolerance = 10−14, SuiteSparse

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 41 / 46

Background Approach Experimentation Results Conclusion References

Figure 5-2-1: tolerance = 10−16, sprandsym, cond ≈ 1010

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 42 / 46

Background Approach Experimentation Results Conclusion References

Figure 5-2-2: tolerance = 10−14, sprandsym, cond ≈ 1010

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 42 / 46

Background Approach Experimentation Results Conclusion References

Summary

What does each part tells us?

1 SMW with IR performs competitively against built-in algorithms.
SMW 128() is nice to have, but not strictly necessary.

2 Smaller sigma and threshold =⇒ slightly worse accuracy.

3 Smaller sigma and threshold =⇒ slightly smaller nchanges.
4 On sprandsym() matrices:

Parameters do not affect accuracy by much;
Parameters do affect nchanges significantly.

5 Choice of tolerance may have a tremendous impact on relative
performance.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 43 / 46

Background Approach Experimentation Results Conclusion References

Summary

What does each part tells us?

1 SMW with IR performs competitively against built-in algorithms.
SMW 128() is nice to have, but not strictly necessary.

2 Smaller sigma and threshold =⇒ slightly worse accuracy.

3 Smaller sigma and threshold =⇒ slightly smaller nchanges.
4 On sprandsym() matrices:

Parameters do not affect accuracy by much;
Parameters do affect nchanges significantly.

5 Choice of tolerance may have a tremendous impact on relative
performance.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 43 / 46

Background Approach Experimentation Results Conclusion References

Summary

What does each part tells us?

1 SMW with IR performs competitively against built-in algorithms.
SMW 128() is nice to have, but not strictly necessary.

2 Smaller sigma and threshold =⇒ slightly worse accuracy.

3 Smaller sigma and threshold =⇒ slightly smaller nchanges.

4 On sprandsym() matrices:

Parameters do not affect accuracy by much;
Parameters do affect nchanges significantly.

5 Choice of tolerance may have a tremendous impact on relative
performance.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 43 / 46

Background Approach Experimentation Results Conclusion References

Summary

What does each part tells us?

1 SMW with IR performs competitively against built-in algorithms.
SMW 128() is nice to have, but not strictly necessary.

2 Smaller sigma and threshold =⇒ slightly worse accuracy.

3 Smaller sigma and threshold =⇒ slightly smaller nchanges.
4 On sprandsym() matrices:

Parameters do not affect accuracy by much;
Parameters do affect nchanges significantly.

5 Choice of tolerance may have a tremendous impact on relative
performance.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 43 / 46

Background Approach Experimentation Results Conclusion References

Summary

What does each part tells us?

1 SMW with IR performs competitively against built-in algorithms.
SMW 128() is nice to have, but not strictly necessary.

2 Smaller sigma and threshold =⇒ slightly worse accuracy.

3 Smaller sigma and threshold =⇒ slightly smaller nchanges.
4 On sprandsym() matrices:

Parameters do not affect accuracy by much;
Parameters do affect nchanges significantly.

5 Choice of tolerance may have a tremendous impact on relative
performance.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 43 / 46

Background Approach Experimentation Results Conclusion References

Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
!

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 44 / 46

Background Approach Experimentation Results Conclusion References

Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
!

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 44 / 46

Background Approach Experimentation Results Conclusion References

Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
!

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 44 / 46

Background Approach Experimentation Results Conclusion References

Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
! Find provable error bounds?

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 44 / 46

Background Approach Experimentation Results Conclusion References

Future Work

1 Parameters

% Only a small subset tested
! Test more parameters to find the best parameter?

2 Data Representation

% Some matrices may be under-represented in performance profiles
! Combine with alternative methods for data representation?

3 Evaluation Metric

% CPU time using SMW 128() is ∼ 10 times that of SMW ()

! More comprehensive metric needed?

4 In-depth Analysis

% The conclusions are based on empirical evidence
! Find provable error bounds?

Investigate the major source of error?

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 44 / 46

Background Approach Experimentation Results Conclusion References

References I

James R. Bunch, Linda Kaufman.
Some stable methods for calculating inertia and solving symmetric
linear systems.
Mathematics of Computation, 31 (1977), 163-179.

I. S. Duff, J. K. Reid.
The Multifrontal Solution of Indefinite Sparse Symmetric Linear
Equations.
ACM Transactions on Mathematical Software, Vol. 9, No. 3,
September 1983, 302-325.

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 45 / 46

Background Approach Experimentation Results Conclusion References

References II

Xiaoye S. Li, James W. Demmel.
SuperLU DIST: A Scalable Distributed-Memory Sparse Direct Solver
for Unsymmmetric Linear Systems.
ACM Transactions on Mathematical Software, Vol. 29, No. 2, June
2003.

N. Egidi, P. Maponi.
A Sherman-Morrison approach to the solution of linear systems.
Journal of Computational and Applied Mathematics, 189 (2006),
703-718.

Elizabeth D. Dolan, Jorge J. More.
Benchmarking optimization software with performance profiles.
Mathematical Programming, Ser. A 91: 201-213 (2002).

Alex Tung (CUHK) SMW Linear Solver 30 Aug 18 46 / 46

	Background
	Approach
	Experimentation
	Results
	Conclusion
	References

