Background A	pproach	Experimentation	Results	Conclusion	References

Solving Symmetric Indefinite Linear Systems with a Sherman-Morrison-Woodbury-based Algorithm

Kam Chuen (Alex) Tung

The Chinese University of Hong Kong

30 August 2018

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	O

Table of Contents

- 1 Background
- 2 Approach
- 3 Experimentation
 - 4 Results

6 References

∃ >

Background	Approach	Experimentation	Results	Conclusion	References
●000000	000 0 00000	000000000	000000000000	00	0

Problem Background

• Solve Ax = b. That's it.

→ Ξ →

Image: Image:

Background	Approach	Experimentation	Results	Conclusion	
●000000	000 0 00000	000000000	0000000000000	00	
Problem	n Backgrou	ınd			

- - Solve Ax = b. That's it.
 - Given a linear system Ax = b, where A is:
 - sparse,
 - symmetric,
 - indefinite, and
 - nonsingular,

find an accurate and efficient way to solve the system.

Background	Approach	Experimentation	Results	Conclusion	
●000000	000 0 00000	000000000	0000000000000	00	
Droblom	Dockgrou	up d			

Problem Background

- Solve Ax = b. That's it.
- Given a linear system Ax = b, where A is:
 - sparse,
 - symmetric,
 - indefinite, and
 - nonsingular,

find an accurate and efficient way to solve the system.

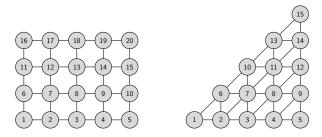
• Accuracy is measured by the ∞ -norm relative error:

$$\epsilon_{rel} := \frac{\|\widetilde{x} - x\|_{\infty}}{\|x\|_{\infty}},$$

where \tilde{x} is the solution obtained by the solver.

Background	Approach	Experimentation	Results	Conclusion	References
0●00000	000 0 00000	000000000	0000000000000	00	O
Why sp	arse?				

• Linear systems from many applications are sparse



- General dense solvers run in $O(n^3)$ and scale badly
- Sparse solvers: solvers that exploit sparsity

Background	Approach	Experimentation	Results	Conclusion	References
00●0000	000 0 00000	000000000	0000000000000	00	O
	6				

Exploiting Symmetry

- Symmetric matrices are simpler for factorization-based solvers.
- Generally:

$$A = LDU$$
,

where:

- L is lower triangular,
- D is diagonal, and
- U is upper triangular.
- For symmetric *A*, it becomes:

$$A = LDL^T$$
.

Background	Approach	Experimentation	Conclusion	References
0000000				

Focusing on indefinite matrices

- For (positive- or negative-) definite matrices, Cholesky factorization works well
- The indefinite case is more interesting!

Background	Approach	Experimentation	Results	Conclusion	References
0000●00	000 0 00000	000000000	0000000000000	00	O

Focusing on nonsingular matrices

- If A is singular, there can be infinitely many solutions!
- Even if A is near-singular, it is hard to measure accuracy...
- $||Av||_{\infty}$ can be small even if $||v||_{\infty}$ is large

Background	Approach	Experimentation	Results	Conclusion	References
0000●00	000 0 00000	000000000	0000000000000	00	O

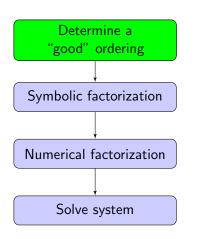
Focusing on nonsingular matrices

- If A is singular, there can be infinitely many solutions!
- Even if A is near-singular, it is hard to measure accuracy...
- $||Av||_{\infty}$ can be small even if $||v||_{\infty}$ is large
- There is a reason why the residual

$$r_{rel} := \frac{\|b - A\widetilde{x}\|_{\infty}}{\|b\|_{\infty}},$$

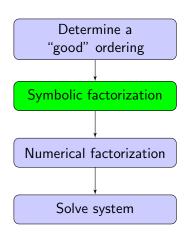
is **not** used to measure performance. More on that later.

Aim: Solve Ax = b based on LDL^{T} factorization.



• Find ordering that minimizes the number of nonzeros of *L* (denoted by |*L*|)

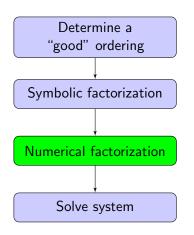
Aim: Solve Ax = b based on LDL^{T} factorization.



• Perform symbolic factorization to determine data structure

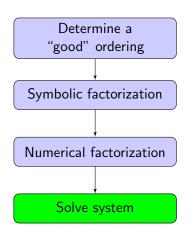
General Framework

Aim: Solve Ax = b based on LDL^T factorization.



- Avoid pivoting to utilize the fixed data structure
- Factorizing SPD matrices is stable without pivoting
- Factorizing indefinite matrices may fail without pivoting!

Aim: Solve Ax = b based on LDL^{T} factorization.



- Triangular solves only
- Possibly with iterative refinement

Background	Approach	Experimentation	Results	Conclusion	
000000●	000 0 00000	000000000	0000000000000	00	
Previous	s Work				

- [Bunch, Kaufman]: Use 1x1 and 2x2 pivots
 - Does not exploit sparsity
- [Duff, Reid]: Multifrontal Method
 - Sparse solver
 - Uses idea from Bunch-Kaufman to handle indefinite case
- [Li, Demmel]: Change the value of pivot if it is too small
 - Works for nonsymmetric A
- [Egidi, Maponi]: Use Sherman-Morrison formula to update solution
 - Breaks system into rank-1 components
 - Does not exploit sparsity

Background	Approach	Experimentation	Results	Conclusion	References
0000000	●00000000	000000000	0000000000000	00	O
Overviev	N				

Properties:

- Left-looking LDL^T factorization
- Avoids pivoting

< ⊒ >

Background	Approach	Experimentation	Results	Conclusion	References
0000000	●00000000	000000000	0000000000000	00	O
Overview	V				

Properties:

- Left-looking *LDL^T* factorization
- Avoids pivoting

Key Idea:

- If pivot too small, change it and record the change
- In the end, we get LDL^T factorization of $B := A + UCU^T$
- C is a $k \times k$ diagonal matrix storing the changes
- U is $n \times k$; maps C from $\mathbb{R}^{k \times k}$ back to $\mathbb{R}^{n \times n}$
- Use Sherman-Morrison-Woodbury formula to compute $A^{-1}b$

The Sherman-Morrison-Woodbury (SMW) Formula

• From last slide, we have

$$A = B - UCU^T,$$

where A, B are $n \times n$, U is $n \times k$, and C is $k \times k$.

∃ ▶ ∢

The Sherman-Morrison-Woodbury (SMW) Formula

• From last slide, we have

$$A = B - UCU^T,$$

where A, B are $n \times n$, U is $n \times k$, and C is $k \times k$.

• Sherman-Morrison formula deals with k = 1 (rank-1 update):

$$A^{-1} = B^{-1} + \frac{B^{-1}uu^T B^{-1}}{c^{-1} - u^T B^{-1}u}$$

The Sherman-Morrison-Woodbury (SMW) Formula

• From last slide, we have

$$A = B - UCU^T,$$

where A, B are $n \times n$, U is $n \times k$, and C is $k \times k$.

• Woodbury formula deals with the general case:

$$A^{-1} = B^{-1} + B^{-1} U W^{-1} U^T B^{-1},$$

where

$$W := C^{-1} - U^T B^{-1} U$$

is the "Woodbury matrix".

Background	Approach	Experimentation	Results	Conclusion	References
0000000	00●000000	000000000	0000000000000	00	O

Proof of SMW Formula

- Based on blockwise matrix inversion
- A^{-1} is the solution X of the matrix equation

$$\left(\begin{array}{cc} B & U \\ U^T & C^{-1} \end{array}\right) \left(\begin{array}{c} X \\ Y \end{array}\right) = \left(\begin{array}{c} I \\ O \end{array}\right)$$

Background	Approach	Experimentation	Results	Conclusion	References
0000000	00●000000	000000000	0000000000000	00	O

Proof of SMW Formula

- Based on blockwise matrix inversion
- A^{-1} is the solution X of the matrix equation

$$\left(\begin{array}{cc} B & U \\ U^{T} & C^{-1} \end{array}\right) \left(\begin{array}{c} X \\ Y \end{array}\right) = \left(\begin{array}{c} I \\ O \end{array}\right)$$

Solving

$$\begin{cases} BX + UY = I \\ U^T X + C^{-1} Y = 0 \end{cases}$$

gives

$$X = B^{-1}(I - UY)$$

$$\implies Y = -(C^{-1} - U^{T}B^{-1}U)^{-1}U^{T}B^{-1}$$

$$\implies X = B^{-1} + B^{-1}U(C^{-1} - U^{T}B^{-1}U)^{-1}U^{T}B^{-1}$$

∃ ≻

Background	Approach	Experimentation	Conclusion	References
	00000000			

Factorization Step — Algorithm I

- 1: sigma $\leftarrow 10^{-3}$ 2. threshold $\leftarrow 10^{-4}$ 3: *nchanges* $\leftarrow 0$ 4: $L \leftarrow tril(A)$ 5: for $i \leftarrow 1$ to n do for $j: 1 \leq j < i, I_{ii} \neq 0$ do 6: 7: $\lambda \leftarrow d_{ii} \times I_{ii}$ for k: $i \leq k \leq n$ do 8: $I_{ki} \leftarrow I_{ki} - \lambda \times I_{ki}$ <u>g</u>. 10: end for end for 11:
- Parameter values are changeable

▷ Lower triangular part of A
 ▷ Currently on *i*-th column
 ▷ Elimination step

0000000 0000000 00000000 00 0	Background	Approach	Experimentation	Conclusion	References
		000000000			

Factorization Step — Algorithm II

12:	$\alpha \leftarrow I_{ii}$	
13:	if $ \alpha < threshold$ then	Change pivot value
14:	if $\alpha < 0$ then	
15:	$t \leftarrow -sigma$	
16:	else	
17:	$t \leftarrow sigma$	
18:	end if	
19:	$\mathit{nchanges} \leftarrow \mathit{nchanges} + 1$	
20:	$changes[nchanges] \leftarrow t - lpha$	Record change value
21:	$locs[nchanges] \leftarrow i$	Record change index
22:	$lpha \leftarrow t$	
23:	end if	

(日)

0000000 0000000 000000000 00 0	Background	Approach	Experimentation	Conclusion	References
		000000000			

Factorization Step — Algorithm III

- 24: $d_{jj} \leftarrow \alpha, \ l_{jj} \leftarrow 1$ 25: **for** $j \leftarrow i+1$ to n **do**
- 26: $I_{ji} \leftarrow \frac{I_{ji}}{\alpha}$
- 27: end for
- 28: end for

Now what?

- In the end, we obtain the *LDL*^T factorization of *B*, where *B* differs from *A* in *nchanges* diagonal entries.
- changes[] and locs[] can be used to form U and C, such that $B = A + UCU^{T}$.

 \triangleright Update D and L

Background	Approach	Experimentation	Results	Conclusion	
0000000	000 0 ●0000	000000000	0000000000000	00	
Forming	U and C				

- Let k := nchanges. Given changes[] and locs[].
- Then C is just a $k \times k$ diagonal matrix with $c_{ii} = changes[i]$.
- U is a $n \times k$ binary matrix with $u_{ij} = 1 \iff locs[j] = i$.

Background	Approach	Experimentation	Results	Conclusion	
0000000	000 0 ●0000	000000000	0000000000000	00	
Forming	U and C				

- Let k := nchanges. Given changes[] and locs[].
- Then C is just a $k \times k$ diagonal matrix with $c_{ii} = changes[i]$.
- U is a $n \times k$ binary matrix with $u_{ij} = 1 \iff locs[j] = i$.

For example,

if
$$n = 5$$
, $changes[] = [-0.1, 1.2, 1.0]$, $locs[] = [1, 4, 5]$, then

$$C = \begin{pmatrix} -0.1 & 0 & 0 \\ 0 & 1.2 & 0 \\ 0 & 0 & 1.0 \end{pmatrix} \text{ and } U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

•

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 0●000	000000000	0000000000000	00	0

Solution Step — Algorithm

Let SMW(b) be a subroutine that, given $B = LDL^T$ and $A = B - UCU^T$, computes $A^{-1}b$, using:

- triangular solves, and
- builtin algorithm for computing $W^{-1} = (C^{-1} U^T B^{-1} U)^{-1}$.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	0

Solution Step — Algorithm

Let SMW(b) be a subroutine that, given $B = LDL^T$ and $A = B - UCU^T$, computes $A^{-1}b$, using:

- triangular solves, and
- builtin algorithm for computing $W^{-1} = (C^{-1} U^T B^{-1} U)^{-1}$.

Here is the solution step:

- 1: Form *U* and *C* from *changes*[] and *locs*[]
- 2: $x \leftarrow SMW(b)$

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00●00	000000000	0000000000000	00	O

Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with *extended precision* is used.

∃ >

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	O

Solution Step — Algorithm 2.0

To improve accuracy, iterative refinement (IR) with *extended precision* is used.

Let SMW128(b) be a subroutine that, given $B = LDL^T$ and $A = B - UCU^T$, computes $A^{-1}b$, using:

- triangular solves, and
- builtin algorithm for computing W^{-1} , to 128-bit precision.

Backgro 00000		Experimentation 000000000	Results 0000000000000	Conclusion				
Here is the solution step:								
 Form U and C from changes[] and locs[] 								
	2: $x \leftarrow 0$							
3:	residual $\leftarrow \frac{\ Ax - b\ _{\circ}}{\ b\ _{\infty}}$	<u>o</u>						
4:	tolerance $\leftarrow 10^{-16}$,	$maxit \leftarrow 10$	⊳ Para	ameters, cha	angeable			
5:	numit \leftarrow 0							
6:	while numit < max	xit do						
7:	$r \leftarrow b - Ax$							
8:	correction \leftarrow SI	MW128(r)	⊳ Using	g extended	precision			
9:	$x \leftarrow x + correct$							
10:	newresidual \leftarrow	$\frac{\ Ax-b\ _{\infty}}{\ b\ _{\infty}}$						
11:	· · · · · · · · · · · · · · · · · · ·							
12:	break							
13:	end if							
14:	$\mathit{residual} \leftarrow \mathit{new}$	residual						

- 15: $numit \leftarrow numit + 1$
- 16: end while

イロト イヨト イヨト イ

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 0000●	000000000	0000000000000	00	O

Computing SMW(b) and SMW128(b)

For SMW(b), 1: $v \leftarrow L^T \setminus D \setminus L \setminus b$ $\triangleright v = B^{-1}b$ 2: $Y \leftarrow L^T \setminus D \setminus L \setminus U$ $\triangleright Y = B^{-1}U$ 3: $W \leftarrow C^{-1} - U^T Y$ Forming Woodbury matrix 4: $z \leftarrow W \setminus (U^T v)$ 5 $x \leftarrow v + Yz$ For SMW128(b), 1: $\mathbf{v} \leftarrow \mathbf{L}^T \setminus \mathbf{D} \setminus \mathbf{L} \setminus \mathbf{b}$ $\triangleright v = B^{-1}b$ 2: $Y \leftarrow L^T \setminus D \setminus L \setminus U$ $\triangleright Y = B^{-1}U$ 3: $W \leftarrow mp(C)^{-1} - mp(U)^T mp(Y)$ \triangleright Forming W in 128-bit 4: $z \leftarrow W \setminus (mp(U)^T mp(v))$ 5: $x \leftarrow v + Y_z$

Here, mp() converts a matrix to 128-bit precision.

▲ □ ▶ ▲ 三 ▶ ▲ 三

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	•00000000	0000000000000	00	O
Softwar	e and Tool	S			

- MATLAB R2018a Student License
- Advanpix Multiprecision Computing Toolbox, 7-day trial license

∃ >

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	00000000	0000000000000	00	O

Test Matrices

- 78 matrices from SuiteSparse (https://sparse.tamu.edu/)
- Selection criteria:

	F	ilter by Matrix	Size and Shap	e	
Ro	WS	Colu	mns	Non	zeros
100	5000	100 5000 Min Max			
Min	Max			Min	Max
	Filter	by Matrix Stru	cture and Entry	у Туре	
Pattern Symmetry		Numerical Symmetry		Strongly Connected Components	
Min (%)	Max (%)	Min (%)	Max (%)	Min	Max
Rutherford-Boeing Type Special Structure		Structure	Positive	Definite	
Real		Symmetric •		No *	

- Manually removed matrices that are:
 - singular, or
 - "not meant to be solved" (e.g. random graphs)

Background	Approach	Experimentation	Results	Conclusion	
0000000	000 0 00000	00000000	0000000000000	00	
Test Ma	trices				

- For each SuiteSparse matrix *A*, a random symmetric matrix with the *same nonzero patterns* and fixed (approximate) condition number *cond* is generated
- Command used: sprandsym(A, [], cond, 3)

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	O

Parameter Overview

Parameter	Description
threshold	Pivots smaller than threshold is too small
sigma	Small thresholds will be changed to $\pm sigma$
tolerance	IR should stop if residual smaller than tolerance
maxit	Maximum number of IR steps
Use 128 bit?	Whether SMW128() is used in lieu of SMW()

Notice that maxit = 1 is equivalent to not using IR.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	0000●0000	0000000000000	00	O
_	.				

Parameter Choice

A total of $1 \times 2 \times 2 \times 7 = 28$ parameter sets are tested.

- threshold = 10^{-16}
- maxit = 1 (no IR) or maxit = 10 (with IR)
- Use *SMW*() or *SMW*128()
- As for threshold and sigma,

No.	threshold	sigma
1	10 ⁻³	10 ⁻³
2	10^{-4}	10 ⁻³
3	10^{-6}	10 ⁻⁶
4	10^{-9}	10 ⁻⁹
5	$10^{-8} imes A $	$10^{-8} imes \ A\ $
6	$10^{-12} imes \ A\ $	$10^{-12} imes \ A\ $
7	$10^{-16} imes \ A\ $	$10^{-16} imes \ A\ $

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	O

The Competition

- Bunch-Kaufman
 - The default MATLAB full matrix solver in our case

MA57 algorithm

- Multifrontal method
- With scaling and pivoting
- The default MATLAB sparse matrix solver in our case

For fairness, we test the algorithms both with and without IR.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	O

Comparing the Algorithms

- Relative residual is used for IR terminating condition
- Compare relative error instead
- Performance profile ([Dolan, More]) is used for visualizing the results

Background	Approach	E×perimentation	Results	Conclusion		
0000000	000 0 00000	000000000	0000000000000	00		
Performance Profile						

• Suppose there are X algorithms and T tests.

Background	Approach	Experimentation	Results	Conclusion	
0000000	000 0 00000	0000000000	0000000000000	00	
Performance Profile					

- Suppose there are X algorithms and T tests.
- The *i*-th algorithm gives relative error ϵ_{ij} on test *j*.

Background	Approach	Experimentation	Results	Conclusion			
0000000	000 0 00000	000000000	0000000000000	00			
Perform	Performance Profile						

- Suppose there are X algorithms and T tests.
- The *i*-th algorithm gives relative error ϵ_{ij} on test *j*.
- If "fail", ϵ_{ij} is set to ∞ .

Background	Approach	Experimentation	Results	Conclusion		
0000000	000 0 00000	000000000	0000000000000	00		
Performance Profile						

- Suppose there are X algorithms and T tests.
- The *i*-th algorithm gives relative error ϵ_{ij} on test *j*.
- If "fail", ϵ_{ij} is set to ∞ .
- For $1 \le j \le T$, set $best_j := \min_i \epsilon_{ij}$.

Background	Approach	Experimentation	Results	Conclusion		
0000000	000 0 00000	000000000	0000000000000	00		
Performance Profile						

- Suppose there are X algorithms and T tests.
- The *i*-th algorithm gives relative error ϵ_{ij} on test *j*.
- If "fail", ϵ_{ij} is set to ∞ .
- For $1 \leq j \leq T$, set $best_j := \min_i \epsilon_{ij}$.
- Set $ratio_{ij} := \frac{\epsilon_{ij}}{best_j}$. (Assume $\frac{\infty}{\infty} = \infty$)

Background	Approach	Experimentation	Results	Conclusion		
0000000	000 0 00000	000000000	0000000000000	00		
Performance Profile						

- Suppose there are X algorithms and T tests.
- The *i*-th algorithm gives relative error ϵ_{ij} on test *j*.
- If "fail", ϵ_{ij} is set to ∞ .
- For $1 \le j \le T$, set $best_j := \min_i \epsilon_{ij}$.
- Set $ratio_{ij} := \frac{\epsilon_{ij}}{best_i}$. (Assume $\frac{\infty}{\infty} = \infty$)
- For each algorithm *i*, plot the cumulative frequency of the data $\log_{10}(ratio_{i1}), \log_{10}(ratio_{i2}), \dots, \log_{10}(ratio_{iT}).$

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	00000000	0000000000000	00	O
Eniluro (Condition				

Say the algorithm fails, if at least one of the following happens:

- Relative error is too big
- Inchanges is too big (for SMW-based algorithms only)
 - Need to take inverse of W, where dim(W) = nchanges
 - *nchanges* \approx *n* \rightarrow forced to solve a huge dense system!
- 8 Runtime is too long
 - For our test matrices, $n \leq 5000$
 - Consider > 3 minutes as too long

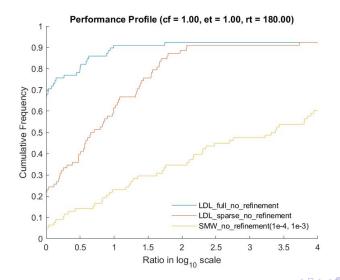
Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	●000000000000	00	0

Part 1: Effect of improving the SMW algorithm

- First, we compare SMW algorithms with:
 - No IR, no 128-bit
 - 2 IR, no 128-bit
 - 3 IR, 128-bit
- Parameters:
 - threshold = 10^{-4} , sigma = 10^{-3}
 - tolerance = 10^{-16}
 - maxit = 1 (no IR) or maxit = 10 (with IR)
- Fail conditions:
 - $\bullet \ \ {\rm Relative \ error} > 1$
 - Runtime > 3 minutes
- Test matrices: 78 SuiteSparse matrices

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0●00000000000	00	O

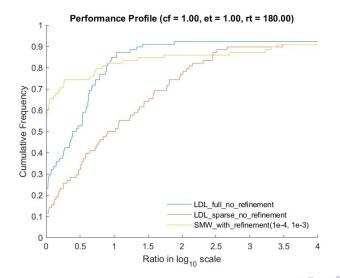
Figure 1-1: No IR, no 128-bit



Alex Tung (CUHK)

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0●00000000000	00	O

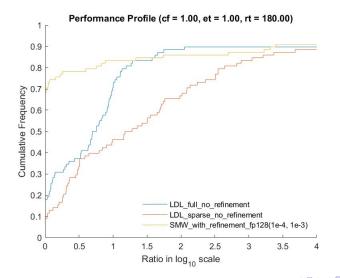
Figure 1-2: IR, no 128-bit



Alex Tung (CUHK)

Background	Approach	Experimentation	Results	Conclusion	
0000000	000 0 00000	000000000	0●00000000000	00	
i		.			

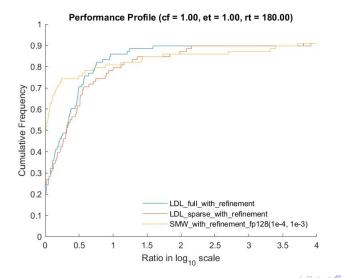
Figure 1-3: IR, 128-bit



Alex Tung (CUHK)

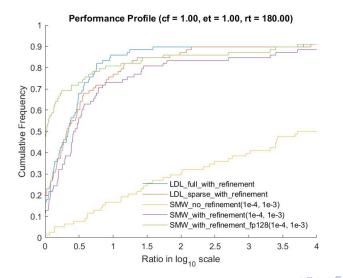
Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0●00000000000	00	0

Figure 1-4: IR, 128-bit, versus LDL with IR



Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0●00000000000	00	O

Figure 1-5: All three settings, versus LDL with IR



Alex Tung (CUHK)

Background	Approach	Experimentation	Results	Conclusion	References
			00000000000000		

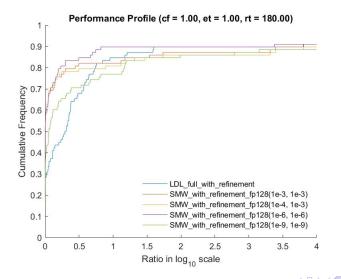
Part 2: Comparing different sigma and threshold

• Parameters:

- tolerance = 10^{-16}
- maxit = 10 (with IR)
- Use SMW128() whenever applicable
- Choose different values of threshold and sigma
- Fail conditions:
 - Relative error > 1
 - Runtime > 3 minutes
- Test matrices: 78 SuiteSparse matrices

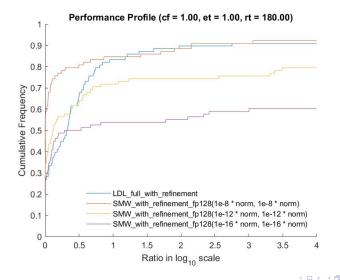
Background	Approach	Experimentation	Results	Conclusion	References
			0000000000000000		

Figure 2-1: Constant values



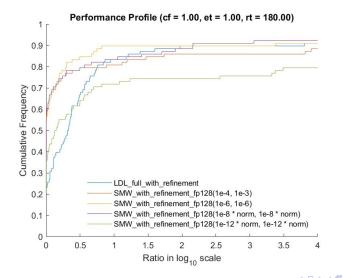
Alex Tung (CUHK)

Figure 2-2: Nonconstant values (depends on $||A||_{\infty}$)



Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	000000000000	00	O

Figure 2-3: Some constant & some nonconstant



Background	Approach	Experimentation	Results	Conclusion	References
			00000000000000000		

Part 3: Taking *nchanges* into account

• Parameters:

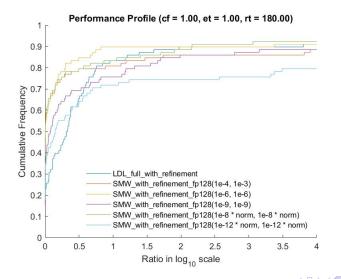
- tolerance = 10^{-16}
- maxit = 10 (with IR)
- Use SMW128() whenever applicable
- Choose different values of threshold and sigma

• Fail conditions:

- Relative error > 1
- Runtime > 3 minutes
- (NEW!) $\frac{nchanges}{n} > cf$, where $cf \in \{0.1, 0.25, 0.5, 1.0\}$
- Test matrices: 78 SuiteSparse matrices

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	00000●0000000	00	O

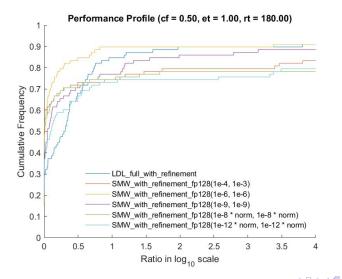
Figure 3-1: *cf* = 1.0



Alex Tung (CUHK)

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	00000●0000000	00	O

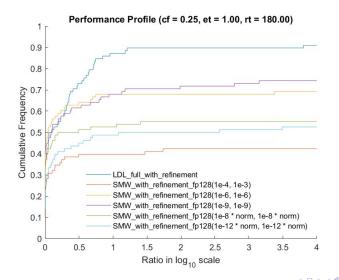
Figure 3-2: cf = 0.5



Alex Tung (CUHK)

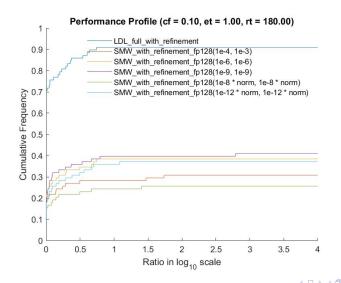
Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	00000●0000000	00	O

Figure 3-3: cf = 0.25



Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	00000●0000000	00	0

Figure 3-4: cf = 0.1

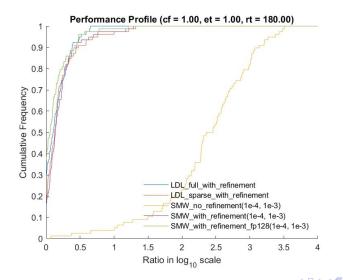


Part 4: Testing on sprandsym() Matrices

- We shall repeat the previous parts on matrices generated using sprandsym(A, [], cond, 3) command.
- Choices of *cond*: 10⁸, 10¹⁰.

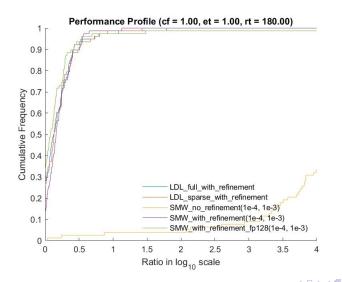
Image: A matrix

Figure 4-1-1: cond $\approx 10^8$, focus on IR / 128-bit



Alex Tung (CUHK)

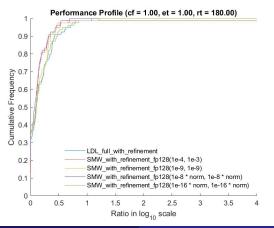
Figure 4-1-2: cond $\approx 10^{10}$, focus on IR / 128-bit

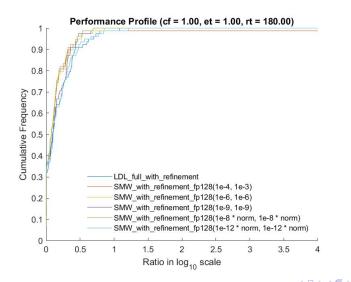


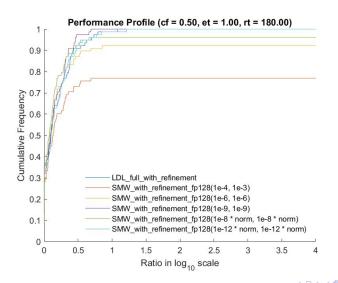
Alex Tung (CUHK)

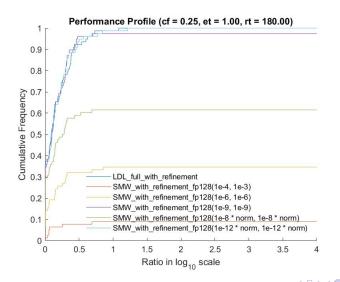
Figure 4-2: cond $\approx 10^{10}$, focus on sigma and threshold

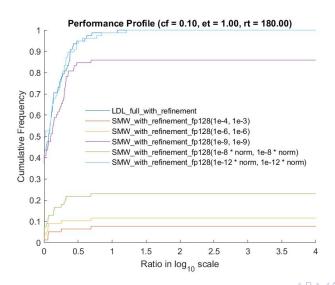
- Notice that the choice of paramters matters little!
- Same for $cond \approx 10^8$ and other parameter choices











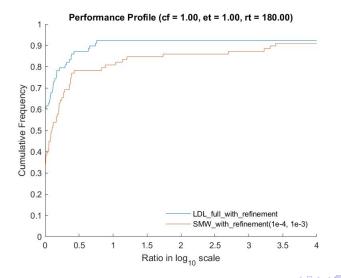
Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	000000000000000	00	O

Part 5: The effect of tolerance

• What if *tolerance* = 10^{-14} , instead of 10^{-16} ?

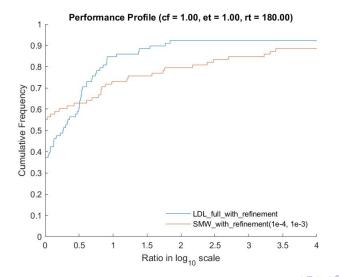
< 3 ×

Figure 5-1-1: tolerance = 10^{-16} , SuiteSparse



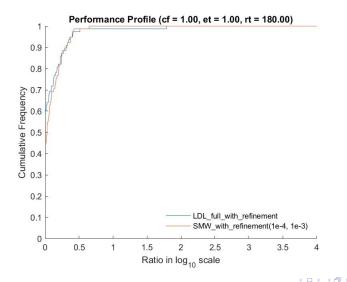
Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	000000000000000	00	0

Figure 5-1-2: tolerance = 10^{-14} , SuiteSparse



Alex Tung (CUHK)

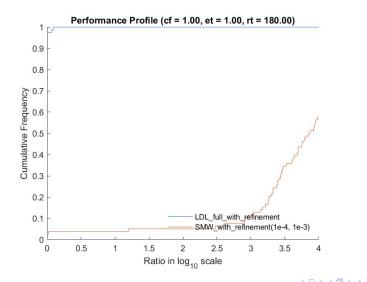
Figure 5-2-1: tolerance $= 10^{-16}$, sprandsym, cond $pprox 10^{10}$



Alex Tung (CUHK)

30 Aug 18 42 / 46

Figure 5-2-2: tolerance $= 10^{-14}$, sprandsym, cond $pprox 10^{10}$



Alex Tung (CUHK)

30 Aug 18 42 / 46

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	●○	O
Summar	У				

SMW with IR performs competitively against built-in algorithms. *SMW*128() is nice to have, but not strictly necessary.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	●○	O
Summai	Ŷ				

- SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
- 2 Smaller sigma and threshold \implies slightly worse accuracy.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	●○	O
Summar	Ŷ				

- SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
- 2 Smaller sigma and threshold \implies slightly worse accuracy.
- Smaller sigma and threshold \implies slightly smaller nchanges.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	●○	O
Summar	'V				

- SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
- 2 Smaller sigma and threshold \implies slightly worse accuracy.
- Smaller sigma and threshold \implies slightly smaller nchanges.
- On sprandsym() matrices:
 - Parameters do not affect accuracy by much;
 - Parameters do affect *nchanges* significantly.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	●○	O
Summar	٠v				

- SMW with IR performs competitively against built-in algorithms. SMW128() is nice to have, but not strictly necessary.
- 2 Smaller sigma and threshold \implies slightly worse accuracy.
- Smaller sigma and threshold \implies slightly smaller nchanges.
- On sprandsym() matrices:
 - Parameters do not affect accuracy by much;
 - Parameters do affect *nchanges* significantly.
- Ochoice of *tolerance* may have a tremendous impact on relative performance.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	○●	O
Future V	Work				

- × Only a small subset tested
- ✓ Test more parameters to find the best parameter?

• = • •

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	○●	O
Euturo V	Mark				

- × Only a small subset tested
- ✓ Test more parameters to find the best parameter?

2 Data Representation

- X Some matrices may be under-represented in performance profiles
 - Combine with alternative methods for data representation?

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	○●	O
Future	Mark				

- × Only a small subset tested
- ✓ Test more parameters to find the best parameter?

2 Data Representation

- X Some matrices may be under-represented in performance profiles
- ✓ Combine with alternative methods for data representation?

Second Evaluation Metric

- X CPU time using SMW128() is \sim 10 times that of SMW()
- ✓ More comprehensive metric needed?

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	○●	O
Euturo	Mark				

- × Only a small subset tested
- ✓ Test more parameters to find the best parameter?

2 Data Representation

- X Some matrices may be under-represented in performance profiles
- Combine with alternative methods for data representation?

Second Evaluation Metric

- X CPU time using SMW128() is \sim 10 times that of SMW()
- ✓ More comprehensive metric needed?
- In-depth Analysis
 - × The conclusions are based on empirical evidence
 - Find provable error bounds?

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	○●	O
Future	Mark				

- × Only a small subset tested
- ✓ Test more parameters to find the best parameter?

2 Data Representation

- X Some matrices may be under-represented in performance profiles
- Combine with alternative methods for data representation?

Second Evaluation Metric

- X CPU time using SMW128() is \sim 10 times that of SMW()
- ✓ More comprehensive metric needed?
- In-depth Analysis
 - × The conclusions are based on empirical evidence
 - ✓ Find provable error bounds?

Investigate the major source of error?

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	●
Referen	ces l				

James R. Bunch, Linda Kaufman.

Some stable methods for calculating inertia and solving symmetric linear systems.

Mathematics of Computation, 31 (1977), 163-179.

I. S. Duff, J. K. Reid.

The Multifrontal Solution of Indefinite Sparse Symmetric Linear Equations. ACM Transactions on Mathematical Software, Vol. 9, No. 3,

September 1983, 302-325.

Background	Approach	Experimentation	Results	Conclusion	References
0000000	000 0 00000	000000000	0000000000000	00	●
Referen	ces II				

Xiaoye S. Li, James W. Demmel.

SuperLU_DIST: A Scalable Distributed-Memory Sparse Direct Solver for Unsymmetric Linear Systems.

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.

📔 N. Egidi, P. Maponi.

A Sherman-Morrison approach to the solution of linear systems.

Journal of Computational and Applied Mathematics, 189 (2006), 703-718.

Elizabeth D. Dolan, Jorge J. More.

Benchmarking optimization software with performance profiles.

Mathematical Programming, Ser. A 91: 201-213 (2002).

→ ∃ →