Solving Symmetric Indefinite Linear Systems with a Sherman-Morrison-Woodbury-based Algorithm

Kam Chuen (Alex) Tung

The Chinese University of Hong Kong
30 August 2018

BERKELEY LAB

Table of Contents

(1) Background
(2) Approach
(3) Experimentation
(4) Results
(5) Conclusion

6 References

Problem Background

- Solve $A x=b$. That's it.

Problem Background

- Solve $A x=b$. That's it.
- Given a linear system $A x=b$, where A is:
- sparse,
- symmetric,
- indefinite, and
- nonsingular,
find an accurate and efficient way to solve the system.

Problem Background

- Solve $A x=b$. That's it.
- Given a linear system $A x=b$, where A is:
- sparse,
- symmetric,
- indefinite, and
- nonsingular,
find an accurate and efficient way to solve the system.
- Accuracy is measured by the ∞-norm relative error:

$$
\epsilon_{r e l}:=\frac{\|\widetilde{x}-x\|_{\infty}}{\|x\|_{\infty}}
$$

where \tilde{x} is the solution obtained by the solver.

Why sparse?

- Linear systems from many applications are sparse

- General dense solvers run in $O\left(n^{3}\right)$ and scale badly
- Sparse solvers: solvers that exploit sparsity

Exploiting Symmetry

- Symmetric matrices are simpler for factorization-based solvers.
- Generally:

$$
A=L D U,
$$

where:

- L is lower triangular,
- D is diagonal, and
- U is upper triangular.
- For symmetric A, it becomes:

$$
A=L D L^{T} .
$$

Focusing on indefinite matrices

- For (positive- or negative-) definite matrices, Cholesky factorization works well
- The indefinite case is more interesting!

Focusing on nonsingular matrices

- If A is singular, there can be infinitely many solutions!
- Even if A is near-singular, it is hard to measure accuracy...
- $\|A v\|_{\infty}$ can be small even if $\|v\|_{\infty}$ is large

Focusing on nonsingular matrices

- If A is singular, there can be infinitely many solutions!
- Even if A is near-singular, it is hard to measure accuracy...
- $\|A v\|_{\infty}$ can be small even if $\|v\|_{\infty}$ is large
- There is a reason why the residual

$$
r_{\text {rel }}:=\frac{\|b-A \widetilde{x}\|_{\infty}}{\|b\|_{\infty}},
$$

is not used to measure performance. More on that later.

General Framework

Aim: Solve $A x=b$ based on $L D L^{T}$ factorization.

Determine a "good" ordering

Symbolic factorization

Numerical factorization

- Find ordering that minimizes the number of nonzeros of L (denoted by $|L|$)

General Framework

Aim: Solve $A x=b$ based on $L D L^{T}$ factorization.

- Perform symbolic factorization to determine data structure

General Framework

Aim: Solve $A x=b$ based on $L D L^{T}$ factorization.

- Avoid pivoting to utilize the fixed data structure
- Factorizing SPD matrices is stable without pivoting
- Factorizing indefinite matrices may fail without pivoting!

General Framework

Aim: Solve $A x=b$ based on $L D L^{T}$ factorization.

- Triangular solves only
- Possibly with iterative refinement

Previous Work

- [Bunch, Kaufman]: Use 1×1 and 2×2 pivots
- Does not exploit sparsity
- [Duff, Reid]: Multifrontal Method
- Sparse solver
- Uses idea from Bunch-Kaufman to handle indefinite case
- [$\mathbf{L i}$, Demmel]: Change the value of pivot if it is too small
- Works for nonsymmetric A
- [Egidi, Maponi]: Use Sherman-Morrison formula to update solution
- Breaks system into rank-1 components
- Does not exploit sparsity

Overview

Properties:

- Left-looking $L D L^{T}$ factorization
- Avoids pivoting

Overview

Properties:

- Left-looking $L D L^{T}$ factorization
- Avoids pivoting

Key Idea:

- If pivot too small, change it and record the change
- In the end, we get $L D L^{T}$ factorization of $B:=A+U C U^{T}$
- C is a $k \times k$ diagonal matrix storing the changes
- U is $n \times k$; maps C from $\mathbb{R}^{k \times k}$ back to $\mathbb{R}^{n \times n}$
- Use Sherman-Morrison-Woodbury formula to compute $A^{-1} b$

The Sherman-Morrison-Woodbury (SMW) Formula

- From last slide, we have

$$
A=B-U C U^{T},
$$

where A, B are $n \times n, U$ is $n \times k$, and C is $k \times k$.

The Sherman-Morrison-Woodbury (SMW) Formula

- From last slide, we have

$$
A=B-U C U^{T},
$$

where A, B are $n \times n, U$ is $n \times k$, and C is $k \times k$.

- Sherman-Morrison formula deals with $k=1$ (rank-1 update):

$$
A^{-1}=B^{-1}+\frac{B^{-1} u u^{\top} B^{-1}}{c^{-1}-u^{T} B^{-1} u}
$$

The Sherman-Morrison-Woodbury (SMW) Formula

- From last slide, we have

$$
A=B-U C U^{T},
$$

where A, B are $n \times n, U$ is $n \times k$, and C is $k \times k$.

- Woodbury formula deals with the general case:

$$
A^{-1}=B^{-1}+B^{-1} U W^{-1} U^{\top} B^{-1}
$$

where

$$
W:=C^{-1}-U^{T} B^{-1} U
$$

is the "Woodbury matrix".

Proof of SMW Formula

- Based on blockwise matrix inversion
- A^{-1} is the solution X of the matrix equation

$$
\left(\begin{array}{cc}
B & U \\
U^{T} & C^{-1}
\end{array}\right)\binom{X}{Y}=\binom{1}{O}
$$

Proof of SMW Formula

- Based on blockwise matrix inversion
- A^{-1} is the solution X of the matrix equation

$$
\left(\begin{array}{cc}
B & U \\
U^{T} & C^{-1}
\end{array}\right)\binom{X}{Y}=\binom{1}{O}
$$

- Solving

$$
\left\{\begin{aligned}
B X+U Y & =1 \\
U^{T} X+C^{-1} Y & =0
\end{aligned}\right.
$$

gives

$$
\begin{aligned}
X & =B^{-1}(I-U Y) \\
\Longrightarrow Y & =-\left(C^{-1}-U^{\top} B^{-1} U\right)^{-1} U^{\top} B^{-1} \\
\Longrightarrow X & =B^{-1}+B^{-1} U\left(C^{-1}-U^{\top} B^{-1} U\right)^{-1} U^{\top} B^{-1}
\end{aligned}
$$

Factorization Step — Algorithm I

1: sigma $\leftarrow 10^{-3}$
2: threshold $\leftarrow 10^{-4}$
\triangleright Parameter values are changeable

3: nchanges $\leftarrow 0$
4: $L \leftarrow \operatorname{tril}(A)$
5: for $i \leftarrow 1$ to n do
6: \quad for $j: 1 \leq j<i, l_{i j} \neq 0$ do
7: $\quad \lambda \leftarrow d_{j j} \times l_{i j}$
8: \quad for $k: i \leq k \leq n$ do
9:
10: end for
11: end for
\triangleright Lower triangular part of A \triangleright Currently on i-th column

Factorization Step - Algorithm II

12:	$\alpha \leftarrow l_{\text {ii }}$	
13:	if $\|\alpha\|<$ threshold then	
14:	if $\alpha<0$ then	
15:	$t \leftarrow-$ Sigma	
16:	else	
17:	$t \leftarrow$ sigma	
18:	end if	
19:	nchanges \leftarrow nchanges +1	
20:	changes[nchanges] $\leftarrow t-\alpha$	
21:	locs[nchanges] $\leftarrow i$	\triangleright Record change value
22:	$\alpha \leftarrow t$	
23:	end if	

Factorization Step - Algorithm III

24: $\quad d_{j j} \leftarrow \alpha, l_{j j} \leftarrow 1$
\triangleright Update D and L
25: \quad for $j \leftarrow i+1$ to n do
26: $\quad l_{j i} \leftarrow \frac{l_{j i}}{\alpha}$
27: end for
28: end for

Now what?

- In the end, we obtain the $L D L^{T}$ factorization of B, where B differs from A in nchanges diagonal entries.
- changes[] and locs[] can be used to form U and C, such that $B=A+U C U^{T}$.

Forming U and C

- Let $k:=n c h a n g e s$. Given changes[] and locs[].
- Then C is just a $k \times k$ diagonal matrix with $c_{i i}=$ changes $[i]$.
- U is a $n \times k$ binary matrix with $u_{i j}=1 \Longleftrightarrow$ locs $[j]=i$.

Forming U and C

- Let $k:=$ nchanges. Given changes[] and locs[].
- Then C is just a $k \times k$ diagonal matrix with $c_{i i}=$ changes $[i]$.
- U is a $n \times k$ binary matrix with $u_{i j}=1 \Longleftrightarrow$ locs $[j]=i$.

For example,
if $n=5$, changes []$=[-0.1,1.2,1.0]$, locs []$=[1,4,5]$, then

$$
C=\left(\begin{array}{ccc}
-0.1 & 0 & 0 \\
0 & 1.2 & 0 \\
0 & 0 & 1.0
\end{array}\right) \text { and } U=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Solution Step - Algorithm

Let $\operatorname{SMW}(b)$ be a subroutine that, given $B=L D L^{T}$ and $A=B-U C U^{T}$, computes $A^{-1} b$, using:

- triangular solves, and
- builtin algorithm for computing $W^{-1}=\left(C^{-1}-U^{\top} B^{-1} U\right)^{-1}$.

Solution Step - Algorithm

Let $\operatorname{SMW}(b)$ be a subroutine that, given $B=L D L^{T}$ and $A=B-U C U^{T}$, computes $A^{-1} b$, using:

- triangular solves, and
- builtin algorithm for computing $W^{-1}=\left(C^{-1}-U^{T} B^{-1} U\right)^{-1}$.

Here is the solution step:
1: Form U and C from changes[] and locs[]
2: $x \leftarrow \operatorname{SMW}(b)$

Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with extended precision is used.

Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with extended precision is used.

Let $S M W 128(b)$ be a subroutine that, given $B=L D L^{T}$ and $A=B-U C U^{T}$, computes $A^{-1} b$, using:

- triangular solves, and
- builtin algorithm for computing W^{-1}, to 128 -bit precision.

Here is the solution step:
1: Form U and C from changes[] and locs[]
2: $x \leftarrow \mathbf{0}$
3: residual $\leftarrow \frac{\|A x-b\|_{\infty}}{\|b\|_{\infty}}$
4: tolerance $\leftarrow 10^{-16}$, maxit $\leftarrow 10$
\triangleright Parameters, changeable
5: numit $\leftarrow 0$
6: while numit $<$ maxit do
7: $\quad r \leftarrow b-A x$
8: \quad correction \leftarrow SMW128 (r)
\triangleright Using extended precision
9: $\quad x \leftarrow x+$ correction
10: \quad newresidual $\leftarrow \frac{\|A x-b\|_{\infty}}{\|b\|_{\infty}}$
11: \quad if newresidual $<$ tolerance or $2 \cdot$ newresidual $>$ residual then
12: break
13: end if
14: \quad residual \leftarrow newresidual
15: \quad numit \leftarrow numit +1
16: end while

Computing SMW(b) and SMW128(b)

For $\operatorname{SMW}(b)$,

$$
\begin{aligned}
& \text { 1: } v \leftarrow L^{T} \backslash D \backslash L \backslash b \\
& \text { 2: } Y \leftarrow L^{T} \backslash D \backslash L \backslash U \\
& \text { 3: } W \leftarrow C^{-1}-U^{T} Y \\
& \text { 4: } z \leftarrow W \backslash\left(U^{T} v\right) \\
& \text { 5: } x \leftarrow v+Y z
\end{aligned}
$$

For SMW128(b),

$$
\begin{aligned}
& \text { 1: } v \leftarrow L^{T} \backslash D \backslash L \backslash b \\
& \text { 2: } Y \leftarrow L^{T} \backslash D \backslash L \backslash U \\
& \text { 3: } W \leftarrow m p(C)^{-1}-m p(U)^{T} m p(Y) \\
& \text { 4: } z \leftarrow W \backslash\left(m p(U)^{T} m p(v)\right) \\
& \text { 5: } x \leftarrow v+Y z
\end{aligned}
$$

Here, $m p()$ converts a matrix to 128 -bit precision.

Software and Tools

- MATLAB R2018a Student License
- Advanpix Multiprecision Computing Toolbox, 7-day trial license

Test Matrices

- 78 matrices from SuiteSparse (https://sparse.tamu.edu/)
- Selection criteria:

Filter by Matrix Size and Shape
Rows

100	5000
Min	Max

Filter by Matrix Structure and Entry Type

Rutherford-Boeing Type

Special Structure
Symmetric •

Strongly Connected Components

Positive Definite

No *

- Manually removed matrices that are:
- singular, or
- "not meant to be solved" (e.g. random graphs)

Test Matrices

- For each SuiteSparse matrix A, a random symmetric matrix with the same nonzero patterns and fixed (approximate) condition number cond is generated
- Command used: sprandsym(A, [], cond, 3)

Parameter Overview

Parameter	Description
threshold	Pivots smaller than threshold is too small
sigma	Small thresholds will be changed to \pm sigma
tolerance	IR should stop if residual smaller than tolerance
maxit	Maximum number of IR steps
Use 128 bit?	Whether SMW128() is used in lieu of SMW()

Notice that maxit $=1$ is equivalent to not using IR.

Parameter Choice

A total of $1 \times 2 \times 2 \times 7=28$ parameter sets are tested.

- threshold $=10^{-16}$
- maxit $=1$ (no IR) or maxit $=10$ (with IR)
- Use $\operatorname{SMW}()$ or SMW128()
- As for threshold and sigma,

No.	threshold	sigma				
1	10^{-3}	10^{-3}				
2	10^{-4}	10^{-3}				
3	10^{-6}	10^{-6}				
4	10^{-9}	10^{-9}				
5	$10^{-8} \times\\|A\\|$	$10^{-8} \times\\|A\\|$				
6	$10^{-12} \times\\|A\\|$	$10^{-12} \times\\|A\\|$				
7	$10^{-16} \times\\|A\\|$	$10^{-16} \times\\|A\\|$				

The Competition

(1) Bunch-Kaufman

- The default MATLAB full matrix solver in our case
(2) MA57 algorithm
- Multifrontal method
- With scaling and pivoting
- The default MATLAB sparse matrix solver in our case

For fairness, we test the algorithms both with and without IR.

Comparing the Algorithms

- Relative residual is used for IR terminating condition
- Compare relative error instead
- Performance profile ([Dolan, More]) is used for visualizing the results

Performance Profile

- Suppose there are X algorithms and T tests.

Performance Profile

- Suppose there are X algorithms and T tests.
- The i-th algorithm gives relative error $\epsilon_{i j}$ on test j.

Performance Profile

- Suppose there are X algorithms and T tests.
- The i-th algorithm gives relative error $\epsilon_{i j}$ on test j.
- If "fail", $\epsilon_{i j}$ is set to ∞.

Performance Profile

- Suppose there are X algorithms and T tests.
- The i-th algorithm gives relative error $\epsilon_{i j}$ on test j.
- If "fail", $\epsilon_{i j}$ is set to ∞.
- For $1 \leq j \leq T$, set best $:=\min _{i} \epsilon_{i j}$.

Performance Profile

- Suppose there are X algorithms and T tests.
- The i-th algorithm gives relative error $\epsilon_{i j}$ on test j.
- If "fail", $\epsilon_{i j}$ is set to ∞.
- For $1 \leq j \leq T$, set best $_{j}:=\min _{i} \epsilon_{i j}$.
- Set ratio ${ }_{i j}:=\frac{\epsilon_{i j}}{\text { best }_{j}}$. (Assume $\left.\frac{\infty}{\infty}=\infty\right)$

Performance Profile

- Suppose there are X algorithms and T tests.
- The i-th algorithm gives relative error $\epsilon_{i j}$ on test j.
- If "fail", $\epsilon_{i j}$ is set to ∞.
- For $1 \leq j \leq T$, set best $_{j}:=\min _{i} \epsilon_{i j}$.
- Set ratio ${ }_{i j}:=\frac{\epsilon_{i j}}{\text { best }_{j}}$. (Assume $\frac{\infty}{\infty}=\infty$)
- For each algorithm i, plot the cumulative frequency of the data $\log _{10}\left(\right.$ ratio $\left._{i 1}\right), \log _{10}\left(\right.$ ratio $\left._{i 2}\right), \ldots, \log _{10}\left(\right.$ ratio $\left._{i T}\right)$.

Failure Condition

Say the algorithm fails, if at least one of the following happens:
(1) Relative error is too big
(2) nchanges is too big (for SMW-based algorithms only)

- Need to take inverse of W, where $\operatorname{dim}(W)=$ nchanges
- nchanges $\approx n \rightarrow$ forced to solve a huge dense system!
(3) Runtime is too long
- For our test matrices, $n \leq 5000$
- Consider > 3 minutes as too long

Part 1: Effect of improving the SMW algorithm

- First, we compare SMW algorithms with:
(1) No IR, no 128-bit
(2) IR, no 128-bit
(3) IR, 128-bit
- Parameters:
- threshold $=10^{-4}$, sigma $=10^{-3}$
- tolerance $=10^{-16}$
- maxit $=1$ (no IR) or maxit $=10($ with IR$)$
- Fail conditions:
- Relative error > 1
- Runtime >3 minutes
- Test matrices: 78 SuiteSparse matrices

Figure 1-1: No IR, no 128-bit

Figure 1-2: IR, no 128-bit

Figure 1-3: IR, 128-bit

Figure 1-4: IR, 128-bit, versus LDL with IR

Figure 1-5: All three settings, versus LDL with IR

Part 2: Comparing different sigma and threshold

- Parameters:
- tolerance $=10^{-16}$
- maxit $=10$ (with IR)
- Use SMW128() whenever applicable
- Choose different values of threshold and sigma
- Fail conditions:
- Relative error > 1
- Runtime >3 minutes
- Test matrices: 78 SuiteSparse matrices

Figure 2-1: Constant values

Figure 2-2: Nonconstant values (depends on $\|A\|_{\infty}$)

Figure 2-3: Some constant \& some nonconstant

Part 3: Taking nchanges into account

- Parameters:
- tolerance $=10^{-16}$
- maxit $=10$ (with IR)
- Use SMW128() whenever applicable
- Choose different values of threshold and sigma
- Fail conditions:
- Relative error > 1
- Runtime >3 minutes
- (NEW!) $\frac{\text { nchanges }}{n}>c f$, where $c f \in\{0.1,0.25,0.5,1.0\}$
- Test matrices: 78 SuiteSparse matrices

Figure 3-1: cf $=1.0$

Figure 3-2: cf $=0.5$

Figure 3-3: cf $=0.25$

Figure 3-4: cf $=0.1$

Part 4: Testing on sprandsym() Matrices

- We shall repeat the previous parts on matrices generated using sprandsym(A, [], cond, 3) command.
- Choices of cond: $10^{8}, 10^{10}$.

Figure 4-1-1: cond $\approx 10^{8}$, focus on IR / 128-bit

Figure 4-1-2: cond $\approx 10^{10}$, focus on IR / 128-bit

Figure 4-2: cond $\approx 10^{10}$, focus on sigma and threshold

- Notice that the choice of paramters matters little!
- Same for cond $\approx 10^{8}$ and other parameter choices

Figure 4-3-1: cond $\approx 10^{10}$, cf $=1.0$, focus on $\frac{n \text { changes }}{n}$

Figure 4-3-2: cond $\approx 10^{10}$, cf $=0.5$, focus on $\frac{n \text { changes }}{n}$

Figure 4-3-3: cond $\approx 10^{10}, c f=0.25$, focus on $\frac{\text { nchangges }}{n}$

Figure 4-3-4: cond $\approx 10^{10}$, cf $=0.1$, focus on $\frac{n \text { changes }}{n}$

Part 5: The effect of tolerance

- What if tolerance $=10^{-14}$, instead of 10^{-16} ?

Figure 5-1-1: tolerance $=10^{-16}$, SuiteSparse

Figure 5-1-2: tolerance $=10^{-14}$, SuiteSparse

Figure 5-2-1: tolerance $=10^{-16}$, sprandsym, cond $\approx 10^{10}$

Figure 5-2-2: tolerance $=10^{-14}$, sprandsym, cond $\approx 10^{10}$

Summary

What does each part tells us?
(1) SMW with IR performs competitively against built-in algorithms. $S M W 128()$ is nice to have, but not strictly necessary.

Summary

What does each part tells us?
(1) SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
(2) Smaller sigma and threshold \Longrightarrow slightly worse accuracy.

Summary

What does each part tells us?
(1) SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
(2) Smaller sigma and threshold \Longrightarrow slightly worse accuracy.
(3) Smaller sigma and threshold \Longrightarrow slightly smaller nchanges.

Summary

What does each part tells us?
(1) SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
(2) Smaller sigma and threshold \Longrightarrow slightly worse accuracy.
(3) Smaller sigma and threshold \Longrightarrow slightly smaller nchanges.
(9) On sprandsym() matrices:

- Parameters do not affect accuracy by much;
- Parameters do affect nchanges significantly.

Summary

What does each part tells us?
(1) SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
(2) Smaller sigma and threshold \Longrightarrow slightly worse accuracy.
(3) Smaller sigma and threshold \Longrightarrow slightly smaller nchanges.
(9) On sprandsym() matrices:

- Parameters do not affect accuracy by much;
- Parameters do affect nchanges significantly.
(0) Choice of tolerance may have a tremendous impact on relative performance.

Future Work

(1) Parameters
X Only a small subset tested Test more parameters to find the best parameter?

Future Work

(1) Parameters
X Only a small subset tested Test more parameters to find the best parameter?
(2) Data Representation
X Some matrices may be under-represented in performance profiles Combine with alternative methods for data representation?

Future Work

(1) Parameters
X Only a small subset tested
\checkmark Test more parameters to find the best parameter?
(2) Data Representation
X Some matrices may be under-represented in performance profiles Combine with alternative methods for data representation?
(3) Evaluation Metric
X CPU time using SMW128() is ~ 10 times that of $\operatorname{SMW}()$ More comprehensive metric needed?

Future Work

(1) Parameters
X Only a small subset tested
\checkmark Test more parameters to find the best parameter?
(2) Data Representation
X Some matrices may be under-represented in performance profiles Combine with alternative methods for data representation?
(3) Evaluation Metric
X CPU time using SMW128() is ~ 10 times that of $\operatorname{SMW}()$
\checkmark More comprehensive metric needed?
(9) In-depth Analysis
X The conclusions are based on empirical evidence Find provable error bounds?

Future Work

(1) Parameters
X Only a small subset tested
\checkmark Test more parameters to find the best parameter?
(2) Data Representation
X Some matrices may be under-represented in performance profiles Combine with alternative methods for data representation?
(3) Evaluation Metric
X CPU time using SMW128() is ~ 10 times that of $\operatorname{SMW}()$
\checkmark More comprehensive metric needed?
(9) In-depth Analysis
X The conclusions are based on empirical evidence
Find provable error bounds?
Investigate the major source of error?

References I

Dames R. Bunch, Linda Kaufman.
Some stable methods for calculating inertia and solving symmetric linear systems.
Mathematics of Computation, 31 (1977), 163-179.
㞒 I. S. Duff, J. K. Reid.
The Multifrontal Solution of Indefinite Sparse Symmetric Linear Equations.
ACM Transactions on Mathematical Software, Vol. 9, No. 3, September 1983, 302-325.

References II

國 Xiaoye S. Li, James W. Demmel.
SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmmetric Linear Systems.
ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.
N. Egidi, P. Maponi.

A Sherman-Morrison approach to the solution of linear systems. Journal of Computational and Applied Mathematics, 189 (2006), 703-718.
固 Elizabeth D. Dolan, Jorge J. More.
Benchmarking optimization software with performance profiles. Mathematical Programming, Ser. A 91: 201-213 (2002).

