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Abstract

We develop a concept called reweighted eigenvalues, to extend spectral graph theory
beyond undirected graphs. Our main motivation is to derive Cheeger inequalities and
spectral rounding algorithms for a general class of graph expansion problems, including
vertex expansion and edge conductance in directed graphs and hypergraphs. The goal is
to have a unified approach to achieve the best known results in all these settings.

The first main result is an optimal Cheeger inequality for undirected vertex expansion.
Our result connects (i) reweighted eigenvalues, (ii) vertex expansion, and (iii) fastest mixing
time [BDX04] of graphs, similar to the way the classical theory connects (i) Laplacian
eigenvalues, (ii) edge conductance, and (iii) mixing time of graphs. We also obtain close
analogues of several interesting generalizations of Cheeger’s inequality [Tre09, LOT12,
LRTV12, KLL+13] using higher reweighted eigenvalues, many of which were previously
unknown.

The second main result is Cheeger inequalities for directed graphs. The idea of Eu-
lerian reweighting is used to effectively reduce these directed expansion problems to the
basic setting of edge conductance in undirected graphs. Our result connects (i) Eule-
rian reweighted eigenvalues, (ii) directed vertex expansion, and (iii) fastest mixing time of
directed graphs. This provides the first combinatorial characterization of fastest mixing
time of general (non-reversible) Markov chains. Another application is to use Eulerian
reweighted eigenvalues to certify that a directed graph is an expander graph.

Several additional results are developed to support this theory. One class of results is
to show that adding ℓ22 triangle inequalities [ARV09] to reweighted eigenvalues provides
simpler semidefinite programming relaxations, that achieve or improve upon the previous
best approximations for a general class of expansion problems. These include edge ex-
pansion and vertex expansion in directed graphs and hypergraphs, as well as multi-way
variations of some undirected expansion problems. Another class of results is to prove
upper bounds on reweighted eigenvalues for special classes of graphs, including planar,
bounded genus, and minor free graphs. These provide the best known spectral partition-
ing algorithm for finding balanced separators, improving upon previous algorithms and
analyses [ST96, BLR10, KLPT11] using ordinary Laplacian eigenvalues.
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Chapter 1

Introduction

Spectral graph theory is the study of graphs via the spectrum of associated matrices or
operators. A fundamental result in spectral graph theory, Cheeger’s inequality [Che70,
AM85, Alo86, SJ89] connects the edge expansion property of an undirected graph G =
(V,E) to the second eigenvalue of its associated Laplacian matrix:

λ2(G)

2
≤ ϕ(G) ≤

√
2λ2(G) (1.1)

where ϕ(G) is the edge conductance of G, which is a natural graph isoperimetric constant
that informally measures how well the graph is connected, and λ2(G) is the second smallest
eigenvalue of its normalized Laplacian matrix1. Crucially, the edge conductance is NP-hard
to compute [ŠS06], while the second eigenvector can be computed in near-linear time. Plus,
there is a fast and simple rounding algorithm called the sweep-cut algorithm, that extracts
a set S with small edge conductance from the second eigenvector. Thus, spectral methods
open up an avenue for fast graph algorithms.

There are two important applications of Cheeger’s inequality. One is to use the second
eigenvalue to study expander graphs (see [HLW06] for survey) and its eigenvector for
graph partitioning (see [Lux07] for survey), notably image segmentation [SM00]. The
other application is to use the edge conductance to bound the mixing time of random
walks [AF02, LP17]. Together, Cheeger’s inequality connects (i) edge conductance, (ii) the
second eigenvalue, and (iii) mixing time. More recently, the spectral theory for undirected
graphs is enriched by several interesting generalizations of Cheeger’s inequality [Tre09,
ABS10, LOT12, LRTV12, KLL+13], which establish further connections between edge

1See Chapter 2 for various definitions that are not stated in this introduction.
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expansion properties of the graph to higher eigenvalues λk(G) of its normalized Laplacian
matrix.

The richness of the “basic” spectral theory for edge conductance in undirected graphs
inspires many efforts to derive a spectral theory for more general settings such as directed
graphs and hypergraphs. Despite these efforts, the current spectral theories for these more
general settings fail to fully capture the rich applications of the basic spectral theory.

In this thesis, we develop the framework of “reweighted eigenvalues”, which is a unifying
framework that reduces the study of expansion quantities in more general settings to the
basic setting of edge conductance in undirected graphs. Here is a resumé of our results:

1. The first main result is to develop a spectral theory to study vertex expansion in
graphs, that connects (i) reweighted eigenvalues, (ii) vertex expansion, and (iii)
fastest mixing time, and captures direct analogues of several generalizations of Cheeger’s
inequality [Tre09, LOT12, LRTV12, KLL+13] for vertex expansion (Chapter 4).

2. The second main result is to develop a spectral theory for directed graphs, with
applications in characterizing fastest mixing time for general Markov chains and
certifying directed expander graphs. Our spectral theory can be readily extended to
hypergraphs as well (Chapter 5).

3. We then attempt to further generalize our framework to submodular transformations
[Yos19], and obtain Cheeger inequalities for directed hypergraphs, which is a common
generalization of vertex expansion and expansion problems on directed graphs and
hypergraphs (Chapter 6).

4. We derive upper bounds on the reweighted eigenvalues for planar graphs and beyond,
with applications to graph partitioning (Chapter 7).

5. We obtain tighter approximations to generalized expansion quantities by adding “ℓ22
triangle inequalities” constraints as in [ARV09] to the reweighted eigenvalue formu-
lations (Chapter 8).

1.1 A Spectral Theory for Vertex Expansion

There are different ways to measure the connectedness of a graph. Vertex expansion is one
major alternative to edge conductance, which is based on vertex cuts rather than edge cuts.

2



In applications such as error-correcting codes, divide-and-conquer algorithms on graphs,
and network design, vertex expansion is often the expansion quantity of interest.

Despite the importance of vertex expansion, there is no known satisfactory spectral
theory for it. The earliest spectral theory using Laplacian eigenvalues [Tan84, AM85,
Alo86] only works well for bounded-degree graphs. Other spectral formulations [BHT00,
LRV13, Lou15, CLTZ18] do not yield an optimal Cheeger-type inequality that captures
some other appealing aspects of the classical theory; for example, the connection to mixing
time and the various generalizations. The first research question that we address in this
thesis is to derive a “good” spectral theory for vertex expansion in undirected graphs.

The concept of reweighted eigenvalues, which is the main theme of this thesis, comes
from a line of work [BDX04, Roc05, OZ22] that relates vertex expansion with the so-called
fastest mixing time. The fastest mixing time problem is introduced by Boyd, Diaconis and
Xiao [BDX04]. In the problem, we are given an undirected graph G = (V,E) and a target
probability distribution π : V → R+. The task is to find a time-reversible transition matrix
P ∈ R|V |×|V | supported on the edges of the graph G, so that the stationary distribution
of random walks with transition matrix P is π. The objective is to find such a transition
matrix that minimizes the mixing time to the stationary distribution π.2 It is well-known
that the mixing time to the stationary distribution is approximately inversely proportional
to the spectral gap of the transition matrix P . The fastest mixing time problem is thus
formulated as follows in [BDX04] by the maximum spectral gap achievable through such a
“reweighting” P of the graph G.

Definition 1.1.1 (Maximum Reweighted Second Eigenvalue [BDX04]). Given an undi-
rected graph G = (V,E) and a probability distribution π on V , the maximum reweighted
second eigenvalue is defined as

λ∗2(G) := max
P≥0

1− α2(P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E,

where α2(P ) is the second largest eigenvalue of P .
(Discussion of the finer aspects of the definition are deferred to Section 3.2.2.)

2See Section 2.6 for relevant definitions.
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Boyd, Diaconis and Xiao showed that this optimization problem can be written as a
semidefinite program (SDP) and thus λ∗2(G) can be computed in polynomial time. Sub-
sequently, the fastest mixing time problem has been studied in various works (see [Roc05,
BDSX06, BDPX09, FK13, CA15] and more references in [OZ22]).

The surprising connection between the fastest mixing Markov chain and vertex expan-
sion is discovered through the works of Roch [Roc05] and Olesker-Taylor and Zanetti [OZ22].
Roch showed that the fastest mixing time of a graph is slow if the graph has small vertex
expansion. Olesker-Taylor and Zanetti then discovered an elegant Cheeger-type inequality
for vertex expansion and the maximum reweighted second eigenvalue, showing that the
fastest mixing time of a graph is slow if and only if the graph has small vertex expansion.
Our first main result is to improve their result to an “optimal” Cheeger-type inequality.

Theorem 1.1.2 (Optimal Cheeger Inequality for Vertex Expansion [Roc05, OZ22, KLT22]).
For any undirected graph G = (V,E) with maximum degree ∆ and any probability distri-
bution π on V ,

ψ(G)2

log∆
≲ λ∗2(G) ≲ ψ(G),

where ψ(G) is the vertex expansion3 of G. Furthermore, there are tight examples showing
that the log∆ factor is asymptotically optimal. In terms of the fastest mixing time τ ∗mix(G)
to the distribution π, writing πmin := minv∈V π(v) we have

1

ψ(G)
≲ τ ∗mix(G) ≲

log∆ · log π−1
min

ψ2(G)
.

This is the starting point of our spectral theory for vertex expansion, one that relates
(i) vertex expansion, (ii) reweighted eigenvalue, and (iii) fastest mixing time, similar to
how Cheeger’s inequality connects (i) edge conductance, (ii) the second eigenvalue, and
(iii) mixing time. Building on this connection, we develop a new spectral theory for vertex
expansion via reweighted eigenvalues. We define λ∗k(G) and discover that several interesting
generalizations of Cheeger’s inequality have close analogues for vertex expansion.

Theorem 1.1.3 (Informal). Several generalizations of Cheeger’s inequality [Tre09, LOT12,
LRTV12, KLL+13] relating higher eigenvalues and edge conductance-type quantities all
have analogues relating higher reweighted eigenvalues and vertex expansion-type quantities.

Finally, inspired by this connection, we present negative evidence to the 0/1-polytope
edge expansion conjecture by Mihail and Vazirani (see [FM92]), by constructing 0/1-
polytopes whose graphs have very poor vertex expansion and hence by Theorem 1.1.2
has slow fastest mixing time.

3The definition of (π-weighted) vertex expansion can be found in Definition 4.1.2.
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1.2 Towards A Spectral Theory for Directed Graphs

and Hypergraphs

For directed graphs, one may define directed analogues of edge conductance and vertex
expansion. From the spectral theory of undirected graphs, one might expect a spectral
theory for directed graphs that has applications in expander certification, directed graph
partitioning, mixing time analysis, and so on.

In contrast to the spectral theory for undirected graphs, however, the spectral theory
for directed graphs has not been nearly as well developed. One major issue is that the
Laplacian matrix of a directed graph is not Hermitian, and so its eigenvalues are not nec-
essarily real numbers. There are formulations [Fil91, Chu05, GM17, LL15] that associate
certain Hermitian matrices to a directed graph, and use the second eigenvalue of these ma-
trices to bound the mixing time of random walks [Fil91, Chu05]. But, to our knowledge,
there are no known formulations that relate the expansion properties of a directed graph
to the eigenvalues of an associated matrix4.

The second research question that we address in this thesis is to develop a “good”
spectral theory for directed graphs that relates to their expansion properties. We propose
such a formulation using reweighted eigenvalues and develop a spectral theory for directed
graphs whose utility is comparable to that for undirected graphs.

As before, we find an “optimal” reweighting of the directed graph, in the sense that
the second smallest eigenvalue of an appropriately defined Laplacian of the reweighted
graph is maximized. To deal with the inherent asymmetry of directed graphs, our idea
is to require that the reweighted graph be Eulerian. In addition, we require that the
reweighted subgraph satisfy edge capacity constraints (for directed edge conductance) or
vertex capacity constraints (for directed vertex expansion). Below is the formal definition
of the reweighted second eigenvalue with edge capacity constraints.

Definition 1.2.1 (Maximum Reweighted Spectral Gap with Edge Capacity Constraints).
Given a weighted directed graph G = (V,E,w) with edge weights w : E → R+, the maximum

4The only spectral formulation that we know about expansion properties of a directed graph is a
nonlinear Laplacian operator in [Yos16, Yos19]. See Section 3.3.2 for details.
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reweighted spectral gap with edge capacity constraints is defined as

λ⃗e∗2 (G) := max
A≥0

λ2

(
D− 1

2

(
DA −

A+ AT

2

)
D− 1

2

)
subject to A(u, v) = 0 ∀uv /∈ E∑

v∈V

A(u, v) =
∑
v∈V

A(v, u) ∀u ∈ V

A(u, v) ≤ w(uv) ∀uv ∈ E

where A is the adjacency matrix of the reweighted Eulerian subgraph, DA is the diagonal
degree matrix of (A + AT )/2, and D is the diagonal degree matrix of G. We remark that

λ⃗e∗2 (G) is an SDP, and hence can be solved in polynomial time.

In comparison, the well-known result of Fill [Fil91] and Chung [Chu05] can be inter-
preted as looking at one fixed Eulerian reweighting using the stationary distribution of the
directed graph. See Section 3.3.1 for more details.

Our first main result is a Cheeger inequality relating directed edge conductance and
reweighted eigenvalues with edge capacity constraints. Hence, parallel to how Laplacian
eigenvalues can be used to certify undirected expander graphs, reweighted eigenvalues can
be used to certify directed expander graphs.

Theorem 1.2.2 (Cheeger Inequality for Directed Edge Conductance [LTW23]). For any

directed graph G, let ϕ⃗(G) be its directed edge conductance and λ⃗e∗2 (G) be its edge-capacitated
reweighted eigenvalue. Then,

λ⃗e∗2 (G) ≲ ϕ⃗(G) ≲

√
λ⃗e∗2 (G) · log 1

λ⃗e∗2 (G)
.

Our second main result is a Cheeger inequality relating directed vertex expansion and
reweighted eigenvalues with vertex capacity constraints. It turns out that the latter is
closely related to fastest mixing time in general Markov chains, and so our result relates
(i) directed vertex expansion, (ii) Eulerian reweighted eigenvalue (with vertex capacity
constraints), and (iii) fastest mixing time in general Markov chains.

Theorem 1.2.3 (Informal). Similar to Theorem 1.1.2, there is a Cheeger-type inequality
relating the directed vertex expansion and the vertex-capacitated reweighted eigenvalue of a
directed graph. As a corollary, small directed vertex expansion is provably the only obstacle
to fastest mixing on general Markov chains.

6



This is the first known combinatorial characterization of fastest mixing on general
Markov chains.

Finally, we show that reweighted eigenvalues can be used to derive Cheeger inequality
and generalizations for hypergraph conductance, either recovering or improving on previ-
ous results by Louis [Lou15] and Chan, Louis, Tang, Zhang [CLTZ18], as well as being
conceptually simpler.

1.3 Submodular Transformations

So far, the reweighted eigenvalues framework has been successful in building a spectral
theory for graph-like settings. The third research question that we address in this thesis
is a natural follow-up to the investigation so far: to derive a spectral theory for a general
class of problems that encompasses these graph-like settings, using reweighted eigenvalues.

All the expansion quantities considered thus far may be considered as the ratio between
the value of the “cut function” evaluated at a subset and the value of the “size function”
evaluated at the subset. For example, for (unweighted) vertex expansion on undirected
graphs, the cut function is the number of the vertices of the neighborhood, and the size
function is just the number of vertices.

Yoshida [Yos19] and Li and Milenkovic [LM18] considered a general class of cut func-
tions that enjoy a property called submodularity. There are two main reasons why sub-
modularity is interesting. On the one hand, all graph-like cut functions that we have
considered thus far can be shown to be submodular. On the other hand, submodularity
can be understood as capturing a diminishing return property that permeates many ap-
plication domains, such as graph theory, machine learning, economics, and game theory
[LM18, Yos19]. They developed a spectral theory for submodular transformations, which
included a non-algorithmic Cheeger inequality and an SDP relaxation to make the theory
algorithmic. Their result is general, but fails to capture some key applications in graph
settings, such as expander certification and mixing time analysis.

We thus define reweighted eigenvalues and attempt to build an alternative spectral
theory for submodular transformations. On the positive side, we prove that for a class
of “simple” submodular transformations, there is a Cheeger inequality relating reweighted
eigenvalues and expansions. This class corresponds exactly to directed hypergraph con-
ductance, which is a nice common generalization of all the graph expansion problems
considered thus far.

7



Theorem 1.3.1 (Informal). There is a Cheeger-type inequality relating the conductance
and the reweighted second smallest eigenvalue of a directed hypergraph.

On the negative side, we show that the reweighted eigenvalue framework faces serious
difficulty in tackling general submodular transformations. While we do not have counter-
examples that definitively rule out a spectral theory for submodular transformations via
reweighted eigenvalues, such a theory, if exists, would likely require a significant deviation
from the current approach. Therefore, our investigation suggests that directed hypergraphs
lies at the boundary of effectiveness of reweighted eigenvalues.

1.4 Upper Bounds on Graph Reweighted Eigenvalues

One other application of classical spectral theory is to find small, balanced separators in
certain graphs. A balanced separator is a vertex subset S ⊆ V , whose removal breaks the
remaining graph into connected components each of size at most (say) 2|V |/3.

One classical result about balanced separators is the planar separator theorem proven
by Lipton and Tarjan [LT79], which states that every planar graph G = (V,E) admits a
balanced separator of size O(

√
|V |). The proof is purely combinatorial and gives a linear-

time algorithm for finding such a separator, given an explicit planar embedding of the
graph. Moreover, by considering the grid graph, it can be shown that the separator size of
O(
√
|V |) is optimal up to constants.

The objective of the work by Spielman and Teng [ST96], then, is to show that spectral
partitioning algorithms attain a similar guarantee for planar graphs, without the prior
knowledge of a planar embedding. They do so by proving the following eigenvalue bound
for planar graphs.

Theorem 1.4.1 ([ST96, Theorem 3.3]). For any planar graph G = (V,E) with maximum
degree ∆, λ′2(G) ≲ ∆/|V |. Here, λ′2(G) is the second smallest eigenvalue of the unnormal-
ized Laplacian (see Section 2.5 for definition).

This implies that λ2(G) ≤ λ′2(G) ≤ O(1/|V |) for bounded-degree graphs, and by
Cheeger’s inequality, the sweep-cut algorithm finds a set S ⊆ V with edge conductance
O(
√

1/|V |), and |S| ≤ |V |/2. Therefore, the recursive spectral partitioning algorithm that
repeatedly applies the sweep-cut algorithm, adding S to one of the components and the
neighbors of S to the separator, matches the O(

√
|V |) separator size guarantee of the
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planar separator theorem, albeit only in the special case of bounded degree graphs. In
general, their result gives an O(

√
∆ · |V |) upper bound on the separator size.

In [ST96], they conjectured that similar eigenvalue bounds hold for graphs with bounded
genus g and graphs which are Kh-minor free (see Section 3.5.3 for relevant definitions).
These conjectures were answered affirmatively by Kelner [Kel06] in the bounded genus case
and Biswal, Lee, Rao [BLR10] in the Kh-minor free case. Later, these results were further
extended by Kelner, Lee, Price, and Teng [KLPT11] to address higher eigenvalues λ′k(G).
We will review some of these results in Section 3.5.

We remark that the non-spectral algorithms by Lipton and Tarjan [LT79] (for planar
graphs) and by Gilbert, Hutchinson, and Tarjan [GHT84] (for bounded genus graphs)
guarantee smaller separator sizes, and these algorithms run in linear time given an explicit
embedding of the graph in low-genus surfaces. However, computing the genus of a graph
is NP-hard [Tho89]; the current best polynomial-time algorithms [CS13, KS15, KS19]
can only compute an embedding of the graph in genus O(g polylog(n)) surface for genus
g graphs. Thus, spectral methods have the crucial advantage that the computationally
difficult task of computing a low-genus embedding of the given graph is bypassed.

Our fourth research question is well motivated in this context: can we upper-bound
reweighted eigenvalues for these special graph classes? Such upper bounds will provide
an alternative spectral approach to finding small separators. We focus on reweighted
eigenvalues for undirected graphs, which relate to vertex expansions in undirected graphs
and appear to be most relevant to vertex-based partitioning algorithms.

Theorem 1.4.2 (Reweighted Second Eigenvalue Upper Bound). Let G = (V,E) be an
undirected graph with n vertices, and π = 1⃗/n be the uniform distribution on V .

• If G is a planar graph, then λ∗2(G) ≤ O(1/n).

• If G is a graph with genus g ≥ 0, then λ∗2(G) ≤ O((g + 1) log2(g + 1)/n).

• If G is a graph which is Kh-minor free for some h ≥ 3, then λ∗2(G) ≤ O(h6 log h/n).

Notably, these upper bounds have no dependence on the maximum degree ∆ of the
graph. As a result, spectral partitioning using the second reweighted eigenvalue has the
best-known performance guarantee of vertex-based graph partitioning algorithms on these
classes of graphs, without the requirement that the input graph be of bounded degree. For
instance, for planar graphs Theorem 1.4.2 imply O(

√
(log∆) · n)-sized balanced separators

using reweighted eigenvalues5, which improves over the O(
√
∆ · n) bound in [ST96].

5This can be further improved to O(
√
n), which is optimal up to constants. See Chapter 7.
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By adapting the proofs in [KLPT11], we obtain similar upper bounds on the higher
reweighted eigenvalues λ∗k(G). Together, these results illustrate the power of reweighted
eigenvalues in lifting results in basic settings to results in generalized settings.

1.5 ℓ22 Triangle Inequalities

In their groundbreaking work, Arora, Rao and Vazirani [ARV09] designed a polynomial-
time O(

√
log n)-approximation algorithm for edge conductance. Their algorithm is based

on rounding the solution to an SDP, which can be considered as adding the so-called ℓ22
triangle inequality constraints to the second eigenvalue λ2(G), viewed as a minimization
problem. The core of their proof is a geometric structure theorem for graph embeddings re-
specting the ℓ22 triangle inequalities. Subsequently, fast algorithms [AK07, AHK05, She09]
have been developed for obtaining the ARV approximation guarantee.

The key geometric argument of [ARV09] was then used to design O(
√
log n) approxi-

mation algorithms for other graph expansion problems [ACMM05, FHL08, CS18]. These
SDPs, however, are more complicated and look different from each other. Thus, our fifth
research question is to find a unifying approach for deriving O(

√
log n) approximation

algorithms for graph expansions.

We discover that, by just adding ℓ22 triangle inequality constraints to reweighted eigen-
values, we can design O(

√
log n)-approximation algorithms in settings as general as di-

rected hypergraph expansion. These formulations lead to faster and simpler algorithms for
computing small-expansion cuts; see [LTW24].

We also study multi-way variants of expansion problems. The goal of these problems is
to find k disjoint vertex subsets, such that each of the subsets have small expansion. Past
work [LOT12, LRTV12] has shown that (informally) there exist k disjoint vertex subsets
of small edge conductance if and only if the k-th smallest Laplacian eigenvalue is small.
Using reweighted eigenvalues [KLT22], we have also shown that there exist k disjoint vertex
subsets of small vertex expansion if and only if the k-th smallest reweighted eigenvalue is
small. These results, however, also incur the square-root loss that is expected of spectral
methods.

Again, we show that adding ℓ22 triangle inequality constraints to the k-th reweighted
eigenvalue provides a much tighter approximation of the relevant multi-way expansion
quantity. We use the orthogonal separators technique [CMM06, BFK+14, LM14a, LM14b],
which plays the role of the ARV geometric argument.
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To summarize, we have demonstrated that reweighted eigenvalues can be easily com-
bined with the powerful technique of adding ℓ22 triangle inequalities to yield the best-known
approximation algorithms to a general class of expansion problems.

1.6 Organization of the Thesis

In Chapter 2, we introduce the preliminary concepts and notations that will be used in this
thesis. These include graph notations, linear algebra, Markov chains and random walks,
basic spectral graph theory, convex geometry, flows, and convex optimization.

In Chapter 3, we review and present important results from the literature on which the
remainder of the thesis is based. Proofs and proof outlines are included where applicable.
The proof structure for the classical Cheeger’s inequality deviates slightly from the standard
treatise and will serve as a prototype for several main results in the thesis.

In Chapter 4, we investigate vertex expansion in undirected graphs, improving the
result in [OZ22] and deriving exact analogues to generalizations of Cheeger’s inequality
[Tre09, LOT12, LRTV12, KLL+13]. We discuss an application of the result to studying
the 0/1-polytope conjecture [FM92].

In Chapter 5, we investigate several expansion quantities in directed graphs and hyper-
graphs. In particular, we introduce the concept of Eulerian reweighting to define reweighted
eigenvalues for directed graphs. We prove Cheeger-type inequalities for these settings, but
show that the generalizations of Cheeger’s inequality extend only partially to these settings.
We discuss applications of these results.

In Chapter 6, we try to unify and generalize the results in the previous two chapters by
recognizing those settings as instances of what is known as “submodular transformations”.
We formulate reweighted eigenvalues and attempt to derive Cheeger-type inequalities for
submodular transformations. It turns out that we cannot obtain a strong result in full
generality, and we shall give the positive results and discuss the hard instances.

In Chapter 7, we upper bound the value of the reweighted second eigenvalues and higher
reweighted eigenvalues, when the given graph has special structures. In increasing order
of complexity/generality: planar, of bounded genus g, or H-minor free.

In Chapter 8, we show how adding ℓ22 triangle inequalities to the reweighted eigenval-
ues formulation leads to tighter SDP relaxations resembling, but also generalizing, those
obtained in [ARV09] and [LM14a, LM14b]. This also provides a simpler, unified approach
to obtain results in [ACMM05] and [FHL08].
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Finally, we conclude the thesis in Chapter 9 with a brief summary and discussion of
open problems and future directions.

We strongly suggest that the reader read Section 2.2.1, Section 2.5 and Section 3.1.1
before proceeding to the main chapters. A quick read of the rest of Chapter 2 is also
prudent. When reading each main chapter, it may be helpful to revisit the relevant sections
in Chapter 3. It is recommended to read Chapter 4, Chapter 5, Chapter 6, and Chapter 8
in this order, while Chapter 7 is best read after Chapter 4.
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Chapter 2

Preliminaries

2.1 Mathematical Notations

We use A ⊆ B to denote set inclusion and A ⊂ B to denote proper set inclusion, i.e.
A ⊆ B and A ̸= B. A ⊔ B denotes the disjoint union of A and B. For any set A, 2A

denotes the set of subsets of A, i.e. 2A := {B : B ⊆ A}. Given a set A ⊆ B, we use Ac to
denote the complement of A (in B), i.e. Ac := {x ∈ B | x ̸∈ A}.

R+ denotes the set of positive real numbers and R≥0 denotes the set of nonnegative
real numbers. For positive integers k, we use [k] to denote the set {1, 2, . . . , k}.

We use 0⃗ to denote the zero vector (of the appropriate dimension). The notation 1

when used in isolation denotes the all-one vector (of the appropriate dimension). The
notation 1[event] denotes the indicator variable for that event, i.e. 1[event] equals 1 if
event happens and equals 0 otherwise.

LetD be a finite set. Denote by RD the vector space isomorphic to R|D|, and each vector
x ∈ RD is a |D|-tuple of real numbers with entries indexed by D. So, x = (x(u))u∈D. Given
x, x′ ∈ RD, their inner product is ⟨x, x′⟩ :=

∑
u∈D x(u)x

′(u). Unless otherwise specified,

for a vector x ∈ RD, ∥x∥ denotes the Euclidean 2-norm, i.e. ∥x∥ :=
√∑

u∈D x(u)
2. ∥x∥1

denotes the 1-norm of x, i.e. ∥x∥1 :=
∑

u∈D |x(u)|, and ∥x∥∞ denotes the ∞-norm of x,
i.e. ∥x∥∞ := maxu∈D |x(u)|.

Given a function f : D → R and any subset S ⊆ D, denote by f(S) the sum of values
of f at u ∈ S, i.e. f(S) :=

∑
u∈S f(u), and denote by supp(f) the domain subset on which

f is nonzero. Similarly, given a vector x ∈ RD and any S ⊆ D, let x(S) :=
∑

u∈S x(u).
1S ∈ RD denotes the indicator vector of S in D, i.e. 1S(u) = 1 if u ∈ S and 1S(u) = 0
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if u ̸∈ S. We abuse notation slightly and use 1u in lieu of 1{u} for u ∈ D. The functions
f+, f− : D → R are known respectively as the positive part and the negative part of f ,
defined as f+(u) := max(f(u), 0) and f−(u) := max(−f(u), 0).

Given a function f : D → Rk for some k, and another map w : D → R≥0, define the
w-mass, or simply mass when the context is clear, of f to be ∥f∥2w :=

∑
u∈D w(u) ∥f(u)∥

2.

Assuming familiarity with the standard “big-O” notations, we use f ≲ g to denote
f = O(g), f ≳ g to denote f = Ω(g), and f ≍ g to denote f = Θ(g). We use f ≲ε g and
f = Oε(g) to hide the dependence on ε, meaning that f ≲ g and f = O(g) when ε is fixed.
Somewhat unconventionally, we use f ≈k g to denote f/g = 1 + ok(1).

2.2 Graphs, Directed Graphs, and Hypergraphs

Undirected graphs: Let G = (V,E,w) be a (weighted) undirected graph, or simply
(weighted) graph, with edge weights w : E → R≥0. If uv is an edge in G, we either write
uv ∈ E or use the notation u ∼ v. The weighted degree of a vertex v ∈ V , denoted
by degw(v), is defined as degw(v) :=

∑
u:uv∈E w(uv). The maximum weighted degree of a

graph, denoted ∆w(G) or simply ∆w, is defined as ∆w(G) := maxv∈V degw(v).

We use the notation deg(v) := deg
1
(v) and ∆(G) := ∆1(G) to denote the combinatorial

degree of a vertex v ∈ V and the maximum (combinatorial) degree ofG, respectively. When
specialized to w = 1, the graph G is unweighted; we use the notation G = (V,E) for the
graph, and the degree notations deg(v) and ∆(G) as above.

Given V ′ ⊆ V , the induced edge set of V ′ is defined as E[V ′] := {uv ∈ E | u ∈
V ′ and v ∈ V ′}, and the induced graph of V ′ is the graph G[V ′] := (V ′, E[V ′]). Definitions
relevant to expansion quantities are deferred to the next section.

Directed graphs: Let G = (V,E,w) be a (weighted) directed graph, with arc weights
w : E → R≥0. We sometimes write “edges” instead of “arcs”. If uv is an arc in G, we either
write uv ∈ E or use the notation u → v. The weighted indegree of a vertex v is defined
as deg−w(v) :=

∑
u:u→v w(uv). The weighted outdegree of a vertex v is similarly defined

as deg+w(v) :=
∑

u:v→uw(vu). The total weighted degree, or simply weighted degree, of
a vertex v is the sum of its indegree and outdegree, i.e. degw(v) := deg−w(v) + deg+w(v).
The maximum weighted degree of G, again denoted ∆w(G) or ∆w, is defined as ∆w(G) :=
maxv∈V degw(v).
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Similar to the undirected case, we use deg−(v), deg+(v), deg(v), and ∆(G) to denote
the combinatorial/unweighted counterparts of these definitions, and when specialized to
unweighted directed graphs we simplify the notation to G = (V,E).

A directed graph is called Eulerian if deg−w(v) = deg+w(v) for all v ∈ V . Definitions
relevant to expansion quantities are deferred to the next section.

An undirected graph G = (V,E,w) can be regarded as a directed graph by the following
bidirection G′ = (V,E ′, w′) where E ′ := {u→ v : uv ∈ E} ∪ {v → u : uv ∈ E} and the arc
weights inheriting the edge weights.

Hypergraphs: A (weighted) hypergraph is a 3-tuple H = (V,E,w) where each e ∈ E,
called a hyperedge, is a vertex subset e ⊆ V , and w : E → R≥0 is the (hyper)edge weight
function. The size of a hyperedge e ∈ E is |e| and the rank r(H) of a hypergraph is defined
as the maximum hyperedge size, i.e. r(H) := maxe∈E |e|. The weighted degree of a vertex
v ∈ V , denoted by degw(v), is defined as the sum of weights of hyperedges that contain v,
i.e. degw(v) :=

∑
e:v∈ew(e).

We again use deg(v) to denote the combinatorial/unweighted counterpart of degw(v),
and when specialized to unweighted hypergraphs we simplify the notation to H = (V,E).

An undirected graph G = (V,E,w) can be regarded as a hypergraph H = (V,E ′, w′)
where E ′ := {{u, v} | uv ∈ E} is such that each hyperedge is of size two, and the hyperedge
weights inheriting the edge weights.

Directed Hypergraphs: A (weighted) hypergraph is a 3-tuple H = (V,E,w), where
each e ∈ E, called a hyperedge (of H), is of the form e = (e−, e+), where e−, e+ are
called the source set and the sink set of e respectively and are nonempty subsets of V , and
w : E → R≥0 is the (hyper)edge weight function. Note that e

− and e+ need not be disjoint.
The size of a hyperedge e ∈ E is |e− ∪ e+|. The rank r(H) of a directed hypergraph is
defined as the maximum hyperedge size, i.e. r(H) := maxe∈E |e− ∪ e+|. The weighted
indegree of a vertex v ∈ V , denoted by deg−w(v), is defined as

∑
e:v∈e+ w(e). The weighted

outdegree of a vertex v ∈ V , denoted by deg+w(v), is defined as
∑

e:v∈e− w(e). The weighted
total degree of a vertex v ∈ V is defined as degw(v) := deg−w(v) + deg+w(v).

We again use deg−(v), deg+(v), and deg(v) to denote the combinatorial/unweighted
counterparts of these definitions, and when specialized to unweighted directed hypergraphs
we simplify the notation to H = (V,E).

A hypergraph H = (V,E,w) can be regarded as a directed hypergraph H ′ = (V,E ′, w′)
where E ′ := {(e, e) | e ∈ E}, and w′((e, e)) = w(e) for all e ∈ E. Therefore, a graph can
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be regarded as a directed hypergraph as well.

A directed graph G = (V,E,w) can also be regarded as a directed hypergraph H ′′ =
(V,E ′′, w′′) where E ′′ := {({u}, {v}) | uv ∈ E}, and w′′(({u}, {v})) = w(uv) for all uv ∈ E.

Hence, directed hypergraph captures all the graph models that we consider in this
thesis.

2.2.1 Some Conventions

We use the term “generalized graph” to refer to any of the graph models defined in this
section. Given a generalized graph G on vertex set V , a vertex measure is a function
π : V → R+, and a probability distribution is a vertex measure π satisfying π(V ) = 1.

Throughout the thesis, we use n := |V | to denote the number of vertices and m := |E|
to denote the number of edges in a generalized graph. We also assume that the given
generalized graphs have no isolated vertices, i.e. that each vertex has nonzero degree.

2.3 Expansion Quantities

2.3.1 Expansion Quantities for Undirected Graphs

Edge Expansion: Let G = (V,E,w) be a graph and S ⊆ V be a subset of vertices. The
edge boundary of S is defined as δ(S) := {uv ∈ E | u ∈ S, v /∈ S}. The volume of S is
defined as volw(S) :=

∑
v∈S degw(v), and denoted simply as vol(S) for unweighted graphs.

Let π : V → R+ be a vertex measure. The π-weighted edge expansion of a subset
S ⊆ V and of G are defined as

ϕπ(S) :=
w(δ(S))

π(S)
and ϕπ(G) := min

S⊆V :0<π(S)≤π(V )/2
ϕπ(S).

When π = degw is the degree measure, ϕπ is the edge conductance of G, and we use
the notation ϕ so that

ϕ(S) :=
w(δ(S))

volw(S)
and ϕ(G) := min

S⊆V :0<volw(S)≤volw(V )/2
ϕ(S).

Note that ϕ(S) ≤ 1 always.
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When π = 1 is the counting measure, ϕπ is the edge expansion or sparsest cut of G,
and we use the notation φ so that

φ(S) :=
w(δ(S))

|S|
and φ(G) := min

S⊆V :0<|S|≤n/2
φ(S).

Vertex Expansion: Let G = (V,E,w) be a graph1 and S ⊆ V be a subset of vertices.
The vertex boundary of S is defined as ∂S := {v ∈ V \ S | ∃u ∈ S with uv ∈ E}.

Let π : V → R+ be a vertex measure. The π-weighted vertex expansion of a subset
S ⊆ V and of G are defined as

ψπ(S) :=
π(∂S)

π(S)
and ψπ(G) := min

{
1, min

S⊆V :0<π(S)≤π(V )/2
ψπ(S)

}
2.

When π is the counting measure or the uniform distribution, ψ = ψπ is the usual vertex
expansion with ψ(S) = |∂S|/|S|.

2.3.2 Expansion Quantities for Directed Graphs

Edge Expansion: Let G = (V,E,w) be a directed graph. The following definition of
edge expansion for directed graphs is due to Yoshida [Yos16, Yos19]. Perhaps the more
widely used expansion quantity is the Cheeger constant h(G) by Fill [Fil91] and Chung
[Chu05], which we defer to Section 3.3.1 for review and Chapter 5 for further discussion
and comparison.

Let S ⊆ V be a subset of vertices. The set of outgoing edges of S is defined as
δ+(S) := {uv ∈ E | u ∈ S and v /∈ S}, and the set of incoming edges to S is defined as
δ−(S) := δ+(Sc). The volume of S is defined as volw(S) :=

∑
v∈S degw(v), so it is the sum

of total weighted degrees of vertices in S.

Let π : V → R+ be a vertex measure. The π-weighted directed edge expansion of a
subset S ⊆ V and of G are defined as

ϕ⃗π(S) :=
min

{
w
(
δ+(S)

)
, w
(
δ+(Sc)

)}
min

{
π(S), π(Sc)

} and ϕ⃗π(G) := min
∅≠S⊂V

ϕ⃗π(S).

1Note, however, that the definitions below do not involve the edge weights w.
2We take the minimum with 1 in the definition of ψπ(G) to avoid dealing with the edge case where

there is a vertex v with π(v)/π(V ) close to 1.
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So, ϕ⃗π(S) is big if and only if there are both a lot of incoming edge weight to S and
outgoing edge weight from S, relative to the size of the smaller of S and Sc. Note that
this definition is compatible with the definition of ϕπ for undirected graphs.

When π = degw is the (total) degree measure, ϕ⃗π is the edge conductance of G:

Definition 2.3.1 (Directed Edge Conductance [Yos16, Yos19]). Let G = (V,E,w) be a
directed graph. The directed edge conductance of a set S ⊆ V and of the graph G are
defined as

ϕ⃗(S) :=
min

{
w
(
δ+(S)

)
, w
(
δ+(Sc)

)}
min

{
volw(S), volw(Sc)

} and ϕ⃗(G) := min
∅≠S⊂V

ϕ⃗(S).

When π = 1 is the counting measure, ϕ⃗ is the edge expansion or sparsest cut of G, and
we use the notation φ⃗ so that

φ⃗(S) :=
min

{
w
(
δ+(S)

)
, w
(
δ+(Sc)

)}
min

{
|S|, |Sc|

} and φ⃗(G) := min
∅≠S⊂V

φ⃗(S).

Vertex Expansion: Let G = (V,E,w) be a directed graph3 and S ⊆ V be a subset of
vertices. ∂+(S) := {v /∈ S | ∃u ∈ S with uv ∈ E} be the set of out-neighbors of S.

Definition 2.3.2 (Directed Vertex Expansion). Let G = (V,E,w) be a directed graph and
π : V → R+ be a vertex measure. The directed vertex expansion of a set S ⊆ V and of the
graph G are defined as4

ψ⃗π(S) :=
min

{
π
(
∂+(S)

)
, π
(
∂+(Sc)

)}
min

{
π(S), π(Sc)

} and ψ⃗π(G) := min
∅≠S⊂V

ψ⃗π(S).

Note that ψ⃗π(S) ≤ 1 for all S ⊆ V as ∂+(Sc) ⊆ S. Note also that this is compatible

with the definition of ψπ for undirected graphs. We write ψ⃗ instead of ψ⃗π when it is clear
from context.

3Here again, the definitions below do not involve the arc weights w.
4When specialized to undirected graphs (by considering the bidirected graph), the current definitions

are slightly different from the undirected definitions presented in Section 2.3.1. We remark that the two
definitions of ψ(G) are within a factor of 2 of each other. The current definitions have the advantages that

ψ⃗π(S) ≤ 1 and are more convenient in the proofs.
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2.3.3 Expansion Quantities for Hypergraphs

Undirected Hypergraphs: Let H = (V,E,w) be a hypergraph and S ⊆ V be a subset
of vertices. Let S ⊆ V be a subset of vertices. The edge boundary of S is defined as
δ(S) := {e ∈ E | e ∩ S ̸= ∅ and e ∩ S ̸= ∅}. The volume of S is defined as volw(S) :=∑

v∈S degw(v).

Let π : V → R+ be a vertex measure. The π-weighted hypergraph edge expansion of a
subset S ⊆ V and of H are defined as

ϕπ(S) :=
w(δ(S))

min(π(S), π(Sc))
and ϕπ(H) := min

∅≠S⊂V
ϕπ(S).

This is the same notation as π-weighted edge expansion for ordinary graphs. We do not
disambiguate the two when the context is clear.

When π = degw is the degree measure, ϕπ is the hypergraph edge conductance of H:

Definition 2.3.3 (Hypergraph Edge Conductance [Lou15, CLTZ18]). Let H = (V,E,w)
be an undirected hypergraph. The hypergraph edge conductance of a set S ⊆ V and of the
hypergraph H are defined as

ϕ(S) :=
w
(
δ(S)

)
min

{
volw(S), volw(Sc)

} and ϕ(H) := min
∅̸=S⊂V

ϕ(S).

We note that there is a significant drawback to this definition of hypergraph edge
conductance — namely, that any hyperedge e that contributes w(e) to the cut weight in
the numerator may contribute Θ(|e| ·w(e)) to the volume in the denominator. Indeed, one
can show that ϕ(H) ≤ O(1/r) if H is r-uniform, i.e. all hyperedges in H are of size r.

Directed Hypergraphs: Let H = (V,E,w) be a directed hypergraph and S ⊆ V be
a subset of vertices. The set of outgoing hyperedges of S is defined as δ+(S) := {e ∈
E | e− ∩ S ̸= ∅ and e+ ∩ Sc ̸= ∅}, and the set of incoming hyperedges to S is defined
similarly as δ−(S) := {e ∈ E | e− ∩ Sc ̸= ∅ and e+ ∩ S ̸= ∅}. The volume of S is defined
as volw(S) :=

∑
v∈S degw(v), so it is the sum of total weighted degrees of vertices in S.

Let π : V → R+ be a vertex measure. The π-weighted directed hypergraph edge
expansion of a subset S ⊆ V and of H are defined as

ϕ⃗π(S) :=
min

{
w
(
δ+(S)

)
, w
(
δ+(Sc)

)}
min

{
π(S), π(Sc)

} and ϕ⃗π(H) := min
∅≠S⊂V

ϕ⃗π(S).

19



When π = degw is the degree measure, ϕ⃗π is the directed hypergraph edge conductance,

which we denote simply by ϕ⃗. Again, this notation coincides with that for directed graphs,
and we do not disambiguate when the context is clear.

Remark 2.3.4 (Hypergraph Vertex Expansion). It is possible to define vertex expansion
for hypergraphs as the minimum ratio between π(∂S) and π(S), where

∂S := {v ∈ V \ S : ∃e ∈ δ(S) s.t. v ∈ e}.

However, this definition is not more powerful than vertex expansion for ordinary graphs, as
we may reduce the former to the latter by considering the clique-graph of the hypergraph,
which is formed by drawing an edge between every pair u, v ∈ V for which a hyperedge
e exists such that u, v ∈ e. Then, a vertex is in ∂S in the hypergraph if and only if a
vertex is in ∂S in the clique-graph. A similar reduction from vertex expansion for directed
hypergraphs to vertex expansion for directed graphs is possible.

2.3.4 Some Reductions between Expansion Quantities

In this subsection, we collect reductions between expansion quantities that will be useful
later.

Undirected Vertex Expansion to Hypergraph Edge Expansion

The reduction result presented below has two steps. The first step is to reduce from vertex
expansion to “symmetric vertex expansion” defined below, and the second step is to reduce
from symmetric vertex expansion to hypergraph edge expansion.

Definition 2.3.5 (Symmetric Vertex Expansion). Let G = (V,E) be a graph with vertex
distribution π : V → R+. The symmetric vertex boundary of a set S ⊆ V is defined as
∂sym(S) := ∂(S) ∪ ∂(V \ S), the symmetric vertex expansion of S is defined as ψsym(S) :=
π(∂sym(S))/π(S), and the symmetric vertex expansion of G is defined as

ψsym(G) := min

{
1, min

S:0<π(S)≤1/2
ψsym(S)

}
.

Proposition 2.3.6 (Vertex Expansion to Symmetric Vertex Expansion [LRV13, Theorem
A.2]). Let G = (V,E) be a graph with a distribution π : V → R+ on the vertices. There
exists a graph G′ = (V ′, E ′) having O(|V |+ |E|) vertices with a distribution π′ : V ′ → R+,
computable in polynomial time, such that ψ(G) = Θ(ψsym(G

′)).

Moreover, there is a map ι that takes subsets S ′ ⊆ V ′ to subsets S ⊆ V such that:
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• ψ(S) ≤ ψsym(S
′)/(1− ψsym(S

′));

• π(S) ≤ 2π′(S ′); and

• If S ′
1 and S ′

2 are disjoint subsets of V ′, then ι(S ′
1) and ι(S

′
2) are disjoint.

Proposition 2.3.7 (Symmetric Vertex Expansion to Hypergraph Edge Expansion [LM14b,
Theorem 1.6]). Let G′ = (V ′, E ′) be a graph with a distribution π′ : V → R+ on the vertices.
Then, there exists a hypergraph H = (V ′′, E ′′, w′′), with a distribution π′′ : V ′′ → R+, such
that ψsym(G

′) = ϕ(H). Moreover, the construction satisfies:

• V ′′ = V ′;

• For any subset S ′ ⊆ V ′ we have ϕ(S ′) = ψsym(S
′); and

• The rank r(H) of H equals ∆(G′) + 1 where ∆(G′) is the maximum degree of G′.

From Edge Conductance in Graphs to Edge Expansion in Graphs

The following reduction is standard; for reference see e.g. [ARV09].

Proposition 2.3.8 (Reduction from Edge Conductance to Edge Expansion [ARV09]).
Let G = (V,E,w) be a graph with n vertices and m edges. Then, one can construct
in polynomial time a graph G′ = (V ′, E ′, w′) with |V ′| = O(mW ) vertices where W :=
(maxe∈E w(e))/(mine∈E w(e)), such that φ(G′) = Θ(ϕ(G)). In particular, if G is un-
weighted, then G′ has O(m) vertices.

2.4 Linear Algebra

2.4.1 Basic Facts

Let M ∈ Rd×d be a matrix. When M is symmetric, the spectral theorem states that M
admits an orthonormal eigendecomposition M = UDU−1, where D ∈ Rd×d is a diagonal
matrix and U is a unitary matrix such that U−1U = Id where Id is the d × d identity
matrix.

Two matrices M,N ∈ Rd×d are said to be cospectral if they are both diagonalizable,
and their eigenvalues are the same. There are two well-known cases of cospectral matrices
that we will use; see e.g. [Str16, Chapter 6.2].
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Fact 2.4.1. Let M,N ∈ Rd×d. Suppose that M is diagonalizable and that M and N
are similar (i.e. M = X−1NX for some invertible matrix X ∈ Rd×d). Then, N is also
diagonalizable, and M and N are cospectral.

Fact 2.4.2. Let M,N ∈ Rd×d. Suppose that there exist A,B ∈ Rd×d such that M = AB
and N = BA. If M is diagonalizable, then N is also diagonalizable, and M and N are
cospectral.

Given that M is symmetric, we say that M is positive semidefinite (PSD) if xTMx ≥ 0
for all x ∈ Rd, and we write M ⪰ 0. Equivalently, M is PSD if all its eigenvalues are
nonnegative. Also equivalently, M is PSD if there exists X such that M = XTX. Let
xi ∈ Rd be the i-th column of X. Then M is called the Gram matrix of x1, . . . , xd ∈ Rd as
M(i, j) = ⟨xi, xj⟩ for all i, j ∈ [d].

The trace of a matrix M ∈ Rd×d is defined as tr(M) :=
∑d

i=1M(i, i). We will often
use the fact that tr(AB) = tr(BA) for two matrices of compatible dimensions. Given two
matrices M,N ∈ Rd×d, their inner product is defined as ⟨M,N⟩ := tr(MTN). They are
orthogonal iff ⟨M,N⟩ = 0, in which case we write M ⊥ N .

2.4.2 Computational Aspects

LetM ∈ Rd×d be a PSD matrix, and let α1 ≥ 0 be its largest eigenvalue. The power method
is useful for computing α1 and an associated eigenvector. It is an iterative algorithm that
starts with a random vector and take many steps of update to bring it close to the desired
eigenvector, in the sense that the value of the normalized quadratic form (i.e. the Rayleigh
quotient) satisfies

xTMx

xTx
≈ α.

We summarize the guarantees of the algorithm in Proposition 2.4.3 below. The interested
reader can consult e.g. [Tre16, Chapter 4] for details.

Proposition 2.4.3 (Power Method Guarantee). Let M ∈ Rd×d be a PSD matrix and α1

be its largest eigenvalue. There is a randomized algorithm that, given ε > 0, runs in time
O(ε−1nnz(M) · log d) time and finds a vector x ∈ Rd such that

xTMx

xTx
≥ (1− ε)α1.

Here, nnz(M) denotes the number of nonzero entries of M .
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Once the power method returns an approximate largest eigenvalue α̃1 with correspond-
ing normalized eigenvector f̃1 is found, we may apply the power method to the matrix
M1 :=M − α · f̃1f̃T1 to find an approximate second largest eigenvalue of M , but the num-
ber of nonzero entries ofM1 might be large. A workaround is to eliminate the f̃1 component
of the starting random vector, by projecting it to the orthogonal complement of f̃1 before
the update steps.

2.4.3 Courant-Fischer Theorem

Let M ∈ Rd×d be a symmetric matrix with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λd. The
following theorem characterizes the eigenvalues of M as the value of a min/max problem.

Proposition 2.4.4 (Courant-Fischer Theorem; c.f. [Spi19, Chapter 2]). Let M ∈ Rd×d be
a symmetric matrix, with λk ∈ R being the k-th smallest eigenvalue for 1 ≤ k ≤ d. Then,

λk = min
Q: subspace of Rd

dim(Q)=k

max
f∈Q

fTMf

fTf
.

Proof. Let f1, . . . , fd ∈ Rd be an orthonormal eigenbasis of M , so that Mfi = λifi and
⟨fi, fj⟩ = 1[i = j]. To prove that

λk ≥ min
Q: subspace of Rd

dim(Q)=k

max
f∈Q

fTMf

fTf
,

take Q to be the subspace spanned by the first k eigenvectors f1, . . . , fk, so that each f ∈ Q
can be written as f =

∑
i∈[k] αifi. Then,

fTMf

fTf
=

∑
i∈[k] λiα

2
i∑

i∈[k] α
2
i

≤ λk.

To prove that

λk ≤ min
Q: subspace of Rd

dim(Q)=k

max
f∈Q

fTMf

fTf
,

take any dimension-k subspace Q. It must have a nontrivial intersection with the subspace
R generated by last last (d − k + 1) eigenvectors, i.e. fk, fk+1, . . . , fd. Let f ∈ Q ∩ R be
nonzero. Then, f =

∑d
i=k αifi for some αi ∈ R, and so

fTMf

fTf
=

∑d
i=k λiα

2
i∑d

i=k α
2
i

≥ λk.
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Taking minimum over all Q yields the inequality.

2.5 Basic Facts in Spectral Graph Theory

2.5.1 Matrices and Normalization

Given a graph G = (V,E,w), its adjacency matrix A′ = A′(G) is an n × n matrix where
the (u, v)-entry is w(uv) (or 0 if uv ̸∈ E). Its Laplacian matrix is defined as L′ = L′(G) :=
D − A′, where D = D(G) := diag({degw(v)}v∈V ) is the diagonal degree matrix. For a
vector x ∈ Rn, the Laplacian matrix has a useful quadratic form

xTL′x =
∑
uv∈E

w(uv)(x(u)− x(v))2. (2.1)

It turns out to be more useful to consider normalized versions of these matrices. The
normalized adjacency matrix is defined as A = A(G) := D−1/2A′D−1/2, and the normalized
Laplacian matrix is defined as L = L(G) := D−1/2L′D−1/2. Here, D−1/2 is the inverse
square root of the diagonal degree matrix and has entries degw(v)

−1/2 for v ∈ V . Note
that L = I − A.

2.5.2 Eigenvalues

Note that A′(G), L′(G), A(G), L(G) defined above are all symmetric matrices, and so are
diagonalizable with all real eigenvalues. We denote the eigenvalues of A′(G) (resp. A(G))
by α′

1(G) ≥ α′
2(G) ≥ · · · ≥ α′

n(G) (resp. α1(G) ≥ · · · ≥ αn(G)). We denote the eigenvalues
of L′(G) (resp. L(G)) by λ′1(G) ≤ λ′2(G) ≤ · · · ≤ λ′n(G) (resp. λ1(G) ≤ · · · ≤ λn(G)).

By the quadratic form (2.1), L′(G) is PSD, and since 1 is in the nullspace of L′(G)
we have λ′1(G) = 0. It follows from the definition of L(G) that L(G) is PSD and has a
nontrivial nullspace, and so λ1(G) = 0 as well. We will show in the next subsection that:

Fact 2.5.1 (Bound on λn(G)). For any graph G = (V,E,w), λn(G) ≤ 2.

Since A(G) = In−L(G), the spectra of A(G) and L(G) are related by αi(G) = 1−λi(G).
Therefore, we can bound the eigenvalues of A(G) by 1 = α1(G) ≥ · · · ≥ αn(G) ≥ −1.
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2.5.3 Eigenvalues as Minimization Problems

The following variational characterization of λ2(G) will prove to be very useful.

Proposition 2.5.2. For any graph G = (V,E,w),

λ2(G) = min
x:V→R

x⊥
√

degw

xTL(G)x

xTx
= min

f :V→R
f⊥degw

∑
uv∈E w(uv)(f(u)− f(v))2∑

v∈V degw(v)f(v)
2

. (2.2)

Proof. The first equality is by checking that the vector µ(v) :=
√
degw(v) is the first

eigenvector of L(G) (with eigenvalue 0), and then using the Courant-Fischer theorem in
Proposition 2.4.4. The second equality is by the change of variables f := D−1/2x.

Given a graph G = (V,E,w) and f : V → R, we define the Rayleigh quotient of the
normalized Laplacian as

R(f) :=

∑
uv∈E w(uv)(f(u)− f(v))2∑

v∈V degw(v)f(v)
2

.

Then, λ2(G) is the optimization problem of minimizing R(f) over vectors f : V → R with
f nonzero and

∑
v∈V degw(v)f(v) = 0.

Generally, for a symmetric matrix M , we define the Rayleigh quotient of M as either

R(f) :=
fTMf

fTf
or R(f) :=

fTM ′f

fTQf
where M = Q−1/2M ′Q−1/2,

depending on which one is more convenient.

For higher eigenvalues, the same argument gives the following:

Proposition 2.5.3. For any graph G = (V,E,w),

λk(G) = min
Q: subspace of RV

dim(Q)=k

max
f∈Q

R(f).

Fact 2.5.1 now follows from Proposition 2.5.3 since

R(f) =

∑
uv∈E w(uv)(f(u)− f(v))2∑

v∈V degw(v)f(v)
2

≤
2
∑

uv∈E w(uv)(f(u)
2 + f(v)2)∑

v∈V degw(v)f(v)
2

= 2

for all f : V → R.
The following allows one to upper-bound λk(G) using functions with disjoint support.
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Proposition 2.5.4. Let G = (V,E,w) be a graph and f1, f2, . . . , fk : V → R be functions
with disjoint support. Then,

λk(G) ≤ 2max
i∈[k]

R(fi).

Proof. Let Q be the subspace spanned by f1, . . . , fk, which has dimension k and so by
Proposition 2.5.3 we have

λk(G) ≤ max
f∈Q

R(f).

Now our goal is to bound R(f) for any f ∈ Q, which can be written as f =
∑k

i=1 αifi. For
the denominator, ∑

v∈V

degw(v)f(v)
2 =

k∑
i=1

α2
i

∑
v∈V

degw(v)fi(v)
2,

since at most one fi(v) can be nonzero for each v ∈ V . Before bounding the numerator,
we define some new notations. Let Si := supp(fi) and for each v ∈ V let

ι(v) :=

{
i, if v ∈ Si;
0, if v ̸∈ S1 ⊔ · · · ⊔ Sk.

The map ι : V → {0} ∪ [k] is well-defined because the fi’s have disjoint support. Write
α0 = 0 and f0 = 0⃗ ∈ RV . For each edge uv ∈ E, if ι(u) = ι(v) then

(f(u)− f(v))2 = (αι(u)fι(u)(u)− αι(v)fι(v)(v))2

= α2
ι(u)(fι(u)(u)− fι(u)(v))2 ≤

∑
i∈[k]

α2
i (fi(u)− fi(v))2,

whereas if ι(u) ̸= ι(v) then

(f(u)− f(v))2 = (αι(u)fι(u)(u)− αι(v)fι(v)(v))2

≤ 2
[
α2
ι(u)(fι(u)(u)− fι(u)(v))2 + α2

ι(v)(fι(v)(u)− fι(v)(v))2
]

≤ 2
∑
i∈[k]

α2
i (fi(u)− fi(v))2

where we used fι(u)(v) = 0 and fι(v)(u) = 0. Applying this to all edges and using also the
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denominator result, we finally obtain

R(f) =

∑
uv∈E w(uv)(f(u)− f(v))2∑

v∈V degw(v)f(v)
2

≤
2
∑

i∈[k]
{
α2
i

[∑
uv∈E w(uv)(fi(u)− fi(v))2

]}∑
i∈[k]

{
α2
i

[∑
v∈V degw(v)fi(v)

2
]}

≤ 2max
i∈[k]

R(fi).

The proof is complete after taking maximum over all f ∈ Q.

Finally, we present the variational characterization for 2− λn.

Proposition 2.5.5. For any graph G = (V,E,w),

2− λn(G) = min
f :V→R

∑
uv∈E w(uv)(f(u) + f(v))2∑

u∈V degw(u)f(u)
2

.

Proof. Observe that 2 − λn(G) is the smallest eigenvalue of the matrix I + A, which has
the useful quadratic form

xT (I + A)x = fT (D + A′)f =
∑
uv∈E

w(uv)(f(u) + f(v))2

using the change of variables f := D−1/2x. Therefore, using the Courant-Fischer theorem
in Proposition 2.4.4 we have

2− λn(G) = min
x:V→R

xT (I + A)x

xTx
= min

f :V→R

∑
uv∈E w(uv)(f(u) + f(v))2∑

u∈V degw(u)f(u)
2

,

as desired.

2.5.4 Eigenvalues and Graph Properties

Using the variational characterization of λk(G), we discover the following connection be-
tween eigenvalues and combinatorial properties of a graph.

Proposition 2.5.6. For any graph G = (V,E,w) with positive edge weights, λk(G) = 0
iff G has at least k connected components. In particular, λ2(G) = 0 iff the graph G is
disconnected.
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Proof. We first prove the result for k = 2. By Proposition 2.5.2, λ2(G) = 0 iff there exists
a nonzero f ⊥ degw such that f(u) = f(v) for all uv ∈ E. If the graph is connected, it
then follows that f is constant, and must be identically zero, so λ2(G) > 0. If the graph
is disconnected, say there exists a nonempty nontrival vertex subset S ⊂ V , then we can
choose a, b ∈ R such that the vector f(u) = a for u ∈ S and f(u) = b for u ̸∈ S satisfies
f ⊥ degw.

Now we generalize to arbitrary k. Let S1, . . . , Sℓ be the connected components of G.
We can write the Laplacian matrix L(G) into the block diagonal form

L(G) =

L(G[S1]) 0 0

0
. . . 0

0 0 L(G[Sℓ])

 ,

from which it follows that the nullity of L(G) is ℓ, and λk(G) = 0 if and only if ℓ ≥ k.

Let ϕ(G) := minS⊆V :0<π(S)≤1/2 ϕ(S) be the edge conductance of the graph G. Cheeger’s
inequality [Che70, AM85, Alo86] is a robust generalization of Proposition 2.5.6 that

λ2(G)

2
≤ ϕ(G) ≤

√
2λ2(G).

This theorem is important because it connects (i) the spectral gap of the normalized
Laplacian matrix, (ii) the edge conductance of the graph and (iii) the mixing time of
random walks. We will defer the proof and further discussion to Section 3.1.1.

Another basic result in spectral graph theory relates 2 − λn(G) with the existence of
bipartite components in G.

Proposition 2.5.7. For any graph G = (V,E,w) with positive edge weights, λn(G) = 2 if
and only if G has a bipartite component S, or equivalently G has a set S of conductance
zero with the induced subgraph G[S] being bipartite.

Proof. Suppose G has a bipartite component S. By Proposition 2.5.5 it suffices to find a
nonzero f : V → R such that∑

uv∈E

w(uv)(f(u) + f(v))2 = 0. (∗)

If S = A ⊔B is the bipartitioning, we can set f(u) = 1[u ∈ A]− 1[u ∈ B].
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Conversely, if λn(G) = 2, that means there is a nonzero f : V → R satisfying (∗) above.
That means for any uv ∈ E we have f(u) + f(v) = 0. Choose any u0 ∈ V with f(u0) ̸= 0
and let S be the connected component containing u0. Then, S is necessarily bipartite with
partitions A := {u ∈ S : f(u) = f(u0)} and B := {u ∈ S : f(u) = −f(u0)}, and by
definition S is of conductance zero.

2.5.5 Isotropy

Given a graph G = (V,E,w) and let f1, f2, . . . , fk be the first k orthonormal eigenvectors
of the normalized Laplacian L(G). The spectral embedding of dimension k is defined as

f(v) := (f1(v), f2(v), . . . , fk(v)) ∈ Rk

for each v ∈ V . The following proposition asserts that the sum of outer products of f(v)
satisfies a nice property called isotropy.

Proposition 2.5.8 (Isotropy of Spectral Embedding). Let G = (V,E,w) be a graph and
f : V → Rk be the spectral embedding defined above. Then,∑

v∈V

f(v)f(v)T = Ik.

Proof. For any vector h ∈ Rk, we have by ⟨fi, fj⟩ = 1[i = j] that

hT

[∑
v∈V

f(v)f(v)T

]
h =

∑
v∈V

k∑
i=1

k∑
j=1

hihjfi(v)fj(v) =
k∑
i=1

h2i = hTh.

This means the matrix in the bracket is the identity.

2.5.6 Computing the Spectrum

Let G = (V,E,w) be a graph and L(G) be its Laplacian. We describe how to apply
the power method to compute the second eigenvalue and an associated eigenvector. The
following is based on [Tre16, Chapter 4], which we point the readers to for details.

One possible approach is to consider the matrix M := 2I − L(G), which is PSD by
Fact 2.5.1. We know that 1V is the largest eigenvector of M and therefore we can find
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(approximate) second largest eigenvalue of M and associated eigenvector using the strat-
egy outlined in Section 2.4.2: namely, by projecting the starting random vecotr to the
orthogonal complement of 1V . The second largest eigenvalue of M equals 2− λ2(G), and
so this gives an algorithm for computing the second smallest eigenvalue and eigenvector.
As nnz(M) = O(n+m), the runtime of this algorithm is O(ε−1(n+m) log n), where ε > 0
is the desired multiplicative accuracy. This is near-linear when ε is a constant. However,
due to the transformation λ 7→ 2− λ, if we wish the computed second smallest eigenvalue
λ̃2(G) to satisfy e.g. λ̃2(G) ≤ 2λ2(G), we would need to take ε = O(λ2(G)), which blows
up the runtime when λ2(G) = o(1).

To remedy this, we consider instead the pseudo-inverse L†. The iterative steps of the
power method requires computing matrix-vector products of the form L†x, which is the
same as solving Laplacian systems. Using the fast Laplacian solvers of Spielman and Teng
[ST14], the running time of the algorithm can be shown to be Õ(ε−1(n +m)), but if we
wish the computed second smallest eigenvalue λ̃2(G) to satisfy λ̃2(G) ≤ 2λ2(G) we only
need to take ε = O(1), since

1

λ̃2(G)
= Θ

(
1

λ2(G)

)
=⇒ λ̃2(G) = Θ(λ2(G)).

2.6 Markov Chains and Random Walks

Given a finite set X called the state space, a Markov chain on X is represented by a matrix
P ∈ RX×X , where P (u, v) is the probability of traversing from state u to state v in one
step. Thus, P has nonnegative entries and satisfies

∑
v∈X P (u, v) = 1 for all u ∈ X. The

matrix P t then corresponds to taking t steps of the Markov chain.

A probability distribution π : X → R≥0 is said to be a stationary distribution of P if
πTP = πT .5 A Markov chain with transition matrix P is said to be irreducible if for any
state pair u, v ∈ X, P t(u, v) > 0 for some t ∈ N, and said to be aperiodic if, for all u ∈ V ,
gcd{t ∈ N : P t(u, u) > 0} = 1. This is equivalent to the underlying directed graph (whose
vertex set is X and arc set is {uv : P (u, v) > 0}) being strongly connected and aperiodic.
It is well-known that (see e.g. Chapter 4 of [LP17]):

Proposition 2.6.1 ([LP17]). If P is the transition matrix of an irreducible, aperiodic
Markov chain, then it has a unique stationary distribution π, and furthermore pT0 P

t → πT

as t→∞ for any initial distribution p0.

5We treat distributions as column vectors in RX , which is different from the standard convention.
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For ε ∈ (0, 1), we define the ε-mixing time τmix(P, ε) of P to be the smallest t ∈ N such
that dTV (π, (P

t)Tρ) ≤ ε for any initial distribution ρ. Here, dTV (·, ·) is the total varia-
tion distance, defined as dTV (ρ1, ρ2) := maxS⊆X |ρ1(S) − ρ2(S)| for any two distributions
ρ1, ρ2 : X → R≥0. This describes how fast the Markov chain converges to its stationary
distribution.

A transition matrix P is said to be time-reversible with respect to π if π(u)P (u, v) =
π(v)P (v, u) for any u, v ∈ X. Note that this implies that π is a stationary distribution of P .
The time reversibility condition can be written as ΠP = P TΠ, where Π := diag(π). Thus,
Π1/2PΠ−1/2 is symmetric, hence diagonalizable with eigenvalues 1 = α1(P ) ≥ α2(P ) ≥
· · · ≥ αn(P ) ≥ −1. As P is similar to Π1/2PΠ−1/2, they have the same eigenvalues by
Fact 2.4.1. The spectral gap of P is defined as 1 − α2(P ). The relaxation time τrel(P ) of
P is defined as the reciprocal of the spectral gap, so τrel(P ) :=

1
1−α2(P )

.

Suppose P ′ is the transition matrix of an irreducible Markov chain. We consider the
lazy version defined as P = (I + P ′)/2. One motivation is to get rid of periodicity in P ′,
so that P always has a unique stationary distribution π. Let πmin := minu∈V π(u). The
following proposition relates the relaxation time with the mixing time of an irreducible,
reversible chain (see e.g. [LP17, Chapter 12]). We provide a proof for reference, as we will
use similar ideas to derive some other mixing time bounds in the later chapters.

Proposition 2.6.2 (Mixing Time Bound using Relaxation Time for Reversible Chains
[LP17]). Let P = (I + P ′)/2 be the lazy version of an irreducible Markov chain with
transition matrix P ′, and π be the stationary distribution of P . Suppose further that P is
time-reversible with respect to π. Then,(

τrel(P )− 1
)
· log 1

2ε
≤ τmix(P, ε) ≤ τrel(P ) · log

1

ε · πmin

. (2.3)

Proof. For the mixing time upper bound, notice that the eigenvalues of P satisfy 1 =
α1(P ) > · · · ≥ αn(P ) ≥ 0. Since P ∼ Π1/2PΠ−1/2 =: P̃ and the latter is symmetric by
reversibility, fTi := f̃Ti Π

1/2 is a left eigenbasis of P , where f̃i is an orthonormal eigenbasis
for P̃ , with f̃Ti P̃ = αif̃

T
i (we write αi for αi(P )). Since f̃i are orthonormal, we have

⟨fi, fj⟩1/π =
∑
x∈X

1

π(x)
fi(x)fj(x) = ⟨f̃i, f̃j⟩ = 1[i = j].

For any starting distribution p0, there exist ai ∈ R such that p0 =
∑|X|

i=1 aifi, and f1 ∝ π
since πTP = πT is a left eigenvector of P with eigenvalue 1. Then,

pT0 P
t =

|X|∑
i=1

aif
T
i P

t = a1f
T
1 +

|X|∑
i=2

aiα
t
if
T
i .
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We know that a1f1 = π since

1 = pT0 P
t
1 = a1f

T
1 1+

|X|∑
i=2

aiα
t
if
T
i 1→ a1f

T
1 1

as t→∞, and πT1 = 1. Therefore,

dTV (π, (P
t)Tp0) =

1

2

∥∥pT0 P t − πT
∥∥
1

=
1

2

∥∥∥∥∥∥
|X|∑
i=2

aiα
t
if
T
i

∥∥∥∥∥∥
1

(∗)
≤ 1

2

∥∥∥∥∥∥
|X|∑
i=2

aiα
t
if
T
i

∥∥∥∥∥∥
1/π

=
1

2

√√√√ |X|∑
i=2

a2iα
2t
i

≤ 1

2
(1− (1− α2))

t ·

√√√√ |X|∑
i=2

a2i

where the step (∗) is by Cauchy-Schwarz inequality (see Section 2.10) that

∥b∥1 =
∑
x∈X

|b(x)| ≤
√∑

x∈X

1

π(x)
b(x)2 ·

∑
x∈X

π(x) = ∥b∥1/π .

We can upper-bound
∑|X|

i=2 a
2
i by

|X|∑
i=2

a2i ≤
|X|∑
i=1

a2i = ⟨p0, p0⟩1/π ≤
1

πmin

⟨p0, p0⟩ ≤
1

πmin

∥p0∥21 =
1

πmin

.

Plugging this back to the bound on dTV , we have

dTV (π, (P
t)Tp0) ≤

1

2
(1− (1− α2))

t ·
√

1

πmin

≤ 1

2
e−(1−α2)t ·

√
1

πmin

,

32



which is ≤ ε if we take t ≥ (1− α2)
−1 log(1/(2ε

√
πmin)). This gives the upper bound.

For the mixing time lower bound, we consider right eigenvectors of P . We know that
gi := Π−1/2f̃Ti is a right eigenbasis of P with Pgi = αigi. We also know that g1 ∝ 1 from
P1 = 1. Consider the second eigenvector g2, and let x ∈ X be the entry such that |g2(x)|
is maximized. Note that g2 ⊥ π since

⟨g2, π⟩ = ⟨g2, g1⟩π = ⟨f̃2, f̃1⟩ = 0.

Then,

(1− α2)
t|g2(x)| = |P tg2(x)| =

∣∣∣∣∣∑
y∈X

[
P t(x, y)g2(y)− π(y)g2(y)

]∣∣∣∣∣ ≤ 2 ∥g2∥∞ dTV (1
T
xP

t, πT ),

where 1x is the distribution concentrated at x. Therefore,

(1− (1− α2))
t ≤ 2 sup

p0

dTV (p
T
0 P

t, πT ).

When t ≤ (τrel − 1) log(1/2ε), using (1− 1/x)x−1 ≥ 1/e for x > 0, we have

(1− (1− α2))
t ≥ e− log(1/2ε) = 2ε

and so τmix(P ) ≥ (τrel − 1) log(1/2ε), as required.

2.6.1 Random Walks on Graphs

Given an undirected or a directed graph G = (V,E,w), with positive edge weights, the
transition matrix P ′ ∈ RV×V of the canonical random walk on G is defined as P ′(u, v) =
w(uv)/

∑
x∈V w(ux), where w(ux) = 0 if ux ̸∈ E. If G is strongly connected (but not

necessarily aperiodic), the lazy random walk P := (I +P ′)/2 nevertheless admits a unique
stationary distribution π, and pT0 P

t → πT for any initial distribution p0 as t → ∞. The
mixing time measures how fast pT0 P

t converges to πT . We use τmix(P ) to denote the
(1/e)-mixing time of P (to π), and we write “mixing time” instead of “(1/e)-mixing time”.

When the graph G is undirected, we have P ′ = D−1A′ where A′ is the adjacency matrix
and D is the diagonal degree matrix defined in Section 2.5. We see that P ′ is similar to
A = D−1/2A′D−1/2, and so they have the same eigenvalues. Moreover,

1− α2(P
′) = 1− α2(G) = λ2(G) and 1− α2(P ) = 1−

(
1 + α2(P

′)

2

)
=
λ2(G)

2
.
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Finally, when G is connected, π ∝ degw is the unique stationary distribution of P . There-
fore, specializing (2.3) to the undirected graph setting we have

1

λ2(G)
≲ τmix(P ) ≲

1

λ2(G)
· log 1

πmin

. (2.4)

If the graphG is unweighted, then π(v) = deg(v)/vol(V ), so log(1/πmin) ≤ log(2m) ≲ log n,
and the above yields

1

λ2(G)
≲ τmix(P ) ≲

1

λ2(G)
· log n.

2.7 Convex Geometry

(In this section, n does not carry the meaning of the number of vertices of a graph.)

A polytope ∅ ̸= Q ⊆ Rn is a solution set to affine inequalities, i.e. Q = {x ∈ Rn :
Ax ≤ b} for some A ∈ Rd×n and b ∈ Rd. Given a point set X ⊆ Rn, its convex hull
conv(X) ⊂ Rn is the set of all convex combinations of points in X. Equivalently, conv(X)
is the smallest convex set containing X. A basic result is that the convex hull of a finite
point set in Rn is a polytope.

Given a polytope Q ⊆ Rn. A subset F ⊆ Q is a face of Q if, for any x, y ∈ Q, if
tx + (1 − t)y ∈ F for some t ∈ (0, 1) then x, y ∈ F . If F is a face of Q, then it is
the intersection of Q and an affine subspace Y ⊆ Rn. The dimension of a face F is the
dimension of the smallest (by inclusion) affine subspace Y ⊆ Rn such that F = Q ∩ Y .

Dimension-0 faces are called extreme points or vertices, whereas dimension-1 faces are
called edges. The graph GQ = (V,E) of Q has the dimension-0 faces as the vertices and
the dimension-1 faces as the edges. This is also called the 1-skeleton of the polytope. The
following fact about the non-existence of edges between two vertices of a polytope will be
useful.

Proposition 2.7.1 ([KR03]). Let Q ⊆ Rn be a bounded polytope with vertex set F0 =
F0(Q). Let x ̸= y ∈ F0, and let L(x, y) be the line segment with endpoints x and y.
Suppose that conv

(
F0 \ {x, y}

)
∩ L(x, y) is nonempty. Then, L(x, y) is not an edge of Q.

The following version of hyperplane separation theorem (c.f. [BV04, Section 2.5]) will
be useful.

Proposition 2.7.2 ([BV04]). Let M ⊆ Rn be compact and convex, and let x ∈ Rn be
such that x ̸∈ M . Then there exists an affine function l : Rn → R such that l(x) = 0 and
l(y) < 0 for all y ∈M .
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2.8 Convex Optimization

2.8.1 Optimization Programs

Consider optimization programs in the standard form

P := minx∈Ω f(x)

subject to gi(x) ≤ 0 ∀i ∈ [l]

hj(x) = 0 ∀i ∈ [p]

where Ω ⊆ Rd and f, gi, hj : Rd → R ∪ {±∞}. To define its Lagrangian dual, consider

Λ(x, λ, µ) := f(x) +
∑
i∈[l]

λigi(x) +
∑
j∈[p]

µjhj(x)

defined on Ω× Rl × Rp. The dual program is

D := max
λ≥0,µ

inf
x∈Ω

Λ(x, λ, µ).

Weak duality always holds, that is, D ≤ P .
Linear programs (LP) are optimization programs where Ω = Rd and f, gi, hj are all

affine functions. Semidefinite programs (SDP) are optimization programs where the am-
bient space is Rd×d, Ω := {X ∈ Rd×d : X ⪰ 0}, and f, gi, hj are all affine functions. These
are the two main classes of convex programs that we use in this thesis.

2.8.2 Computational Aspects

Some remarks about the time complexity of solving an SDP are in order. See e.g. [GM12,
WSV12, LR05] for reference.

Let R be an upper bound on the maximum Frobenius norm of any feasible solution X
to the SDP. We make the additional assumption that R is at most polynomial in the size
of the program, which is satisfied by all SDP’s we will encounter in this thesis.

The two most common choices for SDP solvers are the ellipsoid method and the interior-
point method. The ellipsoid method produces a solution with additive error ε in time
polynomial in the input size and log(R/ε), under the bit number model of computation,
although in practice the runtime can be slow. The interior-point method tends to be
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significantly more efficient in practice, but a rigorous runtime bound requires further as-
sumptions on the structure of the SDP, e.g. the existence of both primal and dual Slater
points, and only under the real number model of computation.

We simply note that all the SDP’s introduced in this thesis can be (approximately)
solved in polynomial time, in bit complexity.

2.8.3 Strong Duality

We say that strong duality holds if P = D. Note that it is not required that the common
value is attained by a primal-dual solution pair. It is well known that strong duality always
holds for linear programs. Unlike linear programs, there are SDP’s where strong duality
does not hold. In a few places in the thesis, we shall use von Neumann’s minimax theorem
to establish strong duality.

Theorem 2.8.1 (Von Neumann’s Minimax Theorem (see [Sim95])). Let X, Y be nonempty
compact convex sets. If f is a real-valued continuous function on X×Y with f(x, ·) concave
on Y for all x ∈ X and f(·, y) convex on X for all y ∈ Y , then

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y).

Another sufficient condition for strong duality to hold is the existence of a Slater point,
i.e. a “strictly feasible” solution. Formally:

Theorem 2.8.2 (Slater’s Condition (see [BV04, Section 5.2.3])). Suppose that the convex
program P admits a feasible solution x ∈ relint(Ω), gi(x) < 0 for all nonlinear inequality
constraints. Then, strong duality holds that P = D, and if D is feasible then a dual
optimum solution exists.

When applied to semidefinite programs, Slater’s condition amounts to establishing a
positive definite feasible solution X ≻ 0, since all the constraints are affine.

2.8.4 Sum of Eigenvalues

Several eigenvalue optimization problems can be formulated as semidefinite programs; see
Section 3.2.2. In Chapter 4 and Chapter 5, we will use the following proposition in writing
the maximum reweighted sum of k smallest eigenvalue problem as a semidefinite program,
which follows from e.g. [HJ13, Corollary 4.3.39].
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Proposition 2.8.3 (Sum of k Smallest Eigenvalues [HJ13]). Let X ∈ Rd×d be a symmetric
matrix and let 1 ≤ k ≤ d. Suppose the eigenvalues of X are λ1 ≤ λ2 ≤ · · · ≤ λd. Then,
λ1 + λ2 + · · ·+ λk is the value of the following semidefinite program:

min
Y ∈Rd×d

tr(XY )

subject to 0 ⪯ Y ⪯ Id

tr(Y ) = k.

2.8.5 Vector Program for λ2

We will use the following exact SDP formulation of the second eigenvalue in (2.2).

Proposition 2.8.4 (Vector Program for λ2). For any graph G = (V,E,w),

λ2(G) = min
f :V→Rn∑

v∈V degw(v)f(v)=0⃗

∑
uv∈E w(uv) · ∥f(u)− f(v)∥

2∑
v∈V degw(v) · ∥f(v)∥

2 . (2.5)

Proof. Let fi : V → R be the i-th coordinate function of f . Then degw ⊥ fi for each
i ∈ [n]. The minimization objective can be rewritten as∑

i∈[n]
∑

uv∈E w(uv) · (fi(u)− fi(v))2∑
i∈[n]

∑
v∈V degw(v) · fi(v)2

.

By Proposition 2.5.2,
∑

uv∈E w(uv) · (fi(u) − fi(v))
2 ≥ λ2(G) ·

∑
v∈V degw(v) · fi(v)2 for

every i ∈ [n], and so RHS is at least λ2(G). Equality can be established by taking fi to be
the second eigenvector for all i ∈ [n].

To see why (2.5) is an SDP, consider the Gram matrix X ∈ RV×V with X(u, v) =
⟨f(u), f(v)⟩ and rewrite the program as follows:

min
X⪰0

∑
uv∈E

w(uv)(X(u, u) +X(v, v)−X(u, v)−X(v, u))

subject to ⟨D,X⟩ = 1

⟨degwdegTw, X⟩ = 0

where D = diag(degw). Then, the objective and the constraints are all linear in X. This
also explains why it is needed to lift f : V → R in the original Rayleigh quotient definition
of λ2(G) to f : V → Rn, as the one-dimensional embedding will impose a rank-1 constraint
on X, which makes the program non-convex.
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2.9 Flows

Given a directed or undirected graph G = (V,E). If the graph is undirected, consider its
bidirection, which is the directed graph with arcs (u, v) and (v, u) for every edge uv ∈ E.

Single-Commodity Flows: A single-commodity flow problem is the problem of send-
ing flows from s to t subject to certain constraints. The typical setting is that there is a
capacity constraint on each arc restricting the amount of flow that may pass through it,
and the goal is to maximize the total amount of flow sent from s to t. Formally,

Definition 2.9.1 (Maximum Flow). Given a directed graph G = (V,E) with capacity
C(e) ≥ 0 on arc e ∈ E. Given vertices s ̸= t. The maximum s-t flow problem is the
following program:

max
f :E→R≥0

M

subject to
∑

v:vu∈E

f(vu)−
∑

v:uv∈E

f(uv) =M(1[u = s]− 1[u = t]) ∀u ∈ V

f(e) ≤ C(e) ∀e ∈ E.

We also refer to G as a flow network.

The first constraint says that the net amount of flow out of vertex s should be M , the
net amount of flow into vertex t should be M , and there should be a net zero flow in or
out of every other vertex. This means that M is the amount of flow sent from s and t and
so the program seeks to maximize M . The second constraint says that the amount of flow
through an arc should be at most its capacity.

Given a feasible s-t flow f , it is possible to decompose f into a sum of path flows fp,
so that fp is an s-t flow along a path p from s to t.

The minimum s-t cut is the problem of removing arcs so that there is no directed path
from s to t in the resulting graph, and the total capacity of the removed arcs is minimized.
The max-flow min-cut duality states that the maximum s-t flow is equal to the minimum
s-t cut.

Multicommodity Flows: A multi-commodity flow is the problem of sending flows
from multiple source vertices to their corresponding target vertices. These demands may
be represented using a matrix D ∈ RV×V

≥0 , so that D(u, v) ≥ 0 is the required amount of
flow to send from u to v. Instead of specifying the amount of flow on each arc, we need to
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use one variable per path. Let P be the set of paths on G and P(u, v) be the set of u-v
paths on G. A multicommodity flow F : P → R≥0 satisfies the demand D ∈ RV×V

≥0 if∑
p∈P(u,v)

F (p) = D(u, v)

for all u, v ∈ V . The goal is usually to find a feasible multicommodity flow that minimizes
some form of congestion, which detects if a large amount of flow passes through particular
vertices or arcs. This is equivalent to imposing capacity constraints on the vertices or the
arcs and asking for the largest scalar α ≥ 0, such that it is possible to satisfy the demand
αD while respecting the capacity constraints.

2.10 Inequalities

2.10.1 Elementary Inequalities

The following is the most frequently used inequality in this thesis.

Fact 2.10.1 (Cauchy-Schwarz Inequality). For real numbers a1, . . . , ak and b1, . . . , bk,(
k∑
i=1

a2i

)(
k∑
i=1

b2i

)
≥

(
k∑
i=1

aibi

)2

.

Corollary 2.10.2 (Quadratic Mean Inequality). For real numbers a1, . . . , ak,

a21 + · · ·+ a2k
k

≥
(
a1 + · · ·+ ak

k

)2

.

Proof. Apply Cauchy-Schwarz inequality with bi = 1/k.

We also collect some useful inequalities here.

Fact 2.10.3. Let f : D → R and π : D → R≥0 be two functions. If
∑

x∈D π(x)f(x) = 0,
then for any c ∈ R, ∑

x∈D

π(x)(f(x)− c)2 ≥
∑
x∈D

π(x)f(x)2.

Proof. Differentiate LHS with respect to c to see that LHS is minimized when c = 0.
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Fact 2.10.4. Let f : D → Rk be such that
∑

u∈D π(u)f(u) = 0⃗ for some positively-valued
function π : D → R+. Then,∑

u∈D

π(u) ∥f(u)∥2 = 1

2π(D)

∑
u,v∈D

π(u)π(v) ∥f(u)− f(v)∥2 .

Proof. Expanding RHS we have

1

2|D|
∑
u,v∈D

π(u)π(v) ∥f(u)− f(v)∥2

=
1

2π(D)

∑
u,v∈D

π(u)π(v)
[
∥f(u)∥2 + ∥f(v)∥2 − 2⟨f(u), f(v)⟩

]
=

1

2π(D)

π(D) ·
∑
u∈D

π(u) ∥f(u)∥2 + π(D) ·
∑
v∈D

π(v) ∥f(v)∥2 − 2

∥∥∥∥∥∑
u∈D

π(u)f(u)

∥∥∥∥∥
2


=
∑
u∈D

π(u) ∥f(u)∥2 ,

which is exactly LHS.

2.10.2 Gaussians

We collect some useful inequalities about Gaussians here.

Proposition 2.10.5 (Expected Maximum of χ-Squared Distribution). Let (Γij) for 1 ≤
i ≤ d and 1 ≤ j ≤ T be Gaussian random variables with mean 0 and variance at most 1, and
such that Γi1,Γi2, . . . ,ΓiT are mutually independent for each i ∈ [d]. Let Yi :=

1
T

∑
1≤j≤T Γ

2
ij

and let Y := max1≤i≤d Yi. Then,

E[Y ] ≤ 4

(
1 +

1 + log d

T

)
.

Proof. By the Laurent-Massart bound of χ-squared distribution [LM00, Lemma 1], for any
δ > 0 and i ≤ d,

Pr
[
Yi − 1 ≥ 2

√
δ/T + 2(δ/T )

]
≤ e−δ.

Since
1 + 2

√
δ/T + 2(δ/T ) ≤ 4 + 4(δ/T )
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it follows that
Pr[Yi ≥ 4 + 4(δ/T )] ≤ e−δ.

Recall that Y = maxi≤d Yi. Taking union bound over the Yi’s,

Pr[Y ≥ 4 + 4(δ/T )] ≤ d · e−δ.

With this probability tail bound, the expectation of Y can be bounded as follows:

E[Y ] =

∫ ∞

0

Pr[Y ≥ t] dt ≤ 4 +

∫ ∞

0

Pr[Y ≥ 4 + t] dt ≤ 4 +

∫ ∞

0

min
{
1, d · e−T ·t/4

}
dt

= 4 +
4 log d

T
+

∫ ∞

4 log d
T

d · e−T ·t/4 dt

= 4 +
4 log d

T
+

4d

T
· e−T ·t/4

∣∣∣∞
4 log d

T

= 4 +
4 log d

T
+

4

T
.

Fact 2.10.6 ([LRV13, Fact B.3]). Let Y1, Y2, . . . , Yd be d Gaussian random variables with
mean 0 and variance at most σ2. Let Y be the random variable defined as Y := max{Yi |
i ∈ [d]}. Then

E[Y 2] ≤ 4σ2 log d.

Fact 2.10.7 ([LRV13, Lemma 9.8]). Suppose Y1, . . . , Yd are Gaussian random variables
such that E[

∑d
i=1 Y

2
i ] = 1. Then

Pr

[
d∑
i=1

Y 2
i ≥

1

2

]
≥ 1

12
.

Lemma 2.10.8 (Johnson-Lindenstrauss Lemma [JLS86]). Let f : D → Rd be a finite
collection of points, and let ε ∈ (0, 1). Then, for ℓ = Ω(ε−2 log |D|) there exists a linear
map A : Rd → Rℓ such that for all u, v ∈ D,

(1− ε) ∥f(u)− f(v)∥2 ≤ ∥A · f(u)− A · f(v)∥2 ≤ (1 + ε) ∥f(u)− f(v)∥2 .

Such map may be computed in randomized polynomial time.
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Chapter 3

Literature Review

In this chapter, we review important results in the literature that laid the foundation for
our new work. The chapter is structured as follows:

• In Section 3.1, we review the classical Cheeger’s inequality as well as several impor-
tant generalizations to higher eigenvalues. This is relevant to both Chapter 4 and
Chapter 5.

• In Section 3.2, we review past work towards a spectral graph theory for vertex ex-
pansion in graphs. This is most relevant to Chapter 4, except the review of [JPV22]
in Section 3.2.3 which is relevant to Chapter 5.

• In Section 3.3, we review past attempts at developing a spectral graph theory for
directed graphs. This is most relevant to Chapter 5.

• In Section 3.4, we review past attempts at developing a spectral graph theory for
hypergraphs. This is relevant to both Chapter 4 (via reduction) and Chapter 5.

• In Section 3.5, we review past work on upper bounding λ2(G) and λk(G) of a graph
G enjoying special structural properties. This is most relevant to Chapter 7.

• In Section 3.6, we review past work on O(
√
log n) approximation of expansion quanti-

ties using the techniques of [ARV09], as well as approximation algorithms of small-set
and multi-way expansion quantities using orthogonal separators [CMM06, BFK+14,
LM14a, LM14b]. This is most relevant to Chapter 8.
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3.1 Cheeger’s Inequality and Generalizations

For simplicity, we state and prove the results in this section for unweighted graphs. All of
them can be shown to hold for weighted graphs as well.

3.1.1 Classical Cheeger’s Inequality

The classical Cheeger’s inequality is named after Cheeger [Che70], who devised the con-
tinuous version of the inequality. The discrete version for graphs was proved by Alon and
Milman [AM85], Alon [Alo86], and Sinclair and Jerrum [SJ89].

Theorem 3.1.1 (Cheeger’s Inequality [Che70, AM85, Alo86, SJ89]). Let G = (V,E) be a
graph. Then,

λ2(G)

2
≤ ϕ(G) ≤

√
2λ2(G).

The proof of Cheeger’s Inequality below will serve as a template for the proof of all other
Cheeger-type inequalities to follow. We call the inequality which uses eigenvalues to lower-
bound expansion quantities the “easy” direction, as the proof is typically easier, by showing
that the minimization problem from the eigenvalues is a relaxation of the minimization
problem from the expansion quantities. We call the inequality which uses eigenvalues to
upper-bound expansion quantities the “hard” direction, as the proof is typically harder:
given a vector solution to the minimization problem from the eigenvalues, round it to a set
with small expansion.

Proof. For the “easy direction”, let S ⊆ V such that 0 < vol(S) ≤ vol(V )/2 and ϕ(S) =
ϕ(G). Construct the vector f : V → R defined as

f(u) :=

{
−1

vol(S)
, if u ∈ S

1
vol(Sc)

, if u ∈ Sc.

Check that
∑

u deg(u)f(u) = 0, and so

λ2(G) ≤
∑

uv∈E(f(u)− f(v))2∑
v∈V deg(v)f(v)2

(by Proposition 2.5.2)

=
|E(S, Sc)| ·

(
1

vol(S)
+ 1

vol(Sc)

)2
1

vol(S)
+ 1

vol(Sc)

≤ 2
|E(S, Sc)|
vol(S)

= 2ϕ(S).
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For the “hard direction”, the proof is algorithmic and rounds any vector f : V → R
satisfying

∑
u deg(u)f(u) = 0 to a vertex subset S ⊆ V satisfying 0 < vol(S) ≤ vol(V )/2

and

ϕ(S) ≤

√
2 ·
∑

uv∈E(f(u)− f(v))2∑
v∈V deg(v)f(v)2

.

We will present the proof slightly differently than the most common treatise, to decouple
the two key steps: the first step is to go from ℓ22 to ℓ1, and the second step is to go from
ℓ1 to cuts. The idea of considering ℓ1 quantities appeared in the work of Trevisan [Tre09]
(see Section 3.1.2 to follow) as well as later in [CLTZ18]. We will use the same two-step
approach for the proofs of the new Cheeger-type inequalities, to give cleaner proofs and,
in some situations, out of necessity.

Step 1 (ℓ22 to ℓ1). Given f : V → R, our goal is to construct h : V → R such that∑
uv∈E |h(u)− h(v)|∑
v∈V deg(v)|h(v)|

≤

√
2 ·
∑

uv∈E(f(u)− f(v))2∑
v∈V deg(v)f(v)2

.

This explains the name for this step – f : V → R is ℓ22 because the objective in the numer-
ator is the sum of squared ℓ2 distances across the edges in the embedding u 7→ f(u) ∈ R,
and h : V → R is ℓ1 because the objective in the numerator is the sum of ℓ1 distances across
the edges in the embedding u 7→ h(u) ∈ R. The same applies to the denominators. h needs
to be balanced but not in the sense that

∑
v∈V deg(v)h(v) = 0; rather, our construction

ensures that 0 is a degree-weighted median of h, so that the second step yields a cut with
volume at most vol(V )/2.

Let c ∈ R be a degree-weighted median of f ; that is, vol({v ∈ V : f(v) > c}) ≤ vol(V )/2
and vol({v ∈ V : f(v) < c}) ≤ vol(V )/2. Define h : V → R so that

h(u) :=

{
(f(u)− c)2 if f(u) ≥ c

−(f(u)− c)2 if f(u) < c.
(3.1)

In the denominator,∑
v∈V

deg(v)|h(v)| =
∑
v∈V

deg(v)(f(v)− c)2 ≥
∑
v∈V

deg(v)f(v)2.

where the inequality is due to
∑

v∈V deg(v)f(v) = 0 and using Fact 2.10.3. In the numer-
ator, we show that for any uv ∈ E (indeed for any u, v ∈ V ),

|h(u)− h(v)| ≤ |f(u)− f(v)| (|f(u)− c|+ |f(v)− c|) . (3.2)
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If h(u) and h(v) are both positive or both negative, then

|h(u)− h(v)| = |(f(u)− c)2 − (f(v)− c)2|
= |f(u)− f(v)| (|f(u)− c|+ |f(v)− c|) .

Otherwise, (f(u)− c)(f(v)− c) ≤ 0, and so

|h(u)− h(v)| = |(f(u)− c)2 + (f(v)− c)2|
≤ (f(u)− c)2 − 2(f(u)− c)(f(v)− c) + (f(v)− c)2

= |f(u)− f(v)| · |(f(u)− c)− (f(v)− c)|
≤ |f(u)− f(v)| (|f(u)− c|+ |f(v)− c|) .

Therefore, we can upper bound the numerator as follows:∑
uv∈E

|h(u)− h(v)| ≤
∑
uv∈E

|f(u)− f(v)| (|f(u)− c|+ |f(v)− c|)

≤
√∑

uv∈E

(f(u)− f(v))2 · 2
∑
uv∈E

(|f(u)− c|2 + |f(v)− c|2)

=

√∑
uv∈E

(f(u)− f(v))2 · 2
∑
v∈V

deg(v)|h(v)|

In conclusion,∑
uv∈E |h(u)− h(v)|∑
v∈V deg(v)|h(v)|

≤

√
2 ·
∑

uv∈E(f(u)− f(v))2∑
v∈V deg(v)|h(v)|

≤

√
2 ·
∑

uv∈E(f(u)− f(v))2∑
v∈V deg(v)f(v)2

,

as claimed.

Step 2 (threshold rounding). We will exhibit a cut S ⊆ V such that 0 < vol(S) ≤
vol(V )/2 and

ϕ(S) ≤
∑

uv∈E |h(u)− h(v)|∑
v∈V deg(v)|h(v)|

.

Let t ∈ R be a parameter, and define St ⊆ V as follows:

St :=

{
{v ∈ V : h(v) > t} if t ≥ 0

{v ∈ V : h(v) < t} if t < 0.
(3.3)
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Note that, since 0 is a degree-weighted median of h, vol(St) is at most vol(V )/2 for any
t ∈ R. The “average” volume of St is∫ ∞

−∞
vol(St) dt =

∑
v∈V

deg(v)

∫ ∞

−∞
1[v ∈ St] dt =

∑
v∈V

deg(v)|h(v)|,

and the “average” cut size induced by St is∫ ∞

−∞
|E(St, Sct )| dt =

∑
uv∈E

∫ ∞

−∞
1[min(h(u), h(v)) < t < max(h(u), h(v))] dt

=
∑
uv∈E

|h(u)− h(v)|.

As |E(St, Sct )| = 0 when St = ∅, there exists St such that 0 < vol(St) ≤ vol(V )/2 and

ϕ(St) =
|E(St, Sct )|
vol(St)

≤
∫∞
−∞ |E(St, S

c
t )| dt∫∞

−∞ vol(St) dt
=

∑
uv∈E |h(u)− h(v)|∑
v∈V deg(v)|h(v)|

.

This completes the proof of the hard direction of Cheeger’s inequality.

The Sweep-Cut Algorithm

The proof of Cheeger’s inequality above starts with an eigenvector f : V → R correspond-
ing to the second smallest eigenvalue, transforms it to an “ℓ1” vector h : V → R, and takes
a threshold cut

St = {u ∈ V : h(u) > t} or St = {u ∈ V : h(u) < t}.

Note that the transformation from f to h preserves relative order, i.e. f(u) ≥ f(v) iff
h(u) ≥ h(v). Therefore, h exists only for the purpose of proving Cheeger’s inequality, and
the following “sweep-cut” algorithm (see Algorithm 1) using simply the second eigenvector
f suffices to produce a cut S with ϕ(S) ≤

√
2λ2(G) and 0 < vol(S) ≤ vol(V )/2. Moreover,

as we shall see, the algorithm runs in near-linear time.

Theorem 3.1.2 (Runtime of Sweep-Cut Algorithm). Algorithm 1 runs in time Õ(n+m)
and returns a cut S ⊆ V such that ϕ(S) ≤

√
2λ2(G) and 0 < vol(S) ≤ vol(V )/2.

Proof. The conductance guarantee follows from the fact that, in Algorithm 1, we considered
all possible sets St in the threshold rounding step of the proof of Theorem 3.1.1 and take
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Algorithm 1 The Sweep-Cut Algorithm

Input: Graph G = (V,E)
Output: A cut S ⊆ V with 0 < vol(S) ≤ vol(V )/2

1: Compute normalized Laplacian L := I −D−1/2AD−1/2

2: Find the second smallest eigenvector f of L
3: Sort the vertices by f , so that f(v1) ≤ f(v2) ≤ · · · ≤ f(vn)
4: S ← ∅
5: for i← 1 to n− 1 do
6: Si ← {v1, . . . , vi}
7: if vol(Si) > vol(V )/2 then
8: Si ← V \ Si
9: end if
10: if ϕ(Si) < ϕ(S) or S = ∅ then
11: S ← Si
12: end if
13: end for
14: return S

the one with minimum conductance. Plus, Si is never empty and we always set Si to be
the smaller side, so 0 < vol(S) ≤ vol(V )/2.

It remains to prove the runtime bound. First, by Section 2.5.6 it takes Õ(n+m) time
to find a second smallest eigenvector f of L. Sorting the vertices takes O(n log n) time,
and we can update |E(Si, Sci )| and vol(Si) as i increases in O(deg(vi+1)) time, so lines 5-13
take O(n+m) time in total. Therefore, the overall runtime is Õ(n+m).

Mixing Time

Another application of Cheeger’s inequality is to use conductance to analyze the mixing
time of random walks on graphs. The following corollary follows directly from Cheeger’s
inequality and (2.4) relating λ2(G) and mixing time.

Corollary 3.1.3 (Conductance and Mixing Time). Let G = (V,E) be a graph and P be
the lazy random walk defined in Section 2.6.1. Then,

1

ϕ(G)
≲ τmix(P ) ≲

log n

ϕ(G)2
.
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Therefore, Cheeger’s inequality connects (i) spectral gap of the normalized Laplacian
matrix, (ii) edge conductance of the graph and (iii) mixing time of random walks.

3.1.2 Bipartite Cheeger’s Inequality

Motivated to design a “spectral” algorithm for finding approximate max cut, Trevisan
[Tre09] proved the following “bipartite” Cheeger’s inequality, that relates the largest eigen-
value λn to the so-called bipartiteness ratio of a graph. Observe that 2 − λn(G) is the
smallest eigenvalue of I + A where A is the normalized adjacency matrix of G, and so

2− λn(G) = min
f :V→R

⟨f, (I + A)f⟩
⟨f, f⟩

= min
f :V→R

∑
uv∈E(f(u) + f(v))2∑
v∈V deg(v)f(v)2

.

The bipartiteness ratio β is then defined as the ℓ1 version of 2− λn:

β(x) :=

∑
uv∈E |x(u) + x(v)|∑
v∈V deg(v)|x(v)|

for x : V → {−1, 0, 1} and
β(G) := min

x:V→{−1,0,1}
β(x).

The name for β comes from the following combinatorial viewpoint: the “bipartite edge
boundary” δ(A,B) is defined as E(A)∪E(B)∪ δ(A∪B) where E(A) (resp. E(B)) is the
set of induced edges in A (resp. in B), and the “bipartite edge conductance” ϕ(A,B) as
|δ(A,B)|/vol(A ∪ B). Then, β(G) is (up to constant) the problem of finding two disjoint
subsets A,B ⊆ V such that ϕ(A,B) is minimized. So, β(G) is small if and only if, for
some S = A⊔B ⊆ V , both ϕ(S) is small and G[S] is close to bipartite with bipartitioning
(A,B).

Trevisan’s result uncovers a Cheeger inequality relating β(G) and 2− λn(G).

Theorem 3.1.4 ([Tre09]). Let G = (V,E) be a graph. Then,

2− λn(G)
2

≤ β(G) ≤
√

2(2− λn(G)).

Proof. For the easy direction, given any solution x : V → {−1, 0, 1} to β(G), take f = x,
so that f(u)2 = |f(u)| for all u ∈ V and (f(u) + f(v))2 ≤ 2|f(u) + f(v)| for all uv ∈ E.
Thus,

2− λn(G)
2

≤ 1

2

∑
uv∈E(f(u) + f(v))2∑
v∈V deg(v)f(v)2

≤
2
∑

uv∈E |f(u) + f(v)|
2
∑

v∈V deg(v)|f(v)|
= β(x).
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For the hard direction, we would like to round any given f : V → R to an x : V →
{−1, 0, 1} such that

β(x) ≤

√
2 ·
∑

uv∈E(f(u) + f(v))2∑
v∈V deg(v)f(v)2

.

The proof here follows the same two-step approach: ℓ22 to ℓ1, then ℓ1 to bipartite cuts.

Step 1 (ℓ22 to ℓ1). The first step is to construct an h : V → R such that∑
uv∈E |h(u) + h(v)|∑
v∈V deg(v)|h(v)|

≤

√
2 ·
∑

uv∈E(f(u) + f(v))2∑
v∈V deg(v)f(v)2

.

We define h : V → R by

h(u) :=

{
f(u)2 if f(u) ≥ 0

−f(u)2 if f(u) < 0.

Clearly,
∑

v∈V deg(v)|h(v)| =
∑

v∈V deg(v)f(v)2. For the numerator, if h(u) and h(v) are
of the same sign, then

|h(u) + h(v)| = f(u)2 + f(v)2 ≤ (f(u) + f(v))2 = |f(u) + f(v)|(|f(u)|+ |f(v)|),

and if h(u) and h(v) are of different signs, then

|h(u) + h(v)| = |f(u)2 − f(v)2| ≤ |f(u) + f(v)|(|f(u)|+ |f(v)|).

Therefore, for any uv ∈ E (indeed for any u, v ∈ V ),

|h(u) + h(v)| ≤ |f(u) + f(v)|(|f(u)|+ |f(v)|), (3.4)

and so ∑
uv∈E

|h(u) + h(v)| ≤
∑
uv∈E

|f(u) + f(v)|(|f(u)|+ |f(v)|)

≤
√
2
∑
uv∈E

(f(u) + f(v))2
∑
uv∈E

(f(u)2 + f(v)2)

=

√
2
∑
uv∈E

(f(u) + f(v))2
∑
v∈V

deg(v)f(v)2.

Thus, h satisfies the required condition.
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Step 2 (threshold rounding). In the second step, we will exhibit a vector x : V →
{−1, 0, 1} such that

β(x) ≤
∑

uv∈E |h(u) + h(v)|∑
v∈V deg(v)|h(v)|

.

Let t ∈ R≥0 be a parameter, and define xt : V → {−1, 0, 1} as follows:

xt(u) := 1[h(u) > t]− 1[h(u) < −t].

Then, the “average” denominator value is∫ ∞

0

∑
v∈V

deg(v)|xt(v)| dt =
∑
v∈V

d(v)

∫ ∞

0

1[h(v) ̸∈ [−t, t]] dt =
∑
v∈V

deg(v)|h(v)|

and the “average” numerator value is∫ ∞

0

∑
uv∈E

|xt(u) + xt(v)| dt =
∑
uv∈E

∫ ∞

0

|xt(u) + xt(v)| dt
(∗)
=
∑
uv∈E

|h(u) + h(v)|,

where the (*) step may be seen to be true by verifying that∫ ∞

0

|xt(u) + xt(v)| dt = |h(u) + h(v)|

both when h(u) and h(v) have the same sign and when they have different signs. This
completes the proof of the bipartite Cheeger’s inequality.

3.1.3 Higher-order Cheeger’s Inequality

In 2012, [LOT12] and [LRTV12] independently proved the higher-order Cheeger’s inequal-
ity, which relates higher eigenvalues λk to higher-order conductances ϕk. The latter is a
combinatorial quantity that generalizes the conductance ϕ.

Definition 3.1.5 (k-Way Conductance). Let G = (V,E) be a graph and 2 ≤ k ≤ n. Then,
the k-way conductance for disjoint nonempty sets S1 ⊔S2 ⊔ · · · ⊔Sk ⊆ V and for the graph
G are defined as

ϕk(S1, S2, . . . , Sk) := max
i∈[k]

ϕ(Si) and ϕk(G) := min
S1⊔S2⊔···⊔Sk⊆V

ϕk(S1, S2, . . . , Sk).
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Note that ϕ2(S, S
c) = ϕ(S) for S ⊆ V with vol(S) ≤ vol(V )/2, and ϕ2(G) = ϕ(G).

Interpreting ϕ as measuring whether a given graph can be broken into two partitions, each
having a small fraction of outgoing edges (i.e. small conductance), ϕk essentially measures
whether a given graph can be broken into k partitions, each having a small fraction of
outgoing edges.

Below we outline the approach of [LOT12]. The following theorem is a robust gener-
alization of Proposition 2.5.6 that λk(G) = 0 if and only if G has at least k connected
components.

Theorem 3.1.6 (Higher-Order Cheeger Inequality [LOT12]). Let G = (V,E) be a graph.
Then, for any 2 ≤ k ≤ n,

λk(G)

2
≤ ϕk(G) ≲ k2

√
λk(G) and ϕ⌊k/2⌋(G) ≲

√
λk(G) log k.

To prove the easy direction, recall from Proposition 2.5.3 that λk(G) has the following
variational characterization:

λk(G) = min
Q: subspace of RV

dim(Q)=k

max
f∈Q

⟨f, L′f⟩
⟨f,Df⟩

.

Then, given disjoint nonempty sets S1⊔S2⊔ · · · ⊔Sk such that ϕk(G) = ϕk(S1, S2, . . . , Sk),
construct w1, w2, . . . , wk ∈ RV where wi(v) = 1[v ∈ Si], and set Q := span({w1, . . . , wk}).
Since the wi’s are nonzero and have disjoint support, Q has dimension k.
Let ι : V → {0} ∪ [k] be the map that takes vertices in Si to i and vertices outside
S1 ⊔ S2 ⊔ · · · ⊔ Sk to 0. Any vector f ∈ Q is characterized by ai := f |Si

, which is the
common value of f at any vertex in Si. (We further choose a0 := 0.) We can then upper
bound its Rayleigh quotient by ϕk(G) as follows:

⟨f, L′f⟩
⟨f,Df⟩

=

∑
uv∈E(aι(u) − aι(v))2∑
v∈V deg(v)a2ι(v)

≤
2
∑

uv∈E
ι(u) ̸=ι(v)

(
a2ι(u) + a2ι(v)

)
∑

v∈V deg(v)a2ι(v)

=
2
∑

i∈[k] a
2
i |E(Si, Sci )|∑

i∈[k] a
2
i vol(Si)

≤ 2max
i∈[k]

ϕ(Si) = 2ϕk(G).
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This proves the easy direction.

The proof of the hard direction is somewhat more involved. The idea is that the first k
eigenvectors f1, f2, . . . , fk induces an embedding f : V → Rk defined for each vertex v ∈ V
as f(v) =

(
f1(v), . . . , fk(v)

)
, which is called the spectral embedding and enjoys certain nice

properties. Below we will give an account of the proof ideas; we will see more technical
details when we do a similar proof in Section 4.5.

In [LOT12], the goal is to extract, from the spectral embedding f : V → Rk, ℓ ≤ k
disjoint subsets S1, S2, . . . , Sℓ, such that ϕl(S1, S2, . . . , Sℓ) is small. The first step is to
project f : V → Rk into a low-dimensional solution f̄ : V → Rh, such that several prop-
erties are approximately preserved. (This step is not strictly necessary, but the reduction
in dimension will give better partitions in the next steps.) The second step is to perform
some sort of random partitioning of the low-dimensional embedding, to decompose f̄ into ℓ
embeddings with pairwise disjoint support. Finally, threshold rounding is applied to each
of these embeddings to extract a set with small conductance, and putting them together
we have our desired ℓ disjoint subsets with small ℓ-way conductance.

Step 1 (Gaussian Projection). In order for prepare for the partitioning step, [LOT12]
first projects the spectral embedding into a low-dimensional solution f̄ : V → Rh. The
projection used is random Gaussian projection, which we formally define here.

Definition 3.1.7 (Gaussian Projection). Let f : V → Rp be an embedding where each
vertex v ∈ V is mapped to a vector f(v) ∈ Rp. Given an integer 1 ≤ h ≤ p, let Γ be
an h × p matrix where each entry Γi,j for 1 ≤ i ≤ h and 1 ≤ j ≤ p is an independent
standard Gaussian random variable N(0, 1). The Gaussian projection f̄ : V → Rh of f is
an embedding of each vertex v ∈ V to an h-dimensional vector defined as

f̄(v) =
1√
h
· Γ
(
f(v)

)
.

The properties of f and of f̄ that are of interest are the following:

• The energy of f , which is defined as E(f) :=
∑

uv∈E ∥f(u)− f(v)∥
2;

• The (π-)mass of f , which is defined as ∥f∥2π :=
∑

v∈V π(v) ∥f(v)∥
2 for any given

π : V → R≥0;

• The spreading property, which informally asserts that the vectors f(v) cannot be too
concentrated in any one direction and is defined below.
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Definition 3.1.8 (Spreading Property [LOT12]). Let π : V → R≥0 be a weight function
on the vertices. For two parameters δ ∈ [0, 1] and η ∈ [0, 1], an embedding f : V → Rh is
called (δ, η)-spreading if for every subset S ⊆ V ,

diamdf (S) ≤ δ =⇒
∑
v∈S

π(v) ∥f(v)∥2 ≤ η ·
∑
v∈V

π(v) ∥f(v)∥2 ,

where diamdf (S) := maxu,v∈S df (u, v) is the diameter of the set S under the radial projec-
tion distance function df to be defined below in Definition 3.1.10.

In this section, in the definitions of mass and spreading property, we will take π = deg.

The following main lemma describes how these three properties are approximately
preserved under random Gaussian projection. The mass and energy guarantees together
give a bound on R(f̄), whereas the spreading property guarantee allows us to proceed with
the partitioning of f̄ in the next step.

Lemma 3.1.9 ([LOT12, Lemma 4.3]). Let f : V → Rp be an embedding that is (δ, η)-
spreading. Let f̄ : V → Rh be a Gaussian projection of f as defined in Definition 3.1.7.
Let π : V → R≥0. For some value 1

h ≲
1

δ2

(
log
( 1

ηδ

))
,

with probability at least 1/2, the following three properties hold simultaneously:

E(f̄) ≤ 4E(f) and
∥∥f̄∥∥2

π
≥ 1

2
∥f∥2π and f̄ is

(δ
4
,
(
1 + δ

)
η
)
−spreading.

The proof uses standard concentration inequalities and the interested reader is directed
to [LOT12, Section 4.1] for details.

Step 2 (Spectral Partitioning). Since the eigenvectors are orthonormal, the spectral
embedding satisfies the isotropy condition

∑
v∈V f(v)f(v)

T = Ik by Proposition 2.5.8. Lee,
Oveis Gharan and Trevisan observed that the isotropy condition implies that not many
points can be close in the radial projection distance defined below.

1Lemma 4.3 in [LOT12] was stated slightly differently. Their assumptions are that f : V → Rk and
η ≥ 1/k, and their conclusion is that h ≲ 1

δ2 log(
k
δ ). We note that the dependency on k in their conclusion

is based on the substitution η = 1/k in the bound on h we stated, which has no dependency on the ambient
dimension p. Their proof, without the substitution η = 1/k, gives the bound we stated.
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Definition 3.1.10 (Radial Projection Distance [LOT12]). Let G = (V,E) be a graph and
f : V → Rh be an embedding of the vertices. For each pair of vertices u, v ∈ V , the radial
projection distance between u and v is defined as

df (u, v) :=

∥∥∥∥ f(u)

∥f(u)∥
− f(v)

∥f(v)∥

∥∥∥∥
if ∥f(u)∥ > 0 and ∥f(v)∥ > 0. Otherwise, if f(u) = f(v) = 0⃗ then df (u, v) := 0, else
df (u, v) =∞.

More precisely, they proved the following bound on the spreading property in Def-
inition 3.1.8 of the embedding f . Their result is originally stated for an embedding f
satisfying the isotropy condition, but the same proof works for an embedding f satisfying
the sub-isotropy condition that we will encounter in Proposition 4.5.2.

Lemma 3.1.11 (Sub-Isotropy Implies Spreading [LOT12, Lemma 3.2]). Let G = (V,E)
be an undirected graph and π : V → R≥0. Suppose f : V → Rh is an embedding with mass
∥f∥2π. Then, for any δ ∈ [0, 1),∑

u∈V

π(u)f(u)f(u)T ⪯ Ih =⇒ f is
(
δ,

1

∥f∥2π · (1− δ2)

)
-spreading.

As the embedding is spreading, any subset of points with small diameter in radial
projection distance cannot have too much mass. In order to construct many disjointly
supported embeddings f1, . . . , fl : V → Rh, the points in Rh are partitioned into many
groups of small diameter using the following definition and theorem from metric geometry.

Definition 3.1.12 (Padded Decomposition [LOT12]). Let (X, dX) be a finite metric space.
For ρ, α, β > 0, a random partitioning P of X is called (ρ, α, β)-padded if

• each partition in P has diameter at most ρ with respect to the distance function dX ;

• Pr
[
B
(
x, ρ

α

)
⊆ P(x)

]
≥ β for every x ∈ X, where B

(
x, ρ

α

)
is the open ball of radius

ρ
α
centered at x and P(x) is the partition in P that contains x.

Theorem 3.1.13 (Existence of Padded Partition [GKL03], [LOT12, Theorem 2.3]). Let
(X, dX) be a finite metric space. If X ⊆ Rh and dX is the Euclidean distance, then for
every ρ > 0 and δ ∈ (0, 1), X admits a

(
ρ,O(h

δ
), 1− δ

)
-padded random partitioning.
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Let P = P1⊔P2⊔ · · ·⊔PT be a random partitioning sampled from Theorem 3.1.13. By
the second property in Definition 3.1.12, there is only a small fraction of points close to
the boundaries of the partitions. The points close to the boundaries are removed to form
P ′
1 ⊔ P ′

2 ⊔ · · · ⊔ P ′
T , so that the distance between each pair P ′

i and P
′
j is lower bounded by

say 2ε.

Define the (π-)mass of a subset S ⊆ V to be µ(S) :=
∑

v∈S π(v)
∥∥f̄(v)∥∥2. Each Pi does

not have too much mass by the spreading property of f̄ , since each partition has diameter
bounded by ρ. So, each P ′

i does not have too much mass either, and by a greedy procedure
they can be grouped into disjoint sets S1, . . . , Sk where each has mass at least 1

2k
of the

total. Then the disjointly supported functions f1, . . . , fk are constructed on S1, . . . , Sk by
the following smooth localization procedure.

Lemma 3.1.14 (Smooth Localization [LOT12, Lemma 3.3]). Let G = (V,E) be an undi-
rected graph and f : V → Rh be an embedding. For any S ⊆ V and any ε > 0, there is a
mapping f ′ : V → Rh which satsifies the following three properties:

1. f ′(v) = f(v) for all v ∈ S,

2. supp(f ′) ⊆ Nε(S) where Nε(S) := {v ∈ V | ∃u ∈ S with df (u, v) ≤ ε} denotes the
set of vertices with radial projection distance at most ε from S,

3. for uv ∈ E, ∥f ′(u)− f ′(v)∥ ≤
(
1 + 2

ε

)
∥f(u)− f(v)∥.

To summarize, the energy of each fi is upper bounded by the third item in Lemma 3.1.14,
and the mass of each fi is lower bounded by 1

2k
fraction of the total mass by the spread-

ing property in Lemma 3.1.11. Property 2 of Lemma 3.1.14 and the condition that
df (Si, Sj) ≥ 2ε for all i ̸= j ensure that the functions fi are indeed disjointly supported.

Step 3 (Cheeger Rounding). From the previous step, we constructed k disjointly
supported functions f1, . . . , fk : V → R such that R(fi) = E(fi)/ ∥fi∥2deg are uniformly
bounded above. We can apply, to each fi, the two-step approach to find small-conductance
sets in Section 3.1.1, with the slight modification of taking c = 0 instead of the degree-
weighted median of f in the ℓ22 to ℓ1 step. This ensures that the sets Ui produced by the
rounding satisfy:

• Ui ⊆ supp(fi) ⊆ Si for each i ∈ [k]. In particular they are pairwise disjoint;

• ϕ(Ui) ≲
√
R(fi) for each i ∈ [k].
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Then, ϕk(G) ≤ ϕk(U1, . . . , Uk) ≲ maxi∈[k]
√
R(fi). By choosing suitable parameters, this

is how they derive the hard direction of Theorem 3.1.6.

Remark 3.1.15 (Optimal Result). In [LOT12], in order to obtain the strongest version
of higher-order Cheeger inequality as in Theorem 3.1.6, they abandoned the approach of
localizing functions produced by padded decomposition. Instead, they used the so-called
Lipschitz random partitioning, which asserts that the probability that two points in a metric
space are separated by the partitioning is upper bounded by a factor times their distance.
The Lipschitz property suits their setting because the energy is a simple sum of edge energy
terms over all the edges (see [LOT12, Section 4.2] for details), but a significant modification
of the partitioning tool is likely needed to apply that to our setting in Section 4.5.

3.1.4 Improved Cheeger’s Inequality

[KLL+13] derived the “improved” Cheeger’s Inequality to describe situations where there
is a tighter inequality relating conductance ϕ and second eigenvalue λ2. They discovered
that, if the graph does not have many (i.e. ω(1)) sparse cuts, then the sweep-cut algorithm
finds a cut whose conductance is of order O(ϕ) instead of O(

√
ϕ). In many applications,

notably image segmentation [SM00], the input graph indeed satisfies this prior condition,
and so this result gives a theoretical justification of the performance of the sweep-cut
algorithm for spectral partitioning. The following is their main result, stated in terms
of λk. Qualitatively this is the same as considering k-way conductance ϕk, in light of
the higher-order Cheeger’s inequality relating the two parameters (see [KLL16] for a tight
result that lower bounds ϕ in terms of λ2 and ϕk).

Theorem 3.1.16 (Improved Cheeger’s Inequality [KLL+13]). Let G = (V,E) be a graph.
Then, for any 2 ≤ k ≤ n,

ϕ(G) ≲
kλ2(G)√
λk(G)

.

First we begin with the definition of a k-step function.

Definition 3.1.17 (k-Step Function and Approximation). Let G = (V,E) be an undirected
graph. Given y : V → R and k ∈ N, we call y a k-step function if the number of distinct
values in {y(v)}v∈V is at most k.

The proof consists of two main components. First of all, given a graph G = (V,E), for
any function f : V → R recall from Section 2.5.3 that its Rayleigh quotient is defined as

R(f) :=

∑
uv∈E(f(u)− f(v))2∑
v∈V deg(v)f(v)2

.

56



We have seen from Section 3.1.1 that if
∑

v∈V deg(v)f(v) = 0 then the sweep-cut algorithm
on f produces a cut S ⊆ V such that 0 < vol(S) ≤ vol(V )/2 and

ϕ(S) ≲
√
R(f).

The first main component is to show that, if f is closely approximated by a step function
with few steps, then the sweep-cut algorithm produces a cut whose conductance bound
depends on both R(f) and the quality of approximation.

Before stating the result, we recall the following definitions from Section 3.1.3:

• Let ∥f∥2deg :=
∑

v∈V deg(v)f(v)2 be the mass of f ;

• Let E(f) :=
∑

uv∈E(f(u)− f(v))2 be the energy of f .

Using this terminology, R(f) = E(f)/ ∥f∥2deg.

Proposition 3.1.18. Given a graph G = (V,E). Let f : V → R be a function with∑
v∈V deg(v)f(v) = 0 and f ∗ : V → R be a k-step function for some k ∈ N. Then,

ϕ(G) ∥f∥2deg
k

≲ E(f) + ∥f − f ∗∥deg ·
√
E(f).

Moreover, the sweep-cut algorithm in Algorithm 1 produces from f a cut S ⊆ V such that
0 < vol(S) ≤ vol(V )/2 and

ϕ(S) ≲ k

(
E(f) + ∥f − f ∗∥deg ·

√
E(f)

∥f∥2deg

)

As a special case, if f is itself a k-step function, then taking f ∗ = f above, the sweep-cut
algorithm can guarantee that the produced cut S satisfies

ϕ(S) ≲ k ·R(f).

The second main component is to show that, if λk(G) is large, then any f : V → R is
well approximated by a (2k)-step function.

Proposition 3.1.19. Given a graph G = (V,E) and an integer k where 2 ≤ k ≤ n. Then,
for any f : V → R there is a (2k)-step function f ∗ : V → R such that

∥f − f ∗∥2deg ≤
E(f)
λk(G)

.
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To finish the proof, choose f such that R(f) = λ2(G). Combining Proposition 3.1.18
and Proposition 3.1.19, and using the fact that λk(G) ≤ O(1), the desired result holds.

Proof of Proposition 3.1.18. Given f : V → R with
∑

v∈V deg(v)f(v) = 0. Let f ∗ : V → R
be a k-step function, and t1 < t2 < · · · < tk be the values that f

∗(v) takes. To analyze the
sweep-cut algorithm, we follow the two-step plan for proving Theorem 3.1.1. The second
step of the proof stays the same, and it suffices to exhibit an h : V → R such that∑

uv∈E |h(u)− h(v)|∑
v∈V deg(v)|h(v)|

≲ k

(
E(f) + ∥f − f ∗∥deg ·

√
E(f)

∥f∥2deg

)

and 0 is a degree-weighted median of h.

Choose c ∈ R to be a degree-weighted median of f , and define h : V → R so that

h(u) :=

∫ f(u)

c

ν(t) dt,

where ν(t) := mini∈[k] |t−ti| is the distance from t to the closest value of the k-step function
f ∗. Note that the integral is negative when f(u) < c and positive when f(u) > c, and so
0 is a degree-weighted median of h(u).

One can think of ν(t) as a modified probability density function for sampling the sets
St in the threshold rounding step, by using the information of f ∗. This definition of h
prioritizes choosing St with t far away from the points ti in f

∗, i.e. with ν(t) large.

Comparatively, the definition of h in (3.1) in Theorem 3.1.1 is equivalent to setting
f ∗ ≡ c, so that ν(t) = |t− c|. The Cauchy-Schwarz loss in the ℓ22 to ℓ1 step is then due to
the possibility of ν(f(u)) and ν(f(v)) both being large, but f(u) and f(v) close. This more
refined way of defining ν uses the information provided by f ∗ to avoid the Cauchy-Schwarz
loss. In the ideal case where f = f ∗, ν(f(v)) is always equal to 0. Generally, however, one
pays a price for f ∗ being potentially not the ideal approximation for f .

It remains to upper bound the numerator and lower bound the denominator. For the
denominator term, we have

∑
v∈V

deg(v)|h(v)| =
∑
v∈V

deg(v)

∣∣∣∣∣
∫ f(v)

c

ν(t) dt

∣∣∣∣∣ .
For a fixed v ∈ V , suppose c < ti < ti+1 < · · · < tj < f(v) are the points in the support of
f ∗ between c and f(v). Then, using the definition of ν(t) we may verify that
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∫ f(v)

c

ν(t) dt =

[∫ ti

c

+

∫ ti+1

ti

+ · · ·+
∫ f(v)

tj

]
ν(t) dt

(∗)
≥ 1

4

[
(ti − c)2 + (ti+1 − ti)2 + · · ·+ (f(v)− tj)2

]
(∗∗)
≥ (f(v)− c)2

4(j − i+ 2)
≥ (f(v)− c)2

4(k + 1)
,

where in (∗) we used the fact that the points ti lie outside of the open interval (a, b) for

each of the integral
∫ b
a
, and so∫ b

a

ν(t) dt ≥
∫ b

a

min(t− a, b− t) dt = (b− a)2

4
,

and (∗∗) is by Corollary 2.10.2. The case where f(v) ≤ c is similarly handled, and if there
are no points between c and f(v) we nevertheless have∫ f(v)

c

ν(t) dt ≥ 1

4
(f(v)− c)2 ≥ (f(v)− c)2

4(k + 1)

by the same reasoning. Therefore,∑
v∈V

deg(v)|h(v)| ≳ 1

k

∑
v∈V

deg(v)(f(v)− c)2.

For the numerator term, we have∑
uv∈E

|h(u)− h(v)|

=
∑
uv∈E

∫ max(f(u),f(v))

min(f(u),f(v))

ν(t) dt

(∗∗∗)
≤

∑
uv∈E

|f(u)− f(v)|min

(
ν(f(u)) +

|f(u)− f(v)|
2

, ν(f(v)) +
|f(u)− f(v)|

2

)
≤

∑
uv∈E

|f(u)− f(v)|
(
|f(u)− f ∗(u)|+ |f(v)− f ∗(v)|+ |f(u)− f(v)|

2

)
=

1

2

(
E(f) +

∑
uv∈E

|f(u)− f(v)|(|f(u)− f ∗(u)|+ |f(v)− f ∗(v)|)
)

≲ E(f) + ∥f − f ∗∥deg ·
√
E(f) (Cauchy-Schwarz).
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The step (∗∗∗) uses the fact that ν(t) is 1-Lipschitz, and so both ν(f(u))+ |f(u)−f(v)|/2
and ν(f(v)) + |f(u)− f(v)|/2 are upper bounds on the average value

1

|f(u)− f(v)|

∫ max(f(u),f(v))

min(f(u),f(v))

ν(t) dt.

Combining the two bounds yields the desired guarantee on h.

Proof of Proposition 3.1.19. If λk(G) = 0 there is nothing to prove, so consider only the
case where λk(G) > 0.

Let M > 0 be a parameter to be determined later. Let t0 = −∞ and successively
choose t1, t2, . . . such that ti > ti−1 is the smallest real number such that the following
function

f̄i(u) :=

{
min (f(u)− ti−1, ti − f(u)) , if ti−1 < f(u) ≤ ti

0, otherwise

satisfies
∥∥f̄i∥∥2deg ≥M . The role of the functions f̄i is to measure how well the two threshold

values ti−1 and ti approximate the values of the function at between them. If such a ti
does not exist, we set ti = ∞ and terminate the process. The process always terminates
within n steps, and if it terminates with tk+1 = ∞ then the following function (which is
determined once f and the ti’s are fixed)

f ∗(u) := arg min
ti:i∈[k]

|f(u)− ti|

is a k-step function. Observe also that the f̄i’s have disjoint support, and in fact

k+1∑
i=1

∥∥f̄i∥∥2deg = ∥f − f ∗∥2deg .

Consider the scenario that the process does not terminate after 2k steps. That means

f̄1, f̄2, . . . , f̄2k are all well-defined and each having mass
∥∥f̄i∥∥2deg ≥ M . Moreover, the sum

of their energies is

2k∑
i=1

E(f̄i) =
∑
uv∈E

2k∑
i=1

(f̄i(u)− f̄i(v))2

≤
∑
uv∈E

(f(u)− f(v))2 = E(f).
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Denoting i(u) to be the unique index (possibly > 2k) that ti(u)−1 < f(u) ≤ ti(u), the
inequality above is verified by considering separately the two cases where i(u) = i(v) and
i(u) ̸= i(v), and using the definition of f̄i. That means at least k of the f̄i’s for i ∈ [2k]
must each satisfy R(f̄j) ≤ E(f)/kM , and by Proposition 2.5.4 we have

λk(G) ≤
2E(f)
kM

.

Choose M := 4E(f)
kλk(G)

so that the above inequality fails. This means the process terminates
after at most 2k steps, and

∥f − f ∗∥2deg ≤ 2kM ≲
E(f)
λk(G)

,

proving the proposition.

3.1.5 Cheeger’s Inequality for Small-Set Expansion

Given a graph G = (V,E). Its δ-small set expansion is defined as

φδ(G) := min
0<|S|≤δn

φ(S),

where φ(S) is the edge expansion of S in Section 2.3.1. Algorithms for small-set expansion
would be useful in applications such as community detection, but it is conjectured that,
for any ε ∈ (0, 1/2) there exists a δ < 1 such that it is NP-hard to distinguish between
φδ(G) ≤ ε and φδ(G) ≥ 1 − ε [RS10]. This conjecture is called the small-set expansion
hypothesis.

On the positive side, Arora, Barak, and Steurer [ABS10] derived a Cheeger-type in-
equality for small-set expansion. They applied the result to design subexponential time
approximation algorithms for unique games and small set expansion.

Theorem 3.1.20 (Cheeger Inequality for Small-Set Expansion [ABS10]). Let G = (V,E)
be a graph and β, η ∈ (0, 1) be two parameters. Then, for k ≥ nO(β), there exists S ⊆ V
such that |S| ≤ n1−β and φ(S) ≲

√
λk(G)/β.

This result inspired subsequent research on spectral theory using higher eigenvalues
(e.g. [LOT12, LRTV12, KLL+13]). We do not study small-set expansion in this thesis.
While our results for k-way expansion can say something about δ-small set expansion for
δ = Θ(1/k), it is only a one-way bound that if the spectral quantity is small, then a small
sparse cut can be extracted.

61



3.2 Vertex Expansion

3.2.1 Classical Result

Tanner [Tan84], Alon and Milman [AM85], and Alon [Alo86] studied the relation between
the spectral gap and the vertex expansion of a graph, proving the following two-way bound.

Theorem 3.2.1 ([Alo86, Lemmas 2.2, 2.4], [Tan84, AM85]). Let G = (V,E) be an undi-
rected graph with maximum degree ∆. Let λ′2(G) be the second smallest eigenvalue of the
unnormalized Laplacian L′(G), and ψ(G) be the vertex expansion of G. Then,

ψ(G) ≥ 2λ′2(G)

∆ + 2λ′2(G)
and λ′2(G) ≥

ψ(G)2

4 + 2ψ(G)2
.

Proof. We prove a slightly different “easy direction” that

ψ(G) ≥ λ′2(G)

∆
.

The idea is the same as the proof of the original statement as found in [Tan84, AM85]. First,
λ′2(G) admits a similar Rayleigh quotient characterization to λ2(G) in Proposition 2.5.2:

λ′2(G) = min
f :f⊥1

∑
uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

,

the strategy is to construct appropriate test functions f . Let S ⊆ V such that 0 < |S| ≤
n/2 and ψ(S) = ψ(G). Write T := V \ (S ∪ ∂(S)) and consider f : V → R as follows:

f(u) =


−1
|S| , if u ∈ S
0, if u ∈ ∂(S)
1
|T | , if u ∈ T.

Note that
∑

u f(u) = 0. Assuming without loss of generality that |S| ≤ |T |, we have∑
uv∈E

(f(u)− f(v))2 =
|E(S, ∂(S))|
|S|2

+
|E(T, ∂(S))|
|T |2

≤ ∆|∂(S)|max

(
1

|S|2
,

1

|T |2

)
= ∆

ψ(S)

|S|
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as well as ∑
v∈V

f(v)2 =
|S|
|S|2

+
|T |
|T |2

=
1

|S|
+

1

|T |
≥ 1

|S|
.

This gives ψ(G) = ψ(S) ≥ λ′2(G)/∆.

The “hard direction” is due to Alon [Alo86]. The proof is by taking an eigenvector f
of L′(G), constructing a flow network based on it, and using max-flow min-cut duality to
connect ψ(G) and λ′2(G).

Let f : V → R be an eigenvector of L′(G) with eigenvalue λ′2(G). Let V
+ := {v ∈ V :

f(v) > 0}. Without loss of generality, assume that 0 < vol(V +) ≤ vol(V )/2 (otherwise,
replace f by −f). Define the function g := f+ = max(f, 0) which will be useful later. Write
ψ for ψ(G) for simplicity. Define the following flow network, with vertex set {s, t}∪V +∪V ′

where V ′ := {v′ : v ∈ V } is a distinct copy of V , and arcs as follows (see Figure 3.1):

• (s, v) for each v ∈ V + with capacity 1 + ψ;

• (v, v′) for each v ∈ V + and (v, u′) for each vu ∈ E and v ∈ V +, with unit capacity;

• (v′, t) for each v ∈ V with unit capacity.

Figure 3.1: The flow network construction. The numbers indicate arc capacities. From
v ∈ V + the outgoing arcs are (v, v′) and (v, u′) for all vu ∈ E.

We claim that the minimum s-t cut is (1 + ψ)|V +|. First, this value is attained by
the cut {s}. Second, all other s-t cuts have value at least (1 + ψ)|V +|, as we shall prove.
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Suppose that the cut is {s} ∪ S ∪ T ′ where S ⊆ V + and T ′ ⊆ V ′. Then, the following arcs
(and possibly some more) are cut: (s, u) where u ∈ V + \ S, either (u, u′) or (u′, t) for all
u ∈ S, and either (u, v′) or (v′, t) for all uv ∈ E with u ∈ S. The value of the cut is then
at least

(1 + ψ)|V + \ S|+ |S|+ |∂S| ≥ (1 + ψ)(|V + \ S|+ |S|) = (1 + ψ)|V +|.

By max-flow min-cut duality, the maximum s-t flow is (1+ψ)|V +|, meaning that it saturates
all arcs (s, v) for v ∈ V +. Consider a maximum flow θ, with θ(u, v′) being the amount of
flow going through the arc (u, v′). Note that θ(u, v′) satisfy:

• 0 ≤ θ(u, v′) ≤ 1 for all arcs (u, v′);

•
∑

v∈V θ(u, v
′) = 1 + ψ for all u ∈ V +;

•
∑

u∈V + θ(u, v′) ≤ 1 for all v ∈ V .

We relate the Rayleigh quotient ∑
uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

of f to that of g, and apply Cauchy-Schwarz inequality while utilizing the flow values to
upper bound the latter quantity. By the choice of f ,∑

v:uv∈E

(f(u)− f(v)) = λ′2(G) · f(u)

for all u ∈ V +. Multiplying each equation by f(u) and summing over all u ∈ V +,∑
u∈V +

∑
v:uv∈E

f(u)(f(u)− f(v)) = λ′2(G)
∑
u∈V +

f(u)2.

The contribution of an edge in V + × V + to LHS is (f(u) − f(v))2 = (g(u) − g(v))2. The
contribution of an edge uv ∈ V + × (V \ V +) to LHS is f(u)(f(u) − f(v)) ≥ f(u)2 =
(g(u)− g(v))2. All other edges contributes 0 = (g(u)− g(v))2 to LHS. Therefore,∑
uv∈E

(g(u)− g(v))2 ≤
∑
u∈V +

∑
v:uv∈E

f(u)(f(u)− f(v)) = λ′2(G)
∑
u∈V +

f(u)2 = λ′2(G)
∑
u∈V

g(u)2.
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Finally,

λ′2(G) ≥
∑

uv∈E(g(u)− g(v))2∑
v∈V g(v)

2
(by the inequality above)

=

∑
uv∈E(g(u)− g(v))2

∑
uv∈E θ

2(u, v′)(g(u) + g(v))2∑
v∈V g(v)

2
∑

uv∈E θ
2(u, v′)(g(u) + g(v))2

≥
[∑

uv∈E θ(u, v
′)(g(u)2 − g(v)2)

]2[∑
v∈V g(v)

2
] [∑

uv∈E θ
2(u, v′)(g(u) + g(v))2

] , (3.5)

where we applied Cauchy-Schwarz inequality to obtain the last line. We lower bound the
sum in the numerator of (3.5) as

∑
uv∈E

θ(u, v′)(g(u)2 − g(v)2) =
∑
u∈V +

g(u)2

[ ∑
v:uv∈E

(θ(u, v′)− θ(v, u′))

]
≥

∑
u∈V +

g(u)2(1 + ψ − 1) = ψ
∑
u∈V

g(u)2,

and we upper bound the second sum in the denominator in (∗) as

∑
uv∈E

θ2(u, v′)(g(u) + g(v))2 ≤ 2
∑
u∈V +

g(u)2

[ ∑
v:uv∈E

(θ2(u, v′) + θ2(v, u′))

]
≤ 2

∑
u∈V +

g(u)2(2 + ψ2),

where for the last inequality we used the properties of θ(·, ·) and the fact that
∑

v θ
2(u, v′)

and
∑

v θ
2(v, u′) are maximized by taking as many θ(·, ·) = 1 as possible.

Plugging these two bounds in (∗) then simplifying yields the desired inequality.

This work established the first connection between the vertex expansion of a graph
and its spectral properties. While useful in constructing vertex expanders [Alo86], the
dependence on ∆ means that λ′2(G) is not the best proxy for ψ(G). Compared to Cheeger’s
inequality for edge conductance that ϕ(G)2/2 ≤ λ2(G) ≤ 2ϕ(G), there is an extra factor
∆ between the upper and lower bounds.
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3.2.2 Fastest Mixing Markov Chain

The fastest mixing Markov chain problem is introduced by Boyd, Diaconis, and Xiao
[BDX04]. In the fastest mixing time problem, we are given an undirected graph G =
(V,E) and a target probability distribution π : V → R+. The task is to find a time-
reversible transition matrix P ∈ Rn×n supported on the edges of G, so that the stationary
distribution of the random walk with transition matrix P is π. The objective is to find such
a transition matrix that minimizes the mixing time to the stationary distribution π. By
Proposition 2.6.2, the mixing time to the stationary distribution is approximately inversely
proportional to the spectral gap 1−α2(P ) of the time-reversible transition matrix P , where
1 = α1(P ) ≥ α2(P ) ≥ · · · ≥ αn(P ) ≥ −1 are the eigenvalues of P . The fastest mixing
time problem is thus formulated as follows in [BDX04], using the maximum spectral gap
achievable through such a “reweighting” P of the input graph G as a proxy:

Definition 3.2.2 (Maximum Reweighted Spectral Gap [BDX04] (restatement of Defini-
tion 1.1.1). Given an undirected graph G = (V,E) and a probability distribution π on V ,
the maximum reweighted spectral gap is defined as

λ∗2(G) := max
P≥0

1− α2(P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.

The graph is assumed to have a self-loop on each vertex, to ensure that the optimization
problem for λ∗2(G) is always feasible.

In the context of Markov chains, this corresponds to allowing a nonzero holding prob-
ability on each vertex. The last constraint is the time reversible condition to ensure that
the transition matrix P corresponds to random walks on an undirected graph (where the
edge weight of uv is π(u)P (u, v)) and that the stationary distribution of P is π. Note that
λ∗2(G) = maxP≥0(1−α2(P )) = maxP≥0 λ2(I−P ), which is the maximum reweighted second
smallest eigenvalue of the normalized Laplacian matrix of G (where the edge weight of uv
is π(u)P (u, v)) subject to the above constraints.

They observe that λ∗2(G) may be formulated as an SDP, and so is solvable in polynomial
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time. This is by writing the program for maximizing the spectral gap as

min
s,Q

s

subject to − sI ⪯ Q−
√
π
√
π
T ⪯ sI

Q(u, v) = Q(v, u) = 0 ∀uv ̸∈ E
Q
√
π =
√
π

Q = QT

where
√
π is the column vector whose u-th entry is

√
π(u), Π := diag(π), and Q :=

Π1/2PΠ−1/2 is similar to P , hence having the same eigenvalues as P . Finally, this can be
transformed into standard SDP form as

X =

Q+ sI −
√
π
√
π
T

0 0

0 −Q+ sI +
√
π
√
π
T

0
0 0 s


so that X ⪰ 0 and the objective and other constraints are linear in X.

Upper Bound by Vertex Expansion

Roch noticed that λ∗2(G) is upper bounded by the vertex expansion of the graph. His main
contribution was to provide the following dual characterization of the maximum reweighted
spectral gap.

Proposition 3.2.3 (Dual Program for Fastest Mixing [Roc05]). Given an undirected graph
G = (V,E) and a probability distribution π on V , the following semidefinite program is
dual to the primal program in Definition 1.1.1 with strong duality λ∗2(G) = γ(G) where

γ(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗

g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E.
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We note that this is equivalent to the dual program given in [BDX04], but Roch’s
program is written in a vector program form that will be more convenient for rounding.

The following proof is inspired by [Roc05], but is presented slightly differently.

Proof. With the change of variables Q := Π1/2PΠ−1/2, and using the variational charac-
terization of eigenvalues, we can write the objective maxP≥0 1− α2(P ) as

max
Q≥0

min
z:V→R
z⊥

√
π

∥z∥2=1

zT (I −Q)z.

Define Q := ΠP = Π1/2QΠ1/2 and Z := Π−1/2zzTΠ−1/2 so that

min
z:V→R
z⊥

√
π

∥z∥=1

zT (I −Q)z = min
Z⪰0

rank(Z)=1

Zπ=0⃗
⟨Z,Π⟩=1

⟨Z,Π−Q⟩.

Since the objective and the constraints on Z (save for Z ⪰ 0) are all linear, removing the
rank-one constraint on Z does not affect the objective, and so we can rewrite the program
in terms of Q and Z as

λ∗2(G) = max
Q≥0

min
Z⪰0

⟨Z,Π−Q⟩

subject to Q(u, v) = Q(v, u) = 0 ∀uv /∈ E
Q1 = π,Q = QT

Zπ = 0⃗, ⟨Z,Π⟩ = 1

The relaxation step is crucial to make the feasible region for Z convex. Since the feasible
regions for Q and for Z are both compact and convex, and the objective function is linear,
we may apply von Neumann minimax theorem in Theorem 2.8.1 to switch the max and
min without changing the objective value, i.e.

λ∗2(G) = min
Z⪰0

max
Q≥0

⟨Z,Π−Q⟩

subject to Q(u, v) = Q(v, u) = 0 ∀uv /∈ E
Q1 = π,Q = QT

Zπ = 0⃗, ⟨Z,Π⟩ = 1
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For fixed Z, the inner maximization problem is an LP, for which strong duality holds.
To arrive at a clean formulation for the dual program, we write Π(u, u) =

∑
vQ(u, v),

identify Q(u, v) and Q(v, u) for uv ∈ E, eliminate Q(u, v) for uv ̸∈ E, and use g(u) as dual
variable for the constraint

∑
uQ(u, v) = π(u). After taking dual of the inner LP, we arrive

at the following min-min program:

min
Z⪰0

min
g:V→R≥0

∑
v∈V

π(v)g(v)

subject to g(u) + g(v) ≥ Z(u, u) + Z(v, v)− Z(u, v)− Z(v, u) ∀uv ∈ E
Zπ = 0⃗, ⟨Z,Π⟩ = 1.

Note that g(u) ≥ 0 follows from the dual constraint for Q(u, u), which corresponds to the
self loop u→ u added to the graph.

Finally, to write the program in vector form, since Z ⪰ 0 is constrained to be PSD,
there exists vectors {f(u)}u∈v in Rn such that Z(u, v) = ⟨f(u), f(v)⟩. Substituting this in
the program above and rewriting the constraints

Zπ = 0⃗, ⟨Z,Π⟩ = 1

as ∑
v∈V

π(v)f(v) = 0⃗,
∑
v∈V

π(v) ∥f(v)∥2 = 1,

we have derived the desired dual formulation.

Then, to prove the “easy direction” that λ∗2(G) ≤ ψ(G), it suffices to construct, given
a cut S ⊆ V , a dual solution (f, g) to γ(G) whose objective value is upper bounded by
ψ(S). We will, however, prove the easy direction slightly differently in Proposition 3.2.8
in the following subsubsection.

First Cheeger Inequality

Roch’s result can be interpreted as saying that a graph with small vertex expansion cannot
be reweighted to have fast mixing time to the target distribution. Olesker-Taylor and
Zanetti [OZ22] completed the picture by proving that small vertex expansion is the only
obstacle to fastest mixing: a graph with good vertex expansion can always be reweighted
to have fast mixing time. Their main result is a Cheeger inequality for vertex expansion
(under uniform vertex weights).
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Theorem 3.2.4 (Cheeger Inequality for Vertex Expansion [OZ22]). For any undirected
graph G = (V,E) and the uniform distribution π = 1⃗/n,

ψ(G)2

log n
≲ λ∗2(G) ≲ ψ(G).

In terms of the fastest mixing time τ ∗mix(G) to the uniform distribution, 1
ψ(G)

≲ τ ∗mix(G) ≲
log2 n
ψ2(G)

. (See Section 2.6 for definitions and results for random walks and mixing time.)

The starting point of their proof is the dual characterization of Proposition 3.2.3 ob-
tained by Roch [Roc05]. The proof of Theorem 3.2.4 has two main steps. The first step is
to project the above dual program to the following one-dimensional “spectral” program.

Definition 3.2.5 (One-Dimensional Dual Program for Fastest Mixing [OZ22]). Given an
undirected graph G = (V,E) and a probability distribution π on V , γ(1)(G) is defined to be
the program:

γ(1)(G) := min
f :V→R, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v)f(v)2 = 1∑
v∈V

π(v)f(v) = 0

g(u) + g(v) ≥ (f(u)− f(v))2 ∀uv ∈ E.

Olesker-Taylor and Zanetti use the Johnson-Lindenstrauss lemma in Lemma 2.10.8
to first project the solution in Proposition 3.2.3 to O(log n) dimensions with constant
distortion, and then take the best coordinate to obtain a 1-dimensional solution with the
following guarantee. Note that this step works for any probability distribution π on V .

Proposition 3.2.6 ([OZ22, Proposition 2.9]). For any undirected graph G = (V,E) and
any probability distribution π on V ,

γ(G) ≤ γ(1)(G) ≲ log n · γ(G).

In the second step, Olesker-Taylor and Zanetti observed that the dual program in
Definition 3.2.5 is similar to the weighted vertex cover problem with edge weights (f(u)−
f(v))2 for each edge uv ∈ E, which is equivalent to the fractional matching problem by
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linear programming duality. To analyze Definition 3.2.5, they introduced an interesting new
concept called “matching conductance”, and used some combinatorial arguments about
greedy matching as well as some spectral arguments to prove the following Cheeger-type
inequality.

Theorem 3.2.7 ([OZ22, Theorem 2.10]). For any undirected graph G = (V,E) and the
uniform distribution π = 1⃗/n,

ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

Proposition 3.2.8 (Easy Direction). γ(1)(G) ≤ 2ψ(G).

Proof. Let π = 1⃗/n. Given S ⊆ V with 0 < π(S) ≤ 1/2 and ψ(S) = ψ(G), consider the
following solution to the γ(1)(G) program:

f(v) :=

{
C
π(S)

, if v ∈ S;
−C
π(Sc)

, if v ̸∈ S
, g(v) :=


(

C
π(S)

+ C
π(Sc)

)2
, if v ∈ ∂S;

0, otherwise,

where C ∈ R is such that∑
v∈V

π(v)f(v)2 = C2

(
1

π(S)
+

1

π(Sc)

)
= 1.

One can readily check that (f, g) is feasible, and the objective value is∑
v∈V

π(v)g(v) = π(∂S) ·
(

C

π(S)
+

C

π(Sc)

)2

= π(∂S) ·
(

1

π(S)
+

1

π(Sc)

)
≤ 2ψ(S).

This implies λ∗2(G) ≲ ψ(G) by λ∗2(G) = γ(G) ≤ γ(1)(G) ≲ ψ(G). Essentially the same
construction gives a direct proof that γ(G) ≲ ψ(G).

We now turn our attention to the hard direction. As mentioned, they introduced the
following concept called matching conductance.

Definition 3.2.9 (Matching Conductance). Let G = (V,E,w) be an edge-weighted graph.
The matching conductance of a set S ⊆ V and of G are defined as

Υ(S) :=
ν(E(S, Sc))

|S|
and Υ(G) := min

0<|S|≤n/2
Υ(S),

where ν(F ) is the maximum total weight of a matching on F ⊆ E.
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Proposition 3.2.10 (Matching Conductance and Vertex Expansion). Let G = (V,E) be
a graph with unit edge and vertex weights. Then, Υ(G) ≤ ψ(G) ≤ 4Υ(G).

Proof. The first inequality Υ(G) ≤ ψ(G) follows from the fact that ν(E(S, Sc)) ≤ |∂(S)|
for any S ⊆ V . For the second inequality, let S ⊆ V be such that 0 < |S| ≤ n/2 and
Υ(S) = Υ(G) ≤ 1/4. Let M be a maximum matching on E(S, Sc) and V (M) be the set of
vertices incident to M . Then, |M | ≤ |S|/4. Consider T := S \ V (M). Then ∂T ⊆ V (M),
and so |∂T | ≤ |V (M)| ≤ 2|M |. We also have |T | ≥ |S| − |V (M)| = |S| − 2|M | ≥ |S|/2.
Hence, we conclude that ψ(G) ≤ ψ(T ) ≤ 4|M |/|S| = 4Υ(S) = 4Υ(G).

Proposition 3.2.11 (Hard Direction). Υ(G)2 ≲ γ(1)(G).

This in turn implies that ψ(G)2 ≲ γ(1)(G). The proof involves some combinatorial
arguments about greedy matching as well as some spectral arguments, that we shall outline
below. Note that this only holds under uniform vertex weights.

Proof outline. Let (f, g) be an optimal solution to the γ(1)(G) program. We refactor the
proof into the same two-part structure as in Theorem 3.1.1, keeping many of the main
proof ideas in [OZ22] in the threshold rounding step.

Step 1 (ℓ22 to ℓ1). In this step, we would like to define an ℓ1 version of γ(1)(G) and relate
the objective values of the two. This step holds for any distribution π.

We first go from vertex cover to fractional matching by considering the following equiv-
alent min-max formulation of γ(1)(G). This is by LP duality.

γ(1)(G) = min
f :V→R

max
A:E→R≥0

∑
uv∈E

A(uv) · (f(u)− f(v))2

subject to
∑
v∈V

π(v)f(v)2 = 1∑
v∈V

π(v)f(v) = 0∑
u:uv∈E

A(uv) ≤ π(v) ∀v ∈ V.

We then define the following ℓ1 program which we call η(G):
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η(G) := min
h:V→R

max
A:E→R≥0

∑
uv∈E

A(uv) · |h(u)− h(v)|

subject to
∑
v∈V

π(v)|h(v)| = 1

max
{
π ({v ∈ V : h(v) > 0}) , π ({v ∈ V : h(v) < 0})

}
≤ 1

2∑
u:uv∈E

A(uv) ≤ π(v) ∀v ∈ V.

The second constraint states that 0 is a π-weighted median of h, which serves the role of
the “balance” constraint

∑
v∈V π(v)f(v) = 0. Our goal is to show that

η(G) ≲
√
γ(1)(G).

To this end, let (f, A) be an optimal solution to γ(1)(G). Construct h : V → R from f
exactly as in (3.1) in Theorem 3.1.1, and using similar arguments we can show that, for
any feasible A′ : E → R≥0,∑

uv∈E

A′(uv) · |h(u)− h(v)| ≤
√∑

uv∈E

A(uv)(f(u)− f(v))2 · 2
∑
v∈V

π(v)(f(v)− c)2,

where we have also used the optimality of A with respect to f and the constraint on A′.
Dividing throughout by

∑
v∈V π(v)|h(v)|, we obtain

maxA′
∑

uv∈E A
′(uv) · |h(u)− h(v)|∑

v∈V π(v)|h(v)|
≤

√
2
∑

uv∈E A(uv)(f(u)− f(v))2∑
v∈V π(v)f(v)

2
=
√

2γ(1)(G),

and we are done after scaling h so that the denominator of LHS is 1.

Step 2 (threshold rounding). In this step, given a feasible solution h to η(G), we would
like to show that threshold rounding yields a set S with small matching conductance. We
restrict to π = 1⃗/n, and the desired requirements on S are that 0 < |S| ≤ n/2 and

Υ(S) ≲ max
A

A(uv) · |h(u)− h(v)| =: ηh,

where A is subject to the constraints in the η(G) program. Let t ∈ R be a parameter and
define St ⊆ V as in (3.3) Note that |St| ≤ n/2 always, and the “average” size of St is∫ ∞

−∞
|St| dt = n

∑
v∈V

π(v)|h(v)|.
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It suffices to show that ∫ ∞

−∞
ν(E(St, S

c
t )) dt ≲ n · ηh.

The observation in [OZ22] is that, the weighted graphs Gh and
−→
Gh defined below have

maximum matchings that relate well to the two quantities of interest:

• Gh = (V,E,w) where w(uv) = |h(u)− h(v)|;

•
−→
Gh = (V,

−→
E ,w) where

−→
E := {(u, v) : uv ∈ E, h(u) > h(v)} and w(u, v) = h(u)−h(v).

Proposition 3.2.12. For π = 1⃗/n,
∫∞
−∞ ν(E(St, S

c
t )) dt ≤ 2ν(

−→
Gh) ≤ 6ν(Gh) ≤ 6n · ηh.

We will sketch the proof here. The last inequality holds because the maximum matching on
Gh is upper bounded by the maximum fractional matching on Gh which has value n ·ηh. To
prove the second inequality, take the arcs from a maximum matching of

−→
Gh. Sort them in

decreasing order of weight, and add the corresponding arcs one by one, whenever possible,
to form a matching of Gh. For each arc added, at most two other arcs are skipped, so this
loses at most a factor of 3.
To prove the first inequality, they consider not the maximum matching in

−→
Gh, but a

fixed “greedy” matching
−→
M , which is by sorting the arcs in

−→
Gh in decreasing order of

weight and adding them one by one to
−→
M whenever possible. The key claim is that

|
−→
M ∩E(St, Sct )|2 ≥ ν(E(St, S

c
t ))/2 for any t ∈ R, which implies the desired inequality after

taking integral over t ∈ R. To see the claim, let Mt be a maximum matching of E(St, S
c
t ).

If an edge uv ∈ Mt is not added to the greedy matching
−→
M , then it must be because a

prior edge in
−→
M is blocking uv, and we can show that indeed that the edge must be in

E(St, S
c
t ) as well. If the edge is added to

−→
M , then we say that it blocks itself. Therefore,

each edge in Mt is blocked by some edge in
−→
M ∩E(St, Sct ), and each edge in

−→
M ∩E(St, Sct )

can block at most two edges in Mt. This completes the proof of the key claim and hence
Proposition 3.2.12.

By Proposition 3.2.12 and the usual averaging argument, we are done.

Combining Proposition 3.2.3 and Proposition 3.2.6 and Theorem 3.2.7 gives

ψ(G)2 ≲ γ(1)(G) ≲ log n · γ(G) = log n · λ∗2(G) and λ∗2(G) = γ(G) ≤ γ(1)(G) ≲ ψ(G),

2This makes sense because, by the definition of
−→
Gh, at most one of uv and vu will be in

−→
E for any

u, v ∈ V , so each arc in
−→
M uniquely corresponds to an edge in Gh.
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proving Theorem 3.2.4.

Note that their proof of Theorem 3.2.7 only works when π is the uniform distribution.
Olesker-Taylor and Zanetti discussed some difficulty in generalizing their combinatorial
arguments to the weighted setting, and left it as an open question to prove the theorem
for any probability distribution π.

3.2.3 Improved Analysis of Projection Step

Jain, Pham, and Vuong [JPV22] improved Proposition 3.2.6 to only an O(log∆) loss for
the one-dimensional program γ(1)(G), where ∆ is the maximum degree of G. Instead of
using the Johnson-Lindenstrauss lemma that preserves ℓ2 distance between all pairs of
points, they use a new analysis tailored to the fastest mixing program. Their strategy is
to show that the standard Gaussian projection to O(log∆) dimensions (formally defined
in Definition 3.1.7 for higher-order Cheeger inequality) has constant distortion, and then
choose the best coordinate as in [OZ22] which incurs an O(log∆) loss.

The following properties of the random projection algorithm will be useful.

Lemma 3.2.13 (Gaussian Properties [MMR19, JPV22]). Let G = (V,E) be a graph and
f : V → Rn be an embedding of the vertices in G. Let f̄ : V → Rk be the randomly projected
solution by applying Definition 3.1.7 to f . There exists a universal constant c > 0 that
satisfies the following two properties:

• For all u, v ∈ V ,

Pr
f̄

[ ∥∥f̄(u)− f̄(v)∥∥ /∈ e±ε ∥f(u)− f(v)∥ ] ≤ e−cε
2k.

• For all u, v ∈ V , let Eu,v be the event that
∥∥f̄(u)− f̄(v)∥∥ ≥ eε ∥f(u)− f(v)∥, then

Ef̄
[
1Eu,v

(∥∥f̄(u)− f̄(v)∥∥2
∥f(u)− f(v)∥2

− e2ε
)]
≤ e−cε

2k.

They take the min-max form of the maximum reweighted spectral gap in Definition 1.1.1
that

λ∗2(G) = min
f :V→R

max
P≥0

∑
uv∈E

π(u)P (u, v) ∥f(u)− f(v)∥2
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where P is subject to the constraints of Definition 1.1.1. Regarding the inner maximiza-
tion program as a maximum weighted fractional matching problem, they used the simple
observation that the maximum matching has objective value at least 1/(∆ + 1) times the
trivial upper bound of ∑

uv∈E

min(π(u), π(v)) · ∥f(u)− f(v)∥2

to obtain the following projection loss upper bound.

Theorem 3.2.14 (Dimension Reduction for Maximum Fractional Matching Program
[JPV22]). Let G = (V,E) be a graph, and let π : V → R+ be a distribution on V . Define

the k-dimensional program λ
(k)
2 (G) as

min
f :V→Rk

max
P≥0

∑
uv∈E

π(u)P (u, v) ∥f(u)− f(v)∥2

subject to
∑
u∈V

π(u)f(u) = 0⃗,
∑
u∈V

π(u) ∥f(u)∥2 = 1

P (u, v) = P (v, u) = 0 ∀uv ̸∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀u ∈ V,

and let ν
(k)
f (G) be the inner maximization problem for a feasible f : V → Rk. Then, there

exists a constant C > 0 such that

λ
(C log∆)
2 (G) ≲ λ

(n)
2 (G) = λ∗2(G).

Proof. Let f : V → Rn be an optimal embedding of G such that ν
(n)
f (G) = λ∗2(G). Let

d = C log∆ and let f̄ : V → Rd be obtained from f via Gaussian projection (as in

Definition 3.1.7). We would like to use f̄ as a solution to λ
(d)
2 (G).

First, note that f̄ is obtained by applying a (random) linear operator to f , and so the∑
v∈V π(v) · f(v) = 0⃗ constraint in the n-dimensional program is also satisfied by f̄ in the

d-dimensional program. But the normalization constraint
∑

v∈V π(v)·
∥∥f̄(v)∥∥2 = 1 may not

be satisfied, and the objective value ν
(d)

f̄
(G) = maxP≥0

∑
uv∈E π(u)P (u, v) ·

∥∥f̄(u)− f̄(v)∥∥2
may be bigger than ν

(n)
f (G). Our plan is to prove that

λ
(d)
2 (G) ≤

ν
(d)

f̄
(G)∑

v∈V π(v)
∥∥f̄(v)∥∥2 ≲

ν
(n)
f (G)∑

v∈V π(v) ∥f(v)∥
2 = λ∗2(G), (3.6)
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and this would imply that a scaled version of f̄ will satisfy the constraint for λ
(d)
2 (G) with

objective value at most O
(
λ∗2(G)

)
.

The main job is to upper bound ν
(d)

f̄
(G). Given f̄ : V → Rd, and let ε > 0, consider

the set of “bad edges” B := {uv ∈ E |
∥∥f̄(u)− f̄(v)∥∥2 ≥ e2ε · ∥f(u)− f(v)∥2} where the

projected length is considerably longer than the original length. We can bound ν
(d)

f̄
(G) in

terms of the edges in B as follows. For any feasible P to the ν
(d)

f̄
(G) program, its objective

value is∑
uv/∈B

π(u)P (u, v)
∥∥f̄(u)− f̄(v)∥∥2 + ∑

uv∈B

π(u)P (u, v)
∥∥f̄(u)− f̄(v)∥∥2

=
∑
uv/∈B

π(u)P (u, v)
∥∥f̄(u)− f̄(v)∥∥2

+
∑
uv∈B

π(u)P (u, v)
( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 + e2ε ∥f(u)− f(v)∥2

)
≤ 2e2ε

∑
uv∈E

π(u)P (u, v) ∥f(u)− f(v)∥2

+
∑
uv∈B

π(u)P (u, v)
( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 )

≤ 2e2εν
(n)
f (G) +

∑
uv∈B

min(π(u), π(v))
( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 ),

where the last inequality is because P (u, v) ≤ 1 and π(u)P (u, v) = π(v)P (v, u). Recall the
definition in Lemma 3.2.13 that Eu,v is the event that

∥∥f̄(u)− f̄(v)∥∥ ≥ eε ∥f(u)− f(v)∥,
which is equivalent to uv ∈ B. Since the upper bound on the last line no longer depends
on P , it follows that

Ef̄ [ν
(d)

f̄
(G)]

≤ 2e2εν
(n)
f (G) + Ef̄

[ ∑
uv∈B

min(π(u), π(v))
( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 )]

= 2e2εν
(n)
f (G) +

∑
uv∈E

min(π(u), π(v)) · Ef̄
[
1Eu,v

( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 )]
≤ 2e2εν

(n)
f (G) + e−cε

2d
∑
uv∈E

min(π(u), π(v)) ∥f(u)− f(v)∥2

≤ 2e2εν
(n)
f (G) + 2e−cε

2d · (∆ + 1) · ν(n)f (G),
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where the second last inequality is by the second property in Lemma 3.2.13, and the last
inequality is by the property that the value of ν

(n)
f (G) is at least the objective of the

following “uniform” solution

P ′(u, v) :=

{
1

∆+1
, if u = v or uv ∈ E

0, otherwise,

which in turn satisfies∑
uv∈E

π(u)P ′(u, v) ∥f(u)− f(v)∥2 ≥ 1

∆ + 1

∑
uv∈E

min(π(u), π(v)) ∥f(u)− f(v)∥2 .

By choosing some constant ε ≤ 1/4 and d ≳ 1
cε2

log(∆ + 1), it follows that

Ef̄ [ν
(d)

f̄
(G)] ≤ 2

(
e2ε + e−cε

2d∆
)
· ν(n)f (G) ≲ ν

(n)
f (G).

Finally, we lower bound the denominator. Let E ′v be the event that
∥∥f̄(v)∥∥2 < e−2ε ∥f(v)∥2.

Using a similar argument as above,∑
v∈V

π(v) ·
∥∥f̄(v)∥∥2 ≥ e−2ε

∑
v∈V

π(v) ∥f(v)∥2 −
∑
v∈V

π(v) · 1E ′
v

(
e−2ε ∥f(v)∥2 −

∥∥f̄(v)∥∥2 ).
We can view the event E ′v as E ′v,0 where the zero vector is one of the embedding vectors, so

that
∥∥f̄(v)∥∥2 < e−2ε ∥f(v)∥2 is equivalent to

∥∥f̄(v)− f̄(0)∥∥2 < e−2ε ∥f(v)− f(0)∥2 . Thus,
we can apply the first property in Lemma 3.2.13 to bound Eh[1E ′

v
] = Pr[1E ′

v
], so that

Ef̄
[∑
v∈V

π(v) · 1E ′
v

(
e−2ε ∥f(v)∥2 −

∥∥f̄(v)∥∥2 )] ≤ ∑
v∈V

e−2επ(v) ∥f(v)∥2 · Ef̄ [1E ′
v
]

≤ e−cε
2d−2ε

∑
v∈V

π(v) ∥f(v)∥2 .

By Markov’s inequality and the same choice of ε and k, with probability at least 9/10,∑
v∈V

π(v) ·
∥∥f̄(v)∥∥2 ≥ e−2ε

(
1− 10e−cε

2d
)∑
v∈V

π(v) ∥f(v)∥2 ≳
∑
v∈V

π(v) ∥f(v)∥2 .

Therefore, (3.6) follows by combining the upper bound on the numerator and this lower
bound on the denominator.
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3.2.4 λ∞ and SDP Relaxation

Bobkov, Houdré, and Tetali [BHT00] defined a spectral quantity called λ∞:

λ∞(G) := min
f :V→R∑
v f(v)=0

∑
v∈V maxu:uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

Observe that λ2 can be written in a similar form to λ∞ as follows:

λ2(G) =
1

2
min
f :V→R∑
v f(v)=0

∑
v∈V

∑
u:uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

,

which explains the notation λ∞ as the sum is replaced by the maximum, an “ℓ∞” quantity.
λ∞ satisfies an exact analogue of Cheeger’s inequality for symmetric vertex expansion:

Theorem 3.2.15 ([BHT00]). For any graph G = (V,E),

1

2
λ∞(G) ≤ ψsym(G) ≲

√
λ∞(G),

where ψsym(G) is defined as in Definition 2.3.5 with π = 1
n
1⃗.

Proof. For the easy direction, given S ⊆ V with 0 < |S| ≤ n/2 that minimizes ψsym(S),
define the following vector solution f : V → R to λ∞(G):

f(v) :=

{
1
|S| , if v ∈ S
−1
|Sc| , if v ̸∈ S.

Then,
∑

v∈V f(v) = 0, and so

λ∞(G) ≤
∑

v∈V maxu:uv∈E(f(u)− f(v))2∑
v∈V f(v)

2

=
|∂sym(S)| · (1/|S|+ 1/|Sc|)2

1/|S|+ 1/|Sc|
≤ 2 · |∂sym(S)|

|S|
= 2ψsym(G).

Now we prove the hard direction, which we redo using the two-step framework.

Step 1 (ℓ22 to ℓ1). Given optimal solution f : V → R to λ∞(G), we would like to construct
h : V → R such that 0 is a median of h, and∑

v∈V maxu:uv∈E |h(u)− h(v)|∑
v∈V |h(v)|

≲

√∑
v∈V maxu:uv∈E(f(u)− f(v))2∑

v∈V f(v)
2
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The construction of h is exactly the same as in (3.1) in Theorem 3.1.1, with c this time
being a simple median of f :

h(u) :=

{
(f(u)− c)2, if f(u) ≥ c,

−(f(u)− c)2, if f(u) < c.

We again have ∑
v∈V

|h(v)| =
∑
v∈V

(f(v)− c)2 ≥
∑
v∈V

f(v)2 (3.7)

in the denominator, and applying (3.2) from Theorem 3.1.1 to the numerator we get∑
v∈V

max
u:uv∈E

|h(u)− h(v)|

≤
∑
v∈V

max
u:uv∈E

|f(u)− f(v)| (|f(u)− c|+ |f(v)− c|)

≤
∑
v∈V

max
u:uv∈E

|f(u)− f(v)| (2|f(v)− c|+ |f(u)− f(v)|)

≤
∑
v∈V

max
u:uv∈E

(f(u)− f(v))2 + 2

√∑
v∈V

max
u:uv∈E

(f(u)− f(v))2 ·
∑
v∈V

(f(v)− c)2,

where we used Cauchy-Schwarz inequality in the last step. Dividing both sides by
∑

v∈V |h(v)|
and using (3.7), we get∑

v∈V maxu:uv∈E |h(u)− h(v)|∑
v∈V |h(v)|

≤
∑

v∈V maxu:uv∈E(f(u)− f(v))2∑
v∈V f(v)

2
+ 2

√∑
v∈V maxu:uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

≲

√∑
v∈V maxu:uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

,

where the asymptotic inequality uses the easy direction that λ∞(G) ≲ ψsym(G), which in
turn is ≤ O(1).

Step 2 (threshold rounding). Given h, we would like to apply threshold rounding to
extract a set S ⊆ V with 0 < |S| ≤ n/2 and ψsym(S) small. Let t ∈ R be a parameter and
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St ⊆ V defined exactly as in (3.3) in Theorem 3.1.1. Note that |St| ≤ n/2 for any t ∈ R
since 0 is a median of h. The “average” size of St is∫ ∞

−∞
|St| dt =

∑
v∈V

∫ ∞

−∞
1[v ∈ St] dt =

∑
v∈V

|h(v)|,

and the “average” size of ∂sym(St) is∫ ∞

−∞
|∂sym(St)| dt =

∑
v∈V

∫ ∞

−∞
1[v ∈ ∂sym(St)] dt

(∗)
=

∑
v∈V

max
u,u′∈∂(V )

|h(u)− h(u′)|

≤ 2
∑
v∈V

max
u:uv∈E

|h(u)− h(v)|.

The step (∗) is due to the observation that v ∈ ∂sym(St) if and only if minu:uv∈E h(u) ≤ t ≤
maxu:uv∈E h(u). Note that |∂sym(St)| = 0 when |St| = 0. Hence, there exists some t ∈ R
such that 0 < |St| ≤ n/2 and

ψsym(St) ≤
2
∑

v∈V maxu:uv∈E |h(u)− h(v)|∑
v∈V |h(v)|

.

This completes the proof of the hard direction and hence the theorem.

While Theorem 3.2.15 has the exact same form as the classical Cheeger’s inequality, it is
not known how to compute λ∞ efficiently, and Farhadi, Louis, and Tetali [FLT20] recently
showed that λ∞ is NP-hard to compute. Therefore, λ∞ alone does not yield an algorithmic
spectral theory. To design an approximation algorithm for ψ(G), Louis, Raghavendra
and Vempala [LRV13] defined the following semidefinite programming relaxation for λ∞,
denoted by sdp∞.

Definition 3.2.16 (sdp∞ in [LRV13]). Given an undirected graph G = (V,E),

sdp∞(G) := min
f :V→Rn, g:V→R

∑
v∈V

g(v)

subject to
∑
v∈V

∥f(v)∥2 = 1∑
v∈V

f(v) = 0⃗

g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E
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Observe that λ∞ is the 1-dimensional version of sdp∞, with f : V → Rn replaced by
f : V → R. Therefore, sdp∞(G) is a relaxation of λ∞(G). To see that sdp∞ is indeed an
SDP, note that it can be rewritten as

sdp∞(G) = min
Z⪰0
g:V→R

∑
v∈V

g(v)

subject to g(v) ≥ Z(u, u) + Z(v, v)− Z(u, v)− Z(v, u) ∀uv ∈ E
Z1 = 0⃗, ⟨Z, I⟩ = 1

where Z is the Gram matrix of f so that Z(u, v) = ⟨f(u), f(v)⟩. The program implicitly
requires that g ≥ 0, so that

X :=

(
Z 0
0 diag(g)

)
is PSD, and both the objective and the constraints of sdp∞(G) are linear in X.

The rounding algorithm in [LRV13] is to project the solution to sdp∞ into a 1-dimensional
solution by setting x(v) = ⟨f(v), z⟩ where z ∼ N(0, 1)n is a random Gaussian vector. They
proved that the 1-dimensional solution is a O(log∆)-approximation to sdp∞ where ∆ is
the maximum degree of the graph. For the analysis, they used Fact 2.10.6 and Fact 2.10.7
about Gaussian random variables. The first fact is for the analysis of the numerator and
the second fact is for the analysis of the denominator of λ∞.

Theorem 3.2.17 ([LRV13, Lemma 9.6]). For any undirected graph G = (V,E) with max-
imum degree ∆,

sdp∞(G) ≤ λ∞(G) ≲ sdp∞(G) · log∆.

Proof. We have already observed that sdp∞(G) is a relaxation of λ∞(G), and therefore
sdp∞(G) ≤ λ∞(G). For the other direction, given an optimal solution f to sdp∞(G) (the
corresponding optimal choice for g(v) would be maxu:uv∈E ∥f(u)− f(v)∥2), let

x(v) = ⟨f(v), z⟩

where z ∼ N(0, 1)n is a random Gaussian vector. We have

∑
v∈V

x(v) =

〈∑
v∈V

f(v), z

〉
= 0,

so x is a feasible solution to λ∞(G). To analyze the numerator, apply Fact 2.10.6 with
Yu := x(u) − x(v), where u runs over the at most ∆ neighbors of v ∈ V . Each Yu is a
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centered Gaussian with variance ∥f(u)− f(v)∥2 ≤ g(v), and therefore

E
[
max
u:uv∈E

(x(u)− x(v))2
]
≤ 4g(v) · log∆.

Summing over v ∈ V and applying Markov’s inequality gives∑
v∈V

max
u:uv∈E

(x(u)− x(v))2 ≤ 24 · 4
∑
v∈V

g(v) · log∆ = 96 sdp∞(G) · log∆

with probability at least 23/24.

To analyze the denominator, take Yv := x(v) in Fact 2.10.7 for v ∈ V . Then,

E

[∑
v∈V

Y 2
v

]
= E

[∑
v∈V

f(v)T zzTf(v)

]
=
∑
v∈V

∥f(v)∥2 = 1,

and so with probability at least 1/12,
∑

v∈V x(v)
2 ≥ 1

2
. By union bound, then, with

probability at least 1
24

(in particular ≥ Ω(1)), both the numerator and denominator bounds
hold simultaneously. Hence we see that the objective value for λ∞(G) is at most

192 sdp∞(G) · log∆,

proving the theorem.

Combining Theorem 3.2.17 with Theorem 3.2.15 immediately yields the following Cheeger
inequality:

Theorem 3.2.18 ([LRV13]). For any graph G = (V,E) with maximum degree ∆,

ψsym(G)
2

log∆
≲ sdp∞(G) ≲ ψsym(G).

Then, by constructing a graph G′ such that ψsym(G
′) = Θ(ψ(G)), they reduce vertex

expansion to symmetric vertex expansion and obtain a Cheeger-type inequality for ψ(G)
with the same guarantee. See Proposition 2.3.6 for the construction. They also show that
it is impossible to improve on the log∆ factor under the small-set expansion hypothesis
(c.f. Section 3.1.5).

Finally, we remark that all the results discussed in this subsection apply to graphs
equipped with any vertex measure π : V → R+, by modifying the definitions accordingly.
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3.2.5 Reduction from Hypergraph Spectral Theory

Louis [Lou15] and Chan, Louis, Tang, Zhang [CLTZ18] developed a spectral theory for
hypergraphs. Their main results are surveyed in Section 3.4.1 in a later section. Their
theory may be applied to obtain a spectral theory for vertex expansion via a reduction.

Fact 3.2.19 (Reducing Vertex Expansion to Hypergraph Expansion [CLTZ18, LM14b]).
Given a graph G = (V,E), construct a hypergraph H = (V,E ′) by adding the hyperedge
{v} ∪ ∂({v}) for each v ∈ V to E ′. If the maximum degree of G is ∆max = ∆ and the
minimum degree ∆min, then the rank of H is at most ∆max + 1, and

∆min · ϕH(S) ≤
∆max

∆max + 1
· ψ(S) ≤ ∆max · ϕH(S) ∀S ⊂ V.

Since this relation holds for all subsets S, their results on small-set hypergraph expan-
sion and higher order hypergraph expansion translate to the vertex setting as well. In
Section 4.1, we will compare in more detail our approach of reweighted eigenvalues to this
approach of reducing directly from hypergraph spectral theory.

3.3 Directed Graphs

3.3.1 Cheeger Constant for Directed Graphs

One obstacle to developing a spectral theory for directed graphs is that the Laplacian may
not have real eigenvalues. Fill [Fil91] and Chung [Chu05] provided a workaround, shifting
attention to a carefully weighted version Gπ of G and relating expansion properties of Gπ

to the spectrum of the symmetrized Laplacian (L(Gπ) + L(GT
π ))/2, which must have real

eigenvalues. While the two formulations are similar, we will follow Chung’s formulation
as it is closer and more consistent with ours, and also because her work is based on an
Eulerian reweighted subgraph (which was called a circulation in [Chu05]) that we describe
below, which is the main theme for Chapter 5.

Let G = (V,E,w) be a weighted directed graph with random walk matrix P (see
Section 2.6.1). Suppose that G is strongly connected and aperiodic. While P is not
necessarily time-reversible, a unique stationary distribution π : V → R+ nevertheless
exists such that πTP = πT (see Proposition 2.6.1). Let Π := diag(π). Fill [Fil91] defined
the product and the sum matrices as M(P ) := PΠ−1P TΠ and A(P ) := (P +Π−1P TΠ)/2.
Chung [Chu05] noted that if the weight of an arc uv is defined as F (u, v) = π(u)P (u, v),
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then the weighted directed graph Gπ = (V,E, F ) is Eulerian such that
∑

u:uv∈E F (u, v) =∑
u:vu∈E F (v, u) for all v ∈ V .3 Then she used the underlying weighted undirected graph

to define the Laplacian of the directed graph G as

L̃(G) = I −
(
Π1/2PΠ−1/2 +Π−1/2P TΠ1/2

)
/2 = I − Π− 1

2

(
Aπ + ATπ

)
Π− 1

2/2. (3.8)

where Aπ = ΠP is the adjacency matrix of Gπ. Note that the spectra of I − A(P ) and
L̃(G) are the same, as P +Π−1P TΠ and Π1/2PΠ−1/2 +Π−1/2P TΠ1/2 are similar matrices.
The Cheeger constant of a directed graph [Fil91, Chu05] is defined as

h(G) := min
S:S ̸=∅,S ̸=V

h(S) where h(S) =

∑
u,v:u∈S,v /∈S π(u)P (u, v)

min{π(S), π(Sc)}
, (3.9)

and Chung [Chu05] proved a Cheeger inequality relating h(G) to the second smallest
eigenvalue of L̃(G).

Theorem 3.3.1 (Cheeger Inequality for h(G) [Fil91, Chu05]). Let G = (V,E,w) be a
strongly connected, aperiodic directed graph, with stationary distribution π : V → R+. Let
L̃(G) be as defined in (3.8) and h(G) be as defined in (3.9). Then,

λ2(L̃(G))/2 ≤ h(G) ≤
√

2 · λ2(L̃(G)).

As in the undirected case (see Section 3.1.1), this result is supplemented with a mixing
time bound using λ2(L̃(G)) to relate h(G) to mixing time: random walk on G mixes fast
if h(G) is big. We state the result using Chung’s formulation. Note that if G is strongly
connected but not aperiodic, a unique stationary distribution still exists for the lazy random
walk (I + P )/2 where P is the transition matrix of the ordinary random walk on G, and
we can apply Theorem 3.3.1 to the graph corresponding to (I + P )/2.

Theorem 3.3.2 (Bounding Mixing Time by Second Eigenvalue of Directed Graphs [Fil91,
Chu05]). Let G = (V,E,w) be a directed graph with positive edge weights. Suppose that G
is strongly connected. Let P ′ be the transition matrix of the ordinary random walk on G
with P ′(u, v) = w(uv)/

∑
v∈V w(uv) for uv ∈ E. Then the mixing time of the lazy random

walks of G with transition matrix P = (I + P ′)/2 to the stationary distribution π is

τmix

(I + P ′

2

)
≲

1

λ2(L̃(G))
· log

( 1

πmin

)
where πmin = minv∈V π(v).

3The proof is by noting that
∑

u:uv∈E F (u, v) = (πTP )(v) = π(v) =
∑

u:vu∈E F (v, u).
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We note that Theorem 3.3.1 is algorithmic, since the stationary distribution π can be
computed in polynomial time and the proof of the hard direction again shows that the
sweep-cut algorithm is applicable here. Below we prove Theorem 3.3.1 and Theorem 3.3.2.

Proof of Theorem 3.3.1. First, verify that λ2(L̃(G)) has a similar variational characteriza-
tion to Proposition 2.5.2:

λ2(L̃(G)) = min
f :f⊥π

∑
uv∈E F (u, v)/2 · (f(u)− f(v))2∑

v∈V π(v)f(v)
2

. (3.10)

For the easy direction that λ2(L̃(G))/2 ≤ h(G), given ∅ ̸= S ⊂ V with h(S) = h(G),
we define f : V → so that

f(v) :=

{
1

π(S)
, if v ∈ S;

−1
π(Sc)

, otherwise.

Then, f ⊥ π, and

λ2(L̃(G)) ≤
∑

uv∈E F (u, v)/2 · (f(u)− f(v))2∑
v∈V π(v)f(v)

2

=

∑
u,v:u∈S,v /∈S π(u)P (u, v) +

∑
u,v:u/∈S,v∈S π(u)P (u, v)

2
·
(

1

π(S)
+

1

π(Sc)

)
=

∑
u,v:u∈S,v /∈S

π(u)P (u, v) ·
(

1

π(S)
+

1

π(Sc)

)
≤ 2h(S),

where the last equality is because Gπ is Eulerian.

For the hard direction that h(G) ≤
√
2 · λ2(L̃(G)), we again follow the same two-step

approach of Theorem 3.1.1. Given f : V → R with f ⊥ π. The first step of reducing to an
ℓ1 solution g : V → R such that∑

uv∈E F (u, v)/2 · |g(u)− g(v)|∑
v∈V π(v)|g(v)|

≤

√
2 ·
∑

uv∈E F (u, v)/2 · (f(u)− f(v))2∑
v∈V π(v)f(v)

2

and 0 is a π-weighted median of g, is essentially the same and is omitted. For the second
step of threshold rounding, let t ∈ R be a parameter and define St := {v ∈ V : g(v) > t}.
Since 0 is a π-weighted median of g, the “average” denominator of h(St) amounts to∫ ∞

−∞
min{π(St), π(Sct )} dt =

∫ ∞

0

π(St) dt+

∫ 0

−∞
π(Sct ) dt =

∑
v∈V

π(v)|g(v)|.
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The “average” numerator of h(St) can be bounded as follows:∫ ∞

−∞

∑
u,v:u∈St,v ̸∈St

π(u)P (u, v) dt =

∫ ∞

−∞

1

2

( ∑
u,v:u∈St,v ̸∈St

F (u, v) +
∑

u,v:u̸∈St,v∈St

F (u, v)

)
dt

=
1

2

∑
uv∈E

F (u, v)

∫ ∞

−∞
1[(u, v) ∈ δ(St)] dt

=
1

2

∑
uv∈E

F (u, v) · |g(u)− g(v)|.

where the first equality is again because Gπ is Eulerian. Note that the numerator of h(St)
is zero when St = ∅ or St = V . Therefore, threshold rounding yields an S = St such that
S ̸= ∅, S ̸= V , and

h(S) ≤
∑

uv∈E F (u, v)/2 · |g(u)− g(v)|∑
v∈V π(v)|g(v)|

≤

√
2 ·
∑

uv∈E F (u, v)/2 · (f(u)− f(v))2∑
v∈V π(v)f(v)

2
.

Taking f to be optimal for λ2(L̃(G)) in (3.10) yields the hard direction.

Proof Outline of Theorem 3.3.2. In the case where the graph is undirected, the Markov
chain is reversible, and as we can see in the proof of Proposition 2.6.2, we can use the
spectral decomposition of the random walk matrix, which gives precise control of the rate
of decay of each direction orthogonal to the first eigenspace. Here, we cannot do the same.
Instead, we employ the following result in [Chu05] which bounds the length of a vector
after applying the random walk matrix, using λ2(L̃(G)).

Lemma 3.3.3 ([Chu05, Theorem 6]). Under the setting of Theorem 3.3.2, let M :=
Π1/2((I + P ′)/2)Π−1/2. Then,

∥fM∥2 ≤
(
1− 1

2
λ2(L̃(G))

)
∥f∥2

for all vectors f : V → R such that f ⊥ Π1/2
1.

The second eigenvalue λ2(L̃(G)) features here due to the appearance of the sum matrix
P̃ + P̃ T in the expansion of ∥fM∥2 where P̃ := Π1/2P ′Π−1/2, and L̃(G) is exactly the
Laplacian of the undirected graph (P̃ + P̃ T )/2.

Using this lemma, we can now finish the proof. Given any starting distribution p0 we
can decompose it as

p0 = π + f⊥
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where ⟨f⊥,1⟩ = (p0 − π)T1 = 1− 1 = 0. Then, writing λ2 for λ2(L̃(G)),

dTV (π, (P
t)Tp0) =

1

2

∥∥π − (P t)Tp0
∥∥
1

=
∥∥fT⊥Π−1/2(M t)Π1/2

∥∥
1

≤
∥∥fT⊥Π−1/2(M t)

∥∥ · ∥∥Π1/2
1

∥∥ (Cauchy-Schwarz)

≤
∥∥fT⊥Π−1/2

∥∥ · (1− λ2
2

)t
(by Lemma 3.3.3 since fT⊥Π

−1/2 ⊥ Π1/2
1)

≲
1

√
πmin

·
(
1− λ2

2

)t
,

where the last asymptotic inequality uses the fact that ∥f⊥∥ ≤ ∥f⊥∥1 ≤ ∥p0∥1 + ∥π∥1 ≤ 2.
Taking t ≥ Ω(λ−1

2 · log(1/πmin)), we have that dTV (π, (P
t)Tp0) ≤ 1/e, and so the desired

mixing time bound follows.

Higher-order Cheeger Inequality for Directed Graphs

Chan, Tang and Zhang [CTZ15] gave a higher-order Cheeger inequality for directed graphs.
Roughly speaking, they showed that in a directed graph G = (V,E), there are k disjoint

subsets S1, . . . , Sk ⊆ V with λk(L̃(G)) ≲ h(Si) ≲ k2 ·
√
λk(L̃(G)) for 1 ≤ i ≤ k, where

h(Si) is the Cheeger constant in (3.9) and λk(L̃(G)) is the k-th smallest eigenvalue of the
Laplacian in (3.8).4 The proof is a direct application of the higher-order Cheeger inequality
[LOT12, LRTV12] in Section 3.1.3 on the reweighted subgraph G′ := (Gπ +GT

π )/2 by the
stationary distribution. This gives disjoint subsets S1, . . . , Sk ⊆ V such that

λk(L̃(G)) ≲ ϕG′(Si) ≲ k2 ·
√
λk(L̃(G)),

where we note that L̃(G) is the ordinary graph Laplacian of G′. Finally,

ϕG′(S) =

∑
v∈S,u̸∈S(F (u, v) + F (v, u))/2∑
v∈S,u∈V (F (u, v) + F (v, u))/2

=

∑
v∈S,u̸∈S F (v, u)

π(S)
= h(S)

for any nonempty subset S ⊆ V with π(S) ≤ 1/2.

4The main technical contribution of [CTZ15] is to apply the results of [Fil91, Chu05] when the graph
is not strongly connected, which we do not discuss in depth here.

88



3.3.2 Nonlinear Laplacian and SDP Relaxation

Yoshida [Yos16] introduced a nonlinear Laplacian operator for directed graphs and used it
to define the following second eigenvalue

λG = inf
x⊥µG

∑
uv∈E

([
x(u)/

√
deg(u)− x(v)/

√
deg(v)

]+)2∑
u∈V x(u)

2

where µG denotes the first (trivial) eigenvector, [a− b]+ denotes max{a− b, 0}, and deg(u)
is the total degree of u.5

He considered the directed edge conductance ϕ⃗ as defined in Definition 2.3.1 and proved
following Cheeger inequality for ϕ⃗(G):

Theorem 3.3.4 ([Yos16]). For any directed graph G = (V,E), λG/2 ≤ ϕ⃗(G) ≤ 2
√
λG.

An approximation algorithm for computing λG was not given in [Yos16]. Later on,
Yoshida [Yos19] gave an SDP approximation algorithm for computing λG and this gives

a polynomial time computable quantity λ̃G that satisfies λ̃G ≲ ϕ⃗(G) ≲
√
λ̃G · log n. As

[Yos19] will be our primary reference in Chapter 6 and also that his work covers the more
general setting of submodular transformations, we leave further discussion of his work to
that chapter.

Note that the directed edge conductance ϕ⃗(G) and the Cheeger constant h(G) in (3.9)
are two very different quantities, one reason being that the stationary distribution π can
have exponentially small values on some vertices. We discuss this further in Chapter 5 and
also refer the interested reader to [Yos16].

Below we prove Theorem 3.3.4. The details are a bit different than previous proofs in
this chapter because of the different normalization in the definition of λG.

Proof of Theorem 3.3.4. First, note that µG(v) =
√
deg(v) is the trivial eigenvector to

the nonlinear Laplacian, with eigenvalue 0. For the easy direction, given S ⊆ V such that
(without loss of generality) 0 < vol(S) ≤ vol(V )/2 and ϕ⃗(S) = ϕ⃗(G), consider the following
solution to λG:

x(v) :=

{√
deg(v)/vol(S), if v ∈ S;
−
√

deg(v)/vol(Sc), otherwise.

5A change of variables f(u) := x(u)/
√

deg(u) gives an equivalent definition that is closer to (2.2) for
undirected graphs.
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Then, x ⊥ µG, and∑
uv∈E

([
x(u)/

√
deg(u)− x(v)/

√
deg(v)

]+)2∑
u∈V x(u)

2
= |δ+(S)|·

(
1

vol(S)
+

1

vol(Sc)

)
≤ 2· |δ

+(S)|
vol(S)

.

If we replace x by−x, then−x ⊥ µG and the above upper bound becomes 2|δ+(Sc)|/vol(S).
Therefore, we have shown that

λG ≤ 2 · min{|δ+(S)|, |δ+(Sc)|}
vol(S)

= ϕ⃗(S).

For the hard direction, we again follow the two-step proof flow in Theorem 3.1.1.

Step 1 (ℓ22 to ℓ1). The goal is to construct a vector y : V → R such that

∑
uv∈E[y(u)− y(v)]+∑
u∈V deg(u)|y(u)|

≤

2 ·

∑
uv∈E

([
x(u)/

√
deg(u)− x(v)/

√
deg(v)

]+)2∑
u∈V x(u)

2


1/2

and that 0 is a degree-weighted median of y. Let x′(v) := x(v)/
√
deg(v), and apply the

same procedure of obtaining h from f in (3.1) in Theorem 3.1.1 to obtain y from x′, with
c being the degree-weighted median of x′. The analysis of the denominator gives∑

u∈V

deg(u)|y(u)| =
∑
u∈V

deg(u)(x′(u)− c)2 ≥
∑
u∈V

deg(u)x′(u)2,

by noting that
∑

u∈V deg(u)x′(u) = 0. For the numerator, note that the construction of
y preserves the order of the values, i.e. y(u) ≤ y(v) ⇐⇒ x′(u) ≤ x′(v). Therefore, by
restricting the summation to E ′ := {uv ∈ E : x′(u) ≥ x′(v)} and following the calculations
in the proof of Theorem 3.1.1, we get∑

uv∈E

(y(u)− y(v))+ ≤
√

2
∑
uv∈E

[(x′(u)− x′(v))+]2 ·
∑
u∈V

deg(u)|y(u)|.

Dividing both sides by
∑

u∈V deg(u)|y(u)| and substituting x(v) = x′(v)
√
deg(v) back in,

we get the desired bound on y.

Step 2 (threshold rounding). Given vector y : V → R from above, the goal is to show
that

ϕ⃗(S) ≤
∑

uv∈E(y(u)− y(v))+∑
u∈V deg(u)|y(u)|
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for some S ⊆ V . Let t ∈ R be a parameter and define St ⊆ V as St := {v ∈ V : y(v) > t}.
Note that 0 is a degree-weighted median of y, and so the “average” denominator of ϕ⃗(St)
is ∫ ∞

−∞
min{vol(St), vol(Sct )} dt =

∫ ∞

0

vol(St) dt+

∫ 0

−∞
vol(Sct ) dt =

∑
v∈V

deg(v)|y(v)|.

As for the numerator of ϕ⃗(St), the “average” size is∫ ∞

−∞
min{|δ+(St)|, |δ+(Sct )|} dt ≤

∫ ∞

−∞
|δ+(St)| dt

=
∑
uv∈E

∫ ∞

−∞
1[y(u) > t ≥ y(v)] dt =

∑
uv∈E

(y(u)− y(v))+.

Therefore, for some S = St ⊆ V the desired bound on ϕ⃗(S) holds, and we are done.

3.4 Hypergraphs

3.4.1 Spectral Theory via Diffusion

Louis [Lou15] and Chan, Louis, Tang, Zhang [CLTZ18] developed a spectral theory for
hypergraphs. They defined a continuous time diffusion process on a hypergraph H =
(V,E,w) and used it to define the Laplacian operator and its eigenvalues γ1 ≤ γ2 ≤
. . . ≤ γn. The formulation is similar to the “spectral” quantity λ∞ in [BHT00] for vertex
expansion (c.f. Section 3.2.4), and they proved that there is an exact analog of Cheeger’s
inequality for hypergraphs:

Theorem 3.4.1 ([CLTZ18, Theorem 6.1]). For any hypergraph H = (V,E,w),

1

2
γ2(H) ≤ ϕ(H) ≤

√
2γ2(H),

where ϕ(H) is the hypergraph edge conductance of H defined in Section 2.3.3.

As in [BHT00], the quantity γ2 is not polynomial time computable, and a semidefi-
nite programming relaxation γ̃2 (see [CLTZ18, SDP 8.3]) was used to prove the following
Cheeger inequality and to design a O(

√
ϕ(H) log r)-approximation algorithm for hyper-

graph edge conductance where r is the maximum size of a hyperedge.
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Theorem 3.4.2 (Cheeger Inequality for Hypergraphs [CLTZ18, Theorem 8.1]). For any
hypergraph H = (V,E,w) of rank r,

γ̃2(H) ≲ ϕ(H) ≲
√
γ̃2(H) · log r,

Using this spectral theory, they also obtain an analog of higher-order Cheeger inequal-
ity for hypergraph edge conductance, and also an approximation algorithm for small-set
hypergraph edge conductance. Given a hypergraph H = (V,E,w), the k-way edge con-
ductance of H is defined as ϕk(H) := minS1,S2,...,Sk

max1≤i≤k ϕ(Si) where S1, S2, . . . , Sk are
over pairwise disjoint subsets of V . [CLTZ18, Theorem 6.14] states that

γ̃k ≲ ϕk(H) ≲ k4 ·log k ·log log k ·log r·
√
γ̃k and ϕ(1−ε)k(H) ≲

k2.5

ε1.5
·log k ·log log k ·log r·

√
γ̃k

(3.11)
for any ε ≥ 1/k, where γ̃k is an SDP relaxation of γk which can be computed in polynomial
time. Furthermore, they proved a stronger bound in [CLTZ18, Corollary 3.23] about small-
set conductance that there is a subset S ⊆ V with |S| = Θ(n/k) and

ϕ(S) ≲ k1.5 · log k · log log k · log r ·
√
γ̃k. (3.12)

In the rest of the section, we define γ2 and γ̃2, then present the proof for Theorem 3.4.1
and for the following relation between γ2 and γ̃2, which together imply Theorem 3.4.2. We
shall not discuss in further detail the results involving the higher eigenvalues γk and γ̃k.

Definition 3.4.3 (γ2 and γ̃2). Given a hypergraph H = (V,E,w), γ2(H) is defined as

γ2(H) := inf
f :V→R
f⊥degw

∑
e∈E w(e) ·maxu,v∈e(f(u)− f(v))2∑

u∈V degw(u)f(u)
2

,

and γ̃2(H) is defined as

γ̃2(H) := inf
f :V→Rn

Dwf=0⃗

∑
e∈E w(e) ·maxu,v∈e ∥f(u)− f(v)∥2∑

u∈V degw(u) ∥f(u)∥
2

where Dw = diag(degw(v)) and so Dwf =
∑

v∈V degw(v)f(v).

Proposition 3.4.4 ([CLTZ18, Proposition 8.5]). For any hypergraph H = (V,E,w) of
rank r,

γ̃2(H) ≤ γ2(H) ≲ γ̃2(H) · log r.
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Proof of Theorem 3.4.1. We follow the template in the proof of Theorem 3.1.1. For the
easy direction, given S ⊆ V with 0 < volw(S) ≤ volw(V )/2 consider

f(v) :=

{
1

volw(S)
, if v ∈ S

−1
volw(Sc)

, otherwise.

Verify that, by the definition of δ(S), for a hyperedge e ∈ E,

max
u,v∈e

(f(u)− f(v))2 =


(

1
volw(S)

+ 1
volw(Sc)

)2
, if e ∈ δ(S);

0, otherwise,

and the rest of the proof proceeds as usual.

For the hard direction, the ℓ22 to ℓ1 step of establishing an h : V → R, such that∑
e∈E w(e) ·maxu,v∈e |h(u)− h(v)|∑

u∈V degw(u)|h(u)|
≤

√
2 ·
∑

e∈E w(e) ·maxu,v∈e(f(u)− f(v))2∑
u∈V degw(u)f(u)

2

and that 0 is a degree-weighted median of h, is essentially the same as in the template
proof, where the only modification comes from the numerator bound:∑

e∈E

w(e) ·max
u,v∈e
|h(u)− h(v)|

≤
∑
e∈E

w(e) ·max
u,v∈e

[
|f(u)− f(v)|(|f(u)− c|+ |f(v)− c|)

]
(by (3.2))

≤
√∑

e∈E

w(e) ·max
u,v∈e

(f(u)− f(v))2 ·
√
2
∑
e∈E

w(e) ·max
u,v∈e
u̸=v

(|f(u)− c|2 + |f(v)− c|2)

≤
√∑

e∈E

w(e) ·max
u,v∈e

(f(u)− f(v))2 ·
√
2
∑
e∈E

w(e) ·
∑
u∈e

|f(u)− c|2

=

√∑
e∈E

w(e) ·max
u,v∈e

(f(u)− f(v))2 ·
√
2
∑
v∈V

degw(v)(f(v)− c)2.

As for the threshold rounding step, the only modification needed is the “average” cut size
bound. With St defined the same way, we have∫ ∞

−∞
w(δ(St)) dt =

∑
e∈E

w(e) ·
∫ ∞

−∞
1[e ∈ δ(St)] dt =

∑
e∈E

w(e) ·max
u,v∈e
|h(u)− h(v)|.

This completes the proof of the hard direction and thus the theorem.
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Proof of Proposition 3.4.4. The proof is basically the same as that of Theorem 3.2.17 in
[LRV13]. First, γ̃2(H) ≤ γ2(H) because γ2(H) can be regarded as γ̃2(H) but further
restricting all but the first coordinates of f(v) to be zero. Next, given optimal f : V → Rn

to γ̃2(H), by defining the following one-dimensional solution x : V → R where

x(v) = ⟨f(v), z⟩

where z ∼ N(0, 1)n is a random Gaussian vector, we can again establish the feasibility of
x, apply Fact 2.10.6, linearity of expectations, and Markov’s inequality to show that∑

e∈E

w(e)max
u,v∈e

(x(u)− x(v))2 ≤ 96 log(r2) ·
∑
e∈E

w(e) max
u,v∈E

∥f(u)− f(v)∥2 ,

with probability at least 23/24, and apply Fact 2.10.7 to show that
∑

v∈V degw(v)x(v)
2 ≥

1
2

∑
v∈V degw(v) ∥f(v)∥

2 with probability at least 1/12. This proves that the objective value
of the projected solution is at most 384γ̃2(H) · log r with probability at least 1/24.

3.5 Eigenvalue Bounds for Special Graphs

In this section, we review previous work that upper bounds Laplacian eigenvalues for spe-
cial classes of graphs. We first give a description of edge-based and vertex-based spectral
partitioning and discuss the significance of eigenvalue upper bounds in analyzing the per-
formances of these algorithms. Then, we review the work of Spielman and Teng [ST96]
proving that spectral partitioning gives balanced separators of size O(

√
n) in bounded

degree planar graphs, and the results of Kelner [Kel06], Biswal, Lee, Rao [BLR10], and
Kelner, Lee, Price, Teng [KLPT11] that give upper bounds on the second and higher
eigenvalues of graph Laplacians in bounded genus graphs and excluded minor graphs.

3.5.1 Edge-Based Spectral Partitioning

Given a graph G = (V,E), the sweep-cut algorithm Algorithm 1 on the second eigenvector
of L(G) finds a nonempty vertex subset S ⊂ V such that vol(S) ≤ vol(V )/2 and

ϕ(S) ≤
√

2λ2(G).

Suppose that G belongs to a graph class C such that C is closed under edge and vertex
removal, and λ2(G

′) ≤ λC for all G′ ∈ C. Then, we can remove the at most O(vol(S) ·
√
λC)
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edges crossing S and disconnect S from its complement V \ S. Recurse on G[V \ S]
until the total volume of the disconnected vertex subsets is at least vol(V )/3. The total
number of edges removed is thus O(m

√
λC), and after the edge removals, each connected

component has volume at most two thirds of the total. However, known results were
unable to directly upper bound λ2(G), and involve instead the second smallest eigenvalue
for the unnormalized Laplacian λ′2(G). While this implies an upper bound on λ2(G) via
the following inequality:

λ2(G) = min
f⊥1

∑
uv∈E(f(u)− f(v))2∑
v∈V deg(v)f(v)2

≤ min
f⊥1

∑
uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

= λ′2(G),

λ′2(G) may be ∆ times larger than λ2(G) where ∆ is the maximum degree of G.

To summarize, eigenvalue bounds are useful for ensuring that recursive spectral parti-
tioning finds a balanced separator of small conductance, but existing indirect bounds via
λ′2(G) may be suboptimal for the purpose of analyzing spectral partitioning.

3.5.2 Vertex-Based Spectral Partitioning

For vertex-based spectral partitioning, it is more apt to consider obtaining cuts with small
vertex expansion. Below we present one spectral partitioning algorithm using the second
eigenvector of the unnormalized Laplacian, which is based on the “classical” vertex Cheeger
inequality [Tan84, AM85, Alo86] in Section 3.2.1.

Given a graph G = (V,E), the flow-based algorithm in the proof of Theorem 3.2.1 takes
the second eigenvector of the unnormalized Laplacian L′(G) as input and finds a nonempty
vertex subset S ⊂ V such that |S| ≤ |V |/2 and

ψ(S) ≲
√
λ′2(G).

Suppose that G belongs to a graph class C such that C is closed under edge and vertex
removal, and λ′2(G

′) ≤ λ′C for all G′ ∈ C. Proceeding as for edge-based partitioning, by
repeatedly removing ∂S and disconnecting S from the rest of the graph, until the total
number of disconnected vertices is at least n/3, the total number of vertices removed is
O(n

√
λ′C), and after the vertex removals, each connected component has size at most 2n/3.

The set of removed vertices is called a balanced separator, since its removal separates the
rest of the graph into balanced components, i.e. none of the components are too big.

Like edge-based spectral partitioning, separator size bounds for vertex-based spectral
partitioning using λ′2(G) has a nontrivial dependence on the maximum degree ∆ of the
graph, and such bounds are only useful when ∆ is small.
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3.5.3 Planar Separation via Spectral Partitioning

Spielman and Teng [ST96] gave an upper bound on the second smallest eigenvalue for the
unnormalized Laplacian λ′2(G) when G is a planar graph.

Theorem 3.5.1 (Restatement of Theorem 1.4.1). For any planar graph G = (V,E) with
maximum degree ∆, the second smallest eigenvalue λ′2(G) of the unnormalized Laplacian
satisfies λ′2(G) ≲ ∆/n.

Using this theorem and the flow-based partitioning algorithm in the previous subsection,
this implies that the algorithm produces an O(

√
∆n)-sized balanced separator. In the

paper, they used a theorem of Mihail [Mih89] which states that the sweep-cut algorithm
on the second eigenvector of the unnormalized Laplacian produces a vertex subset S ⊂ V
with 0 < |S| ≤ n/2 and whose edge expansion φ(S), and hence6 vertex expansion ψ(S),
is at most O(

√
∆λ′2(G)). Then, using this analysis, recursive application of the sweep-cut

algorithm produces an O(∆
√
n)-sized balanced separator.

Corollary 3.5.2 (Balanced Separator on Planar Graphs [ST96]). For any planar graph
G = (V,E) of bounded maximum degree, i.e. ∆ = O(1), the spectral partitioning algorithm
described above using λ′2(G) produces a balanced separator of size O(

√
n).

Both analyses match the optimal guarantee ofO(
√
n)-sized balanced separators asserted

by the planar separator theorem of Lipton and Tarjan [LT79] only in the bounded degree
case, and while the average degree of a planar graph is O(1), the maximum degree can still
go up to O(n).

Now we outline the proof of the eigenvalue bound in Theorem 3.5.1. The idea is to
produce a vector f : V → R, such that f ⊥ 1 and∑

uv∈E(f(u)− f(v))2∑
v∈V f(v)

2
≲

∆

n
.

This will prove the theorem by the variational characterization of λ′2(G).

Their key observation is that the Koebe-Andreev-Thurston “kissing disks” embedding
[Koe36, And70a, And70b, Thu78] is a good starting point towards producing such vector
f . Given a graph G = (V,E) and a surface Σ which we restrict to be either the plane
R2 or the unit sphere S2 ⊂ R3, a disk packing of G in Σ is a mapping that takes each

6It is easy to see that, in the unweighted setting, ψ(S) ≤ φ(S) for all vertex subsets S.
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vertex v ∈ V to a disk (when Σ is the plane) or a spherical cap (when Σ is the unit sphere)
Dv ⊆ Σ, such that the interiors of Dv are pairwise disjoint. A “kissing disks” embedding
of G in Σ is a disk packing such that Du and Dv touch at the boundary if and only if
uv ∈ E. Refer to Figure 3.2 for an illustration.

Figure 3.2: A planar graph and its “kissing disks” embedding on the plane. Note that in
this case, the “disk” Df is considered to be the unbounded region “outside” the circular
boundary. Such irregularities do not appear when embedding to S2.

It is a powerful theorem by Koebe [Koe36], Andreev [And70a, And70b], and Thurston
[Thu78] that a planar graph always admits a “kissing disks” embedding in Σ. Colin de
Verdière [Col91] and Mohar [Moh93] are the first ones to design polynomial-time algorithms
for computing such an embedding, after which many more proofs follow. The current fastest
algorithm is by Dong, Lee, and Quanrud [DLQ20] and has worst-case runtime Õ(n2).7

Starting with any “kissing disks” embedding of G in S2, Spielman and Teng try to
adjust the embedding so that the center of gravity of the centres z(u) of the disks Du is
the origin. Such an embedding z : V → R3 satisfies the conditions that

∑
u∈V z(u) = 0⃗

and
∑

u∈V ∥z(u)∥
2 =

∑
u∈V 1 = n. Moreover, if r(u) is the geodesic radius of the disk Du

then∑
uv∈E

∥z(u)− z(v)∥2 =
∑
uv∈E

(r(u) + r(v))2 ≤ 2
∑
uv∈E

(r(u)2 + r(v)2) ≤ 2∆
∑
v∈V

r(v)2 ≲ ∆,

where the last inequality is because the area of the disk Du is Θ(r(u)2), and since the disks
have disjoint interiors their areas sum to at most 4π (the area of the unit sphere), which is

7More precisely, the runtime depends on the ratio between radius of the largest disk and the radius of
the smallest disk in a “true” embedding, as well as the desired accuracy. Refer to [DLQ20, Theorem 1.6]
for more details.
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O(1). Therefore, by choosing the best coordinate, they obtain a one-dimensional solution
f : V → R such that f ⊥ 1 and∑

uv∈E(f(u)− f(v))2∑
v∈V f(v)

2
≲

∆

n
.

Now we briefly explain the missing detail about how to adjust the embedding. They
considered a family of maps Φw,ρ for w ∈ S2 and ρ ∈ R+. The map is by stereographically
projecting the embedding in S2 to the plane in the −w direction (so that the plane is
tangent to the sphere at the point −w), scaling the points on the plane by a factor of ρ,
then apply inverse stereographic projection to send the points back to the sphere.8 Refer
to Figure 3.3 for an illustration of the stereographic projection.

Figure 3.3: The stereographic projection. Disks on the sphere are mapped to disks on the
plane.

The two key properties of these maps are that they are injective and that they preserve
circles and disks, so that a “kissing disks” embedding gets mapped to another “kissing
disks” embedding. They prove the existence of such a map Φw,ρ such that

∑
v∈V z̄(v) = 0⃗,

where z̄(v) is the center of the image of Dv (which is again a disk) under Φw,ρ. The proof
is non-constructive and relies on the Brouwer fixed point theorem; we refer the reader to
[ST96] for details.

8The point w is sent to a “point of infinity” ∞, then back to w.
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Spielman and Teng conjectured that similar eigenvalue bounds should hold for graphs
with bounded genus g and graphs which are Kh-minor free. The genus of a graph G is
the smallest integer g ≥ 0 such that G can be embedded in a torus with g holes without
crossing edges. Formally:

Definition 3.5.3 (Non-crossing Embedding). Let G = (V,E) be a graph and Σ ⊂ R3 be a
surface. An embedding of G in Σ is a pair of maps (ρ, κ), where ρ : V → Σ is injective so
that it maps vertices to distinct locations on the surface Σ, and κ : E → C([0, 1],Σ) maps
edges to continuous simple curves on Σ with κ(uv)(0) = ρ(u) and κ(uv)(1) = ρ(v). The
embedding (ρ, κ) is said to be non-crossing if the curves κ(e1) and κ(e2) do not intersect
except possibly at the common endpoint of the curves.

We say that G can be embedded without crossing in Σ if such an embedding (ρ, κ) exists.

A planar graph is a graph that is can be embedded in a plane without crossing, which is
equivalent to embeddability in the 2-sphere without crossing (via stereographic projection).
Therefore, planar graphs have genus 0, and the first part of the conjecture can be seen as
a generalization of Theorem 1.4.1.

A graph G contains another graph H as a minor if we can obtain H from G by (1)
contracting edges9, (2) deleting edges, and (3) deleting vertices, otherwise we say that
G is H-minor free. This definition is useful because H-minor free graphs are considered
generalizations of planar graphs and bounded-genus graphs: it is a well-known result by
Kuratowski [Kur30] that a graph G is planar if and only if G is K5-minor free and K3,3-
minor free.10 It is also known that Kh has genus Θ(h2) [RY68], and so a graph that has
genus g is Kh-minor free for some h = O(

√
g). Therefore, an eigenvalue upper bound on

minor-free graphs would be a further generalization of Theorem 1.4.1.

3.5.4 Second Eigenvalue Bound for Bounded-Genus Graphs

Kelner [Kel06] first proved the conjecture for graphs with bounded degree and bounded
genus.

Theorem 3.5.4 ([Kel06, Theorem 2.3]). For any graph G with genus g ≥ 1 and maximum
degree ∆, λ′2(G) ≲ poly(∆) · g/n.

9To contract an edge uv ∈ E means to identify the vertices u and v, so that a “super-vertex” {u, v} is
created, the edge uv and the vertices u and v removed, and every other edge connected to either u or v
now being connected to the super-vertex {u, v}.

10K3,3 is the complete bipartite graph with three vertices on each side.
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The exact dependence on the maximum degree ∆ was not specified in the paper. The
theorem implies that the vertex-based spectral partitioning algorithm described in Sec-
tion 3.5.2 produces a balanced separator of size O(

√
gn) for bounded degree graphs and

O(poly(∆) · √gn) for general graphs of genus g.
Kelner’s idea is to start with a “kissing disk” embedding of the graph G in the torus

with g holes, then construe a circle-preserving (and locally injective) map to the 2-sphere
so that at most O(g) disks overlap at any point. If this is possible, then the same argument
as before implies Theorem 3.5.4. To make this idea go through, however, it is necessary to
subdivide the graph to obtain an approximately “continuous” structure and come up with
a suitable notion of approximately circle-preserving map. In brief, the approach relies on
nontrivial results in the theory of Riemann surfaces, and it is not clear how to generalize
it to the Kh-minor free case.

3.5.5 Flow-Based Techniques for Bounding Second Eigenvalue

Biswal, Lee, and Rao [BLR10] finally settled the conjecture of Spielman and Teng [ST96],
by proving a second eigenvalue upper bound on Kh-minor free graphs.

Theorem 3.5.5 (Upper Bound on λ′2(G), [BLR10, Theorem 5.2, 5.3]). Let G = (V,E) be
a graph with maximum degree ∆. Then,

• If G is of genus g ≥ 1, then λ′2(G) ≤ O(g log2 g · ∆
n
).11

• If G is Kh minor free, then λ′2(G) ≤ O(h6 log h · ∆
n
).

The result implies that vertex-based spectral partitioning produces balanced separators

of size O
(√

g log2 g ·∆n
)
and O

(√
h6 log h ·∆n

)
respectively.

Instead of passing to the extrinsic geometry of the graph via embeddings, their approach
is more combinatorial and is based on network flows. They relate the second eigenvalue
to a metric quantity using the Rayleigh quotient, then establish a flow/metric duality to
pass to flows. The flow problem under consideration has demand graph Kn, so that we
are sending flows between every pair of vertices in G. The less well-connected G is, the
more congested the flows are, and by relating a measure of flow congestion to the graph
parameters via the “crossing number” of flows, the result is proven.

We provide an outline of the proof by [BLR10] in the remainder of the subsection.

11In [BLR10] a weaker statement is proved, that λ′2(G) ≤ O(g3 · ∆
n ). The bound in the theorem

statement appears in [KLPT11] and relies upon a stronger result in [LS10] concerning the decomposition
of shortest-path metrics on genus g graphs.
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Rayleigh Quotient to Shortest Path Metric

First, write the target quantity λ′2(G) as a Rayleigh quotient, then relate it to a minimiza-
tion problem involving metrics. The easiest to relate to is the ℓ22 distance, and afterwards
they pass to the shortest path metric which is dual (in an appropriate sense) to flows. The
following proposition details the relation between eigenvalues and ℓ22 metrics.

Proposition 3.5.6. Let G = (V,E) be a graph. Then,

1

2n
λ′2(G) = min

f :V→R

∑
uv∈E(f(u)− f(v))2∑
u,v∈V (f(u)− f(v))2

. (3.13)

Proof. By Rayleigh quotient definition of λ′2(G) similar to Proposition 2.5.3, we have

λ′2(G) = min
f⊥1

∑
uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

.

For f : V → R with
∑

v∈V f(v) = 0, Fact 2.10.4 asserts that∑
v∈V

f(v)2 =
1

2n

∑
u,v∈V

(f(u)− f(v))2. (3.14)

Substituting (3.14) into the denominator of the Rayleigh quotient, then dropping the con-
dition that f ⊥ 1 once we notice that RHS of (3.13) is translation invariant, the proof is
complete.

Next, they relax the minimization problem on RHS of (3.13). Their main lemma, which
we present shortly, shows that shortest path metrics are not too far away from ℓ22 metrics, in
terms of average distortion. This helps transition from the minimization problem involving
ℓ22 metrics to a minimization problem involving shortest path metrics. The proof relies on
results in metric decomposition which are not our main focus here, so we omit the proof.
For details, refer to [BLR10, Section 4].

Before stating the lemma, some new notations are in order. We consider vertex-
weighted shortest path metrics here, meaning that the cost of a path is the sum of costs
of vertices it passes through. For any graph G = (V,E), and for any s : V → R≥0, the
vertex-weighted shortest path metric ds induced by s is defined as

ds(u, v) := min
p:u-v path

∑
w∈V (p)

s(w), (3.15)

where V (p) is the set of vertices in the path p (including the endpoints u and v).
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Lemma 3.5.7 (Average Distortion [BLR10, Theorem 4.4]). For any graph G = (V,E),
there exists α(G) > 0 such that the following holds: for any shortest path metric ds, there is
a function f : V → R, such that if we write df (u, v) := |f(u)−f(v)| then df (u, v) ≤ ds(u, v)
for all u, v ∈ V and ∑

u,v∈V

ds(u, v)
2 ≲ α(G)2 ·

∑
u,v∈V

df (u, v)
2.

Furthermore, α(G) is the largest α > 0 such that, for any vertex-weighted shortest path
metric ds and r > 0, there exists an (r, α, 1/2)-padded decomposition of the metric space
(V, ds). It satisfies the following bounds:

• ([Bar96]) For any graph G, α(G) = O(log n);

• ([LS10]) If G has genus g ≥ 1, then α(G) = O(log g);

• ([KPR93]) If G is Kh-minor free, then α(G) = O(h2).

Using this lemma and after some work, they upper bound the value of λ′2(G) using the
value of a concave maximization program, relating to the spread of shortest path metrics:

1

2n
λ′2(G) = min

f :V→R

∑
uv∈E df (u, v)

2∑
u,v∈V df (u, v)

2

≲ α(G)2 · min
s:V→R≥0

∑
uv∈E ds(u, v)

2∑
u,v∈V ds(u, v)

2

= α(G)2 · min
s:V→R≥0

∑
uv∈E(s(u) + s(v))2∑

u,v∈V ds(u, v)
2

≤ 2α(G)2 · min
s:V→R≥0

∑
uv∈E(s(u)

2 + s(v)2)∑
u,v∈V ds(u, v)

2

≤ 2∆ · α(G)2 · min
s:V→R≥0

∑
v∈V s(v)

2∑
u,v∈V ds(u, v)

2

(∗)
≤ 2∆n2 · α(G)2 · min

s:V→R≥0

∑
v∈V s(v)

2

(
∑

u,v∈V ds(u, v))
2

= 2∆n2 · α(G)2 ·

[
max

s:V→R≥0

∑
u,v∈V ds(u, v)√∑

v∈V s(v)
2

]−2

,

where (∗) is by Cauchy-Schwarz inequality that (
∑

u,v∈V ds(u, v))
2 ≤ n2

∑
u,v∈V ds(u, v)

2,
and the last equality is just rewriting the min program as a max program that is concave
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and more convenient to work with in latter steps. We summarize the results of this part
in the following proposition.

Lemma 3.5.8 ([BLR10]). Let G = (V,E) be a graph with maximum degree ∆. Then,

λ′2(G) ≲ ∆n3 · α(G)2 ·

[
max

s:V→R≥0

∑
u,v∈V ds(u, v)√∑

v∈V s(v)
2

]−2

,

where α(G) is the average distortion parameter in Lemma 3.5.7 and ds(u, v) is the shortest
path metric defined in (3.15).

Metric Spread and Flow Congestion

Next, they relate the objective of the maximization program

max
s:V→R≥0

∑
u,v∈V ds(u, v)√∑

u∈V s(u)
2

=: max
s:V→R≥0

Λs(G)

to a multicommodity flow problem where the goal is to minimize some measure of flow
congestion. Refer to Section 2.9 for definitions about multicommodity flows.

Given a flow solution F , the congestion cF (u) at vertex u ∈ V is the total amount of
flow in F passing through u, and the vertex congestion of F considered here is the 2-norm
of the amount of flow passing through each vertex:

con(F ) :=

(∑
v∈V

cF (v)
2

)1/2

.

Intuitively, if the graph is well-connected, then both the spreading quantity Λs(G) and
the minimum congestion (for a suitable multicommodity flow problem) will be small. It
turns out that a much stronger relation holds: maximum spreading is dual to minimum
congestion.

Lemma 3.5.9 (Flow/Metric Duality, [BLR10, Theorem 2.2]). For any graph G = (V,E),

min
F∈F(G)

con(F ) = max
s:V→R≥0

Λs(G),

where the minimum is taken over all flow solutions F for the multicommodity flow problem
with uniform demand D(u, v) = 1 for all u ̸= v ∈ V .
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Proof. The proof is by writing out the Lagrangian of the minimum congestion program,
simplifying it to obtain Λs(G) as a dual program, and lastly finding a Slater point to
establish strong duality.

Introduce primal variables c(v) for the congestion at vertex v and w(p) for the amount
of flow sent along a path p. Use P to denote the set of all paths on G and P(u, v) to denote
the set of all u-v paths on G. The minimum congestion program can then be written as

min
c,w

(∑
v∈V

c(v)2

)1/2

subject to c(v) =
∑
p∋v

w(p) ∀v ∈ V

w(p) ≥ 0 ∀p ∈ P∑
p∈P(u,v)

w(p) = 1 ∀u, v ∈ V, u ̸= v.

Note that the objective function is convex. Using dual variables s(v), µ(p), α(u, v) for the
three constraints, we obtain the Lagrangian dual program as

max
s,µ,α

min
c,w

(∑
v∈V

c(v)2

)1/2

−
∑
v∈V

s(v)

[
c(v)−

∑
p∋v

w(p)

]

−
∑
p∈P

µ(p)w(p)−
∑
u̸=v

α(u, v)

 ∑
p∈P(u,v)

w(p)− 1


subject to µ(p) ≥ 0 ∀p ∈ P .

For fixed s, µ, α, we solve the inner minimization problem. We isolate the part relevant to
c from the part relevant to w and minimize them separately. The part relevant to c is(∑

v∈V

c(v)2

)1/2

−
∑
v∈V

s(v)c(v).

First derivative test yields the local minimizer condition

c(v) = s(v) ·

(∑
v∈V

c(v)2

)1/2

∀v ∈ V,
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and the objective becomes (∑
v∈V

c(v)2

)1/2(
1−

∑
v∈V

s(v)2

)
.

We see that the minimum value is 0 if
∑

v∈V s(v)
2 ≤ 1 and −∞ otherwise. Therefore, we

may remove this from the objective of the Lagrangian dual and instead add the constraints
that

∑
v∈V s(v)

2 ≤ 1.

The part relevant to w is

∑
u,v∈V

∑
p∈P(u,v)

w(p)

[∑
v∈p

s(v)− µ(p)− 1[u ̸= v] · α(u, v)

]
.

For the minimum value to not be −∞, we need
∑

v∈p s(v)− µ(p)− 1[u ̸= v] · α(u, v) = 0
for all p ∈ P(u, v), which is equivalent to s(v) ≥ 0 for all v ∈ V and

α(u, v) ≤
∑
v∈p

s(v) ∀u ̸= v, p ∈ P(u, v).

Again, we add these as constraints and remove the w part from the objective of the
Lagrangian. After these steps, the primal variables w and c are eliminated, µ becomes
redundant, and we end up with the following maximization problem:

max
s≥0,α

∑
u̸=v

α(u, v)

subject to α(u, v) ≤
∑
u′∈p

s(u′) ∀u ̸= v, p ∈ P(u, v)∑
v∈V

s(v)2 ≤ 1.

Clearly, the best choice of α(u, v) is α(u, v) = ds(u, v) where ds(u, v) is the s-weighted short-
est path length from u to v. Since Λs(G) is homogeneous in s, we see that maxs:V→R≥0

Λs(G)
is equivalent to the above program.

It remains to establish strong duality. It follows from the convexity of the primal
objective and the existence of Slater point by taking w(p) = 1/|P(u, v)| for any p ∈ P(u, v)
and c(v) =

∑
p∋v w(p).
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Flow Congestion Lower Bound

Finally, a concrete lower bound on the minimum congestion is derived, which yields an
upper bound on λ′2(G).

Lemma 3.5.10 (Congestion Lower Bound, [BLR10, Theorem 3.1, 3.11]). Let G = (V,E)
be a graph and let F be a flow solution to the multicommodity flow problem on G with
uniform demands D(u, v) = 1 for u, v ∈ V . Then,

• If G is of genus g ≥ 1, and n ≳
√
g, then con(F ) ≳ n2/

√
g;

• If G is Kh-minor free for h ≥ 3, and n ≳ h
√
log h, then con(G) ≳ n2/(h

√
log h).

The idea of proof for the genus g case is that, if con(F ) is too small, then we can round
it to an integral flow solution12 F ′ with con(F ′) small as well. As the demand graph is
Kn, this turns out to induce an embedding of Kn in a genus g surface Σ with few pairs
of crossing edges, contradicting known lower bounds on the minimum number of edge
crossings when Kn is embedded in a genus g surface. The proof for the Kh-minor free
case follows the same lines, but it proceeds by lower bounding the so-called intersection
number instead of the crossing number. We will not delve into the details of the proof
here, and remark that flow solutions can be rounded to integral flow solutions and relate
to combinatorial parameters of the graph. The interested reader is referred to [BLR10] for
details.

Putting It All Together

Now we are ready to prove the eigenvalue upper bounds in Theorem 3.5.5.

Proof of Theorem 3.5.5. Recall from Lemma 3.5.8 and Lemma 3.5.9 that

λ′2(G) ≲ ∆n3 · α(G)2 ·
(

min
F∈F(G)

con(F )

)−2

where the minimum of F is taken over all flow solutions F on demand graph Kn. Applying
Lemma 3.5.7 and Lemma 3.5.10, we have:

• When G is of genus g, α(G) ≲ log g and minF∈F(G) con(F ) ≳ n2/
√
g.

Plugging these bounds in, we obtain λ′2(G) ≤ O(g log2 g ·∆/n).
12An integral flow is a flow solution that has an integer amount of flow through each arc.
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• When G is Kh-minor free, α(G) ≲ h2 and minF∈F(G) con(F ) ≳ n2/(h
√
log h).13

Plugging these bounds in, we obtain λ′2(G) ≤ O(h6 log h ·∆/n).

This completes the proof of Theorem 3.5.5.

Remark 3.5.11 (Direct Upper Bounds on Vertex Expansion). Using the same technique,
[BLR10, Theorem 5.5] proves upper bounds directly on the vertex expansion of special
classes of graphs: O(1/

√
n) for planar graphs, O(

√
g log g/

√
n) for bounded genus graphs,

and O(h3
√
log h/

√
n) for Kh-minor free graphs. While these are better upper bounds than

those obtained via eigenvalue upper bounds and the “classical” vertex Cheeger inequality
[Tan84, AM85, Alo86], no polynomial-time algorithm is known that finds a cut satisfying
these bounds.

3.5.6 Flow-Based Techniques for Bounding Higher Eigenvalues

Generalizing the work of Biswal, Lee and Rao [BLR10], Kelner, Lee, Price and Teng
[KLPT11] derived an upper bound on higher eigenvalues of the unnormalized Laplacian
for the same special classes of graphs.

Theorem 3.5.12 (Upper bound on λ′k(G), [KLPT11, Theorem 5.1]). Let G = (V,E) be a
graph with maximum degree ∆, and let 1 ≤ k ≤ n. Then,

• If G is planar, then λ′k(G) ≤ O(∆k
n
).

• More generally, if G is of genus g ≥ 1, then λ′k(G) ≤ O(g log2 g · ∆k
n
).

• If G is Kh-minor free, then λ′k(G) ≤ O(h6 log h · ∆k
n
).

The high-level idea is to relate λ′k(G) to certain quantities relevant to shortest-path
metrics on G, then control these quantities using the special properties of G. This re-
sult predates the higher-order Cheeger inequality [LOT12, LRTV12] (c.f. Section 3.1.3),
and the main application was to provide a theoretical justification for heuristic algorithms
for graph partitioning and clustering; see the references in [KLPT11]. Combined with
[LOT12, LRTV12], Theorem 3.5.12 implies a spectral algorithm to retrieve k disjoint sub-
sets S1, . . . , Sk such that the k-way conductance ϕk(S1, . . . , Sk) is small.

We provide an outline of the proof by [KLPT11] in the rest of the subsection.

13When h ≥ ω(
√
log n), we may use the better average distortion bound that α(G) ≲ log n.
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Rayleigh Quotient to Metric Parameters

The first component of the proof is to relate λ′k(G) to the following metric quantities:

Definition 3.5.13 (Metric Padding Parameter [KLPT11]). Let (X, dX) be a finite metric
space. For any x ∈ X and r > 0, let B(x, r) := {x′ ∈ X : dX(x, x

′) < r} denote the open
ball centered at x with radius r. For any partitioning P of X, using P (x) to denote the
partition that contains x ∈ X, define the padding parameter β(P, γ) to be the infimal value
of β ≥ 1 such that

|{x ∈ X : B(x, γ/β) ⊆ P (x)}| ≥ |X|
2
.

In other words, at least half of the points in X satisfy that all points (γ/β)-close to it are
in the same partition. Further, let

βγ(X, dX) := inf
P
β(P, γ),

where the infimum is taken over all parititoning P of (X, dX) where each partition has
diameter at most γ.

Definition 3.5.14 (Metric Spreading Parameter [KLPT11]). Let G = (V,E) be a graph.
Let s : V → R≥0 be a weight function on the vertices, and ds be the associated vertex-
weighted shortest path metric on V (c.f. (3.15)). For ε > 0 and a collection Ψ of nonempty
subsets of V , say that s is (Ψ, ε)-spreading if, for every S ∈ Ψ one has

1

|S|2
∑
u,v∈S

ds(u, v) ≥ ε ·
√∑

u∈V

s(u)2.

Write εΨ(G, s) to be the maximal value of ε such that s is (Ψ, ε)-spreading.

In [KLPT11], this definition is restricted to Ψ = Ψr with Ψr being the collection of
size-r subsets of V . We use (r, ε)-spreading in place of (Ψr, ε)-spreading and εr(G, s) in
place of εΨr(G, s) to refer to this restricted setting.

Given G = (V,E), they use the metric padding parameter to find a well-padded parti-
tioning of V . The metric spreading parameter plays the role of the spreading parameter in
Definition 3.1.8 to upper bound the size of each partition. Using the same smooth local-
ization procedure as seen in Lemma 3.1.14, they create from the partitioning k disjointly
supported functions f1, . . . , fk : V → R, each having small Rayleigh quotient. This is
summarized in the following lemma.

108



Lemma 3.5.15 (Eigenvalues and Metric Parameters [KLPT11, Theorem 2.3]). Let G =
(V,E) be a graph with maximum degree ∆. For any 1 ≤ k ≤ n, the following holds. For
any weight function s : V → R≥0 satisfying∑

u∈V

s(u)2 = 1,

we have

λ′k(G) ≤
256∆

ε2n

(
βε/2(V, ds)

)2
,

where ε = ε⌊n/4k⌋(G, s).

Proof. Let β = βε/2(V, ds). By Definition 3.5.13, there exists a partitioning P of V such
that:

• Each partition P (v) has diameter ≤ ε/2;

• At least half of the vertices v ∈ V satisfy B(v, ε/(2β)) ⊆ P (v).

Let S1, . . . , Sℓ be the partitions in P , and let

S ′
i := {u ∈ Si : B(u, ε/(2β)) ⊆ Si}

be the “core” of Si: vertices in Si whose ε/(2β)-neighborhood is contained entirely in Si.
Then, by the second property of P we know that

|S ′
1 ⊔ · · · ⊔ S ′

ℓ| ≥ n/2.

By Definition 3.5.14, every vertex subset S of size r = ⌊n/4k⌋ satisfies

1

|S|2
∑
u,v∈S

ds(u, v) ≥ ε ·
√∑

u∈V

s(u)2 = ε.

This implies in particular that the diameter of every subset of size r is at least ε, and so
by contrapositive, |S ′

i| ≤ |Si| < r = ⌊n/4k⌋ for all i ∈ [ℓ]. By possibly unioning some
of the sets Si, we can find disjoint subsets T1, . . . , Tq and their “cores” T ′

1, . . . , T
′
q so that

B(u, ε/(2β)) ⊆ Ti for each u ∈ T ′
i , and that each T ′

i has size between r/2 and r. As
| ⊔i S ′

i| ≥ n/2, this means that there are at least q ≥ (n/2)/r ≥ 2k subsets.

109



Now we use these sets to define disjointly supported vectors with small Rayleigh quo-
tient. Consider the following “smooth localization” f1, . . . , fq of the subsets:

fi(u) := max

(
0,

ε

2β
− ds(u, T ′

i )

)
.

First, note the following about the mass of each fi:

∥fi∥2 =
∑
u∈V

fi(u)
2 ≥

(
ε

2β

)2

· |T ′
i | ≥

ε2n

32β2k
.

Next, observing that each fi is supported on Ti, the total energy with respect to the
unnormalized Laplacian is∑

i∈[q]

E(fi) =
∑
i∈[q]

∑
uv∈E

(fi(u)− fi(v))2

≤
∑
i∈[q]

∑
u∈Ti

∑
v:uv∈E

(fi(u)− fi(v))2

≤
∑
i∈[q]

∑
u∈Ti

∑
v:uv∈E

ds(u, v)
2

≤ 2
∑
i∈[q]

∑
u∈Ti

∑
v:uv∈E

(s(u)2 + s(v)2)

≤ 4∆
∑
u∈V

s(u)2 = 4∆.

The second inequality is because fi is 1-Lipschitz with respect to ds, the third inequality is
because ds(u, v)

2 = (s(u)+s(v))2 ≤ 2(s(u)2+s(v)2), and the final inequality is because each
s(u)2 appears at most 2 ·deg(u) ≤ 2∆ times in the sum. Since the number of functions is at
least 2k, there exists k such fi’s with disjoint support, such that E(fi) ≤ 4∆/k. Therefore,

E(fi)
∥fi∥2

≤ 128∆

ε2n
β2

for the chosen fi’s, and using Proposition 2.5.414 this implies the desired conclusion.

In light of Lemma 3.5.15, the desired eigenvalue upper bounds will follow from up-
per bounds on the metric padding parameter and lower bounds on the metric spreading
parameter.

14While Proposition 2.5.4 is stated for the normalized Laplacian, the same proof can be applied to obtain
an analogous statement for the unnormalized Laplacian and the corresponding Rayleigh quotient.
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Bounds on Metric Padding

The second component of the proof is to upper bound the metric padding parameter in
Definition 3.5.13 for shortest path metrics of special classes of graphs. The results are
readily available in the literature, and we summarize the bounds here.

Lemma 3.5.16 (Upper Bounding Metric Padding Parameter [KPR93, FT03, LS10, KLPT11]).
Let G = (V,E) be a graph, and let ds be any shortest path metric corresponding to a vertex
weight function s : V → R≥0. Let γ > 0.

• [KPR93, FT03] If G is planar, then βγ(V, ds) ≤ O(1).

• [LS10] If G has genus g ≥ 1, then βγ(V, ds) ≤ O(log g).

• [KPR93, FT03] If G excludes Kh as a minor, then βγ(V, ds) ≤ O(h2).

(Note that the big-O bound does not depend on γ.)

Bounds on Metric Spreading

The third and final component of the proof is to lower bound the metric spreading pa-
rameter in Definition 3.5.14. This is the main novelty of their work. The first step is to
consider the dual of the metric spreading parameter, which turns out to be a congestion
minimization program on a new multicommodity flow problem called subset flows. The
second step is to employ combinatorial and analytic tools to lower bound the minimum
congestion.

Lemma 3.5.17 (Flow/Metric Duality [KLPT11]). Let G = (V,E) be a graph and let Ψ be
a collection of nonempty subsets of V . Then, the metric spreading maximization problem
is strongly dual to the “subset flow” minimum congestion problem:

max
s:V→R≥0

εΨ(G, s) = min
F∈FΨ(G)

con(F ),

where FΨ(G) is the set of all multicommodity flows on G whose demand graph satisfies

Dh(u, v) =
∑

A∈Ψ:{u,v}⊆A

h(A)

|A|2
∀u, v ∈ V

for some distribution h on Ψ, i.e. h : Ψ→ R≥0 with
∑

A∈Ψ h(A) = 1.
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The interpretation of subset flows is that the demand graph is a weighted sum of
“base” demand graphs on subsets, where on each subset S the base demand graph has
1/|S|2 demand between each pair of vertices in S. Note that in [KLPT11], only Ψ = Ψr

was considered, so the admissible subsets are only those of size r for some fixed r.

Proof. The proof is again by standard Lagrangian duality. Rewrite the metric spreading
maximization problem as follows:

max
ε,δ,s

ε

subject to
1

|A|2
∑
u,v∈A

δ(u, v) ≥ ε ∀A ∈ Ψ

δ(u, v) ≤
∑
u′∈p

s(u′) ∀u, v ∈ V ∀p ∈ P(u, v)

s(u) ≥ 0 ∀u ∈ V∑
u∈V

s(u)2 = 1.

Here P(u, v) denotes the set of all paths on G from u to v and δ(u, v) represents the length
of the shortest path from u to v. Introduce dual variables h(A) for the first constraint,
α(p) for the second constraint, and µ for the final constraint. We obtain the Lagrangian
dual program as

min
h,α,µ

max
ε,δ,s

ε+
∑
A∈Ψ

h(A)

(
1

|A|2
∑
u,v∈A

δ(u, v)− ε

)

+
∑
u,v

∑
p∈P(u,v)

α(p)

(∑
u′∈p

s(u′)− δ(u, v)

)
+ µ

(
1−

∑
u∈V

s(u)2

)
subject to h(A) ≥ 0 ∀A ∈ Ψ

α(p) ≥ 0 ∀p ∈ P
s(u) ≥ 0 ∀u ∈ V.

We first solve the inner maximization problem to eliminate the primal variables, and then
interpret the dual variables as subset flow parameters. For the inner maximization problem,
the part involving ε is

ε

(
1−

∑
A∈Ψ

h(A)

)
,
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as ε is unconstrained, for the maximum value to not be ∞, we need
∑

A∈Ψ h(A) = 1, in
which case the maximum is 0. The part involving δ(u, v) is

δ(u, v)

 ∑
A∈Ψ:{u,v}⊆A

h(A)

|A|2
−

∑
p∈P(u,v)

α(p)

 .
Again, as δ(u, v) is unconstrained, for the maximum value to not be ∞, we need∑

p∈P(u,v)

α(p) =
∑

A∈Ψ:{u,v}⊆A

h(A)

|A|2
=: Dh(u, v),

in which case the maximum is 0. Finally, the part involving s(u) is( ∑
p∈P:u∈p

α(p)

)
· s(u)− µ · s(u)2.

Write
C(u) :=

∑
p∈P :u∈p

α(p).

When µ < 0 this is unbounded, and otherwise first derivative test gives the optimizer

s(u) =
C(u)

2µ
.15

Simplifying, the dual program becomes

min
h,α,µ

∑
u∈V

C(u)

(
C(u)

2µ

)
+ µ

(
1−

∑
u∈V

(
C(u)

2µ

)2
)

subject to h(A) ≥ 0 ∀A ∈ Ψ∑
A∈Ψ

h(A) = 1

α(p) ≥ 0 ∀p ∈ P∑
p∈P(u,v)

α(p) = Dh(u, v) ∀u, v ∈ V.

15We treat 0/0 = 0 here.
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The objective is

µ+
1

4µ

∑
u∈V

C(u)2

and by first derivative test the minimizer is µ =
√∑

u∈V C(u)
2/2, attaining a minimum

value of 2µ.

By now the subset flow interpretation should be clear: h : Ψ→ R≥0 is a distribution on
Ψ, Dh(u, v) is the corresponding demand between u and v in the subset flow problem, α(p)
is the amount of flow along path p in the flow solution, which we denote by F . Then, the
objective is exactly con(F ), and the above constraints can be condensed into F ∈ FΨ(G).
Therefore, the Lagrangian dual of the metric spreading maximization problem is

min
F∈FΨ(G)

con(F ).

It remains to establish strong duality. Clearly, the primal maximization problem is
concave. We can find a Slater point as follows: take s(u) = 1/

√
n for all u ∈ V , δ(u, v) =

1/
√
n for all u, v ∈ V , and ε = 1/(10

√
n). This is feasible and all inequality constraints

are strict. This completes the proof.

Lemma 3.5.18 (Congestion Lower Bound [KLPT11, Corollary 3.6, Theorem 4.1]). Let
G = (V,E), and let Ψ be a given collection of nonempty subsets of V . Let h : Ψ → R≥0

be a distribution on Ψ, and let FΨ(G) be the set of all multicommodity flows on G whose
demand graph satisfies

Dh(u, v) =
∑

A∈Ψ:{u,v}⊆A

h(A)

|A|2
∀u, v ∈ V.

Write MΨ :=
∑

A∈Ψ h(A)/|A|2. Then, for any flow solution F ∈ FΨ(G),

• (if G is planar) con(F ) ≳ n−1/2(MΨ)−1/4 if MΨ < o(1),

• (if G has genus g ≥ 1) con(F ) ≳ (gn)−1/2(MΨ)−1/4 if gMΨ < o(1),

• (if G is Kh-minor free) con(F ) ≳ (h2 log h · n)−1/2(MΨ)−1/4 if (h2 log h)MΨ < o(1).

Proof. We use the notion of “(c, a)-congested” from [KLPT11]. The exact definition do
not matter; we only require the following facts:
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• [KLPT11, Theorem 4.1] Let h : Ψ→ R≥0 be a distribution on Ψ, and let F̄Ψ(G) be
the set of multicommodity flows on G whose demand graph satisfies

D̄h(u, v) =
∑

A∈Ψ:{u,v}⊆A

h(A) ∀u, v ∈ V.

Then, for any F ∈ F̄Ψ(G),

con(F )2 ≳
1

cn

(∑
S∈Ψ

h(S)|S|2
)5/2

− c0
a

n

(∑
S∈Ψ

h(S)|S|2
)

(3.16)

for some universal constant c0 > 0.16

• [KLPT11, Corollary 3.6] If G is planar, then G is (O(1), O(1))-congested. If G has
bounded genus g ≥ 1, then G is (O(g), O(

√
g))-congested. If G is Kh-minor free,

then G is (O(h2 log h), O(h
√
log h))-congested.

To bridge the gap between FΨ(G) and F̄Ψ(G), define the following distribution

h̄(A) :=
h(A)/|A|2∑
S∈Ψ h(S)/|S|2

=
h(A)

|A|2MΨ
.

Then, any flow solution to FΨ(G) corresponding to distribution h is MΨ times a flow
solution to F̄Ψ(G) corresponding to distribution h̄, and so its congestion is also MΨ times
that of the corresponding F̄Ψ(G) flow. We also note that∑

S∈Ψ

h̄(S)|S|2 =
∑
S∈Ψ

h(S)

MΨ
=

1

MΨ
.

Now, we derive a congestion lower bound for each graph class.

• If G is planar, then G is (O(1), O(1))-congested. Taking c = O(1) and a = O(1) in
(3.16), we have

min
F∈FΨ(G)

con(F ) =MΨ · min
F∈F̄Ψ(G)

con(F ) ≳

√
(MΨ)−1/2

O(1) · n
− O(1)

n
MΨ,

which is at least Ω(n−1/2(MΨ)−1/4) if MΨ < o(1).

16To be exact, [KLPT11, Theorem 4.1] lower bounds a related quantity called “intersection number”.
The intersection number is at most the congestion measure, and so the theorem implies (3.16).
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• If G has genus g ≥ 1, then G is (O(g), O(
√
g))-congested. Taking c = O(g) and

a = O(
√
g) in (3.16), we have

min
F∈FΨ(G)

con(F ) =MΨ · min
F∈F̄Ψ(G)

con(F ) ≳

√
(MΨ)−1/2

O(g) · n
−
O(
√
g)

n
MΨ,

which is at least Ω((gn)−1/2(MΨ)−1/4) if gMΨ < o(1).

• If G is Kh-minor free, then G is (O(h2 log h), O(h
√
log h))-congested. Taking c =

O(h2 log h) and a = O(h
√
log h) in (3.16), we have

min
F∈FΨ(G)

con(F ) =MΨ · min
F∈F̄Ψ(G)

con(F ) ≳

√
(MΨ)−1/2

O(h2 log h) · n
− O(h

√
log h)

n
MΨ,

which is at least Ω((h2 log h · n)−1/2(MΨ)−1/4) if (h2 log h)MΨ < o(1).

This completes the proof.

Putting It All Together

Now we are ready to prove the eigenvalue upper bound in Theorem 3.5.12.

Proof of Theorem 3.5.12. Start with the eigenvalue upper bound in Lemma 3.5.15 that

λ′k(G) ≲
∆

ε2n

(
βε/2(V, ds)

)2
, (3.17)

where ε = εr(G, s) with r = ⌊n/4k⌋.

• If G is planar, there are two cases to consider per Lemma 3.5.18. If MΨr < o(1)
where Ψr is the collection of all size-r vertex subsets, then by Lemma 3.5.17 and
Lemma 3.5.18 it is possible to take ε = Θ(n−1/2(MΨr)−1/4). In this case,MΨr = 1/r2,
and ε = Θ(

√
r/n) = Θ(1/

√
k). Now by Lemma 3.5.16, βε/2(V, ds) = O(1). Plugging

all the values in (3.17) we get

λ′k(G) ≲
∆k

n
.
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If MΨr ≥ Ω(1), that means r ≤ O(1) and so k ≥ Ω(n). Then, by the trivial upper
bound that λ′k(G) ≤ λ′n(G) ≤ 2∆17, we have

λ′k(G) ≤ 2∆ ≲
∆k

n
.

• If G is of genus g ≥ 1, there are again two cases to consider per Lemma 3.5.18.
If gMΨr < o(1), then we can apply the lemma and the metric/flow duality in
Lemma 3.5.17 and take ε = Θ((gn)−1/2(MΨr)−1/4) = Θ(1/

√
gk). Now by Lemma 3.5.16,

βε/2(V, ds) = O(log g). Plugging all the values in (3.17) we get

λ′k(G) ≲
∆k

n
· g log2 g.

If gMΨr ≥ Ω(1), then g ≥ Ω(r2) = Ω((n/k)2). Then, by the trivial upper bound
that λ′k(G) ≤ λ′n(G) ≤ 2∆, we have

λ′k(G) ≤ 2∆ ≲ ∆ ·
(
k

n
· g
)

≲
∆k

n
· g log2 g.

• If G is Kh-minor free, there are again two cases to consider per Lemma 3.5.18. If
(h2 log h)MΨr ≤ O(1), then we can apply the lemma and the metric/flow duality in
Lemma 3.5.17 and take ε = Θ((h2 log h · n)−1/2(MΨr)−1/4) = Θ(1/

√
(h2 log h) · k).

Now by Lemma 3.5.16, βε/2(V, ds) = O(h2). Plugging all the values in (3.17) we get

λ′k(G) ≲
∆k

n
· h6 log h.

If (h2 log h)MΨr ≥ Ω(1), then (h2 log h) ≥ Ω(r2) = Ω((n/k)2). Then, a similar
argument as in the bounded genus case yields

λ′k(G) ≤ 2∆ ≲ ∆ ·
(
k

n
· h2 log h

)
≲

∆k

n
· h6 log h.

This concludes the proof.

17This follows from a Rayleigh quotient characterization of λ′k(G) similar to Proposition 2.5.3, and that

R(f) =

∑
uv∈E(f(u)− f(v))2∑

v∈V f(v)
2

≤ 2

∑
uv∈E(f(u)

2 + f(v)2)∑
v∈V f(v)

2
≤ 2∆.

for all f : V → R.
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3.6 Tighter Relaxations of Expansions

3.6.1 Adding Triangle Inequalities

One drawback of Cheeger’s inequality is that the quality of the produced cut suffers from a
square-root loss, since the guarantee of the Cheeger cut S is only that ϕ(S) ≤ O(

√
λ2(G)).

This is especially problematic when the graph has small conductance. For instance, when
G is the graph of two copies of Kn/2 connected by a perfect matching, ϕ(G) = Θ(1/n)
and λ2(G) = Θ(1/n)18, so the Cheeger cut guarantee is only ϕ(S) ≤ O(1/

√
n). This is a

fundamental drawback of the spectral approach, and so a different approach is needed to
obtain better low-conductance cuts.

The first breakthrough towards obtaining better low-conductance cuts is by Leighton
and Rao [LR99]. They proved a generalization of the max-flow min-cut theorem that,
for multicommodity flow problems on undirected graphs with product demands D(u, v) =
π(u)π(v), the gap between max-flow and min-cut is O(log n). The max-flow is then for-
mulated as an LP, which can be solved and rounded to a cut in polynomial time. For any
vertex weights π, the cut produced is guaranteed to have π-weighted edge expansion at
most O(log n) times the minimum. This in particular implies O(log n) approximation for
edge expansion and edge conductance. Refer to their paper for details.

The second breakthrough is by Arora, Rao, and Vazirani [ARV09] and gives the best
worst-case approximation guarantee of O(

√
log n) for edge expansion and (via a reduction;

see Proposition 2.3.8) edge conductance of undirected graphs. They proved that the fol-
lowing Goemans-Linial SDP relaxation for undirected edge expansion ϕ′ has an integrality
gap of O(

√
log n):

min
f :V→Rn

1

n

∑
uv∈E

∥f(u)− f(v)∥2

subject to
∑
u,v∈V

∥f(u)− f(v)∥2 = n2

∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 ∀u, v, u′ ∈ V.

(3.18)

This is indeed an SDP because both the objective and the constraints are linear in the
Gram matrix X(u, v) = ⟨f(u), f(v)⟩. Note that this formulation without the ℓ22 triangle
inequalities in the last constraint is equivalent to the second smallest eigenvalue of the
normalized Laplacian matrix when the graph is regular (see e.g. [Tre16]).

18One can see this by writing G = Kn/2×K2 and using the known facts about the spectrum of complete
graphs and the spectrum of Cartesian products of graphs. One good reference is [BH11, Section 1.4].
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A major contribution in [ARV09] is a structure theorem on vectors satisfying the ℓ22
triangle inequalities. It asserts that, given a “well-spread” set of vectors satisfying the ℓ22
triangle inequalities, there are two large subsets L and R, such that all vectors in L are far
away from all vectors in R.

Definition 3.6.1 (Well-Spread Vectors). Let k ∈ N and let f : V → Rk be a set of vectors
that satisfy

∑
u,v∈V ∥f(u)− f(v)∥

2 = n2. Let B(u, r) := {v ∈ V : ∥f(v)− f(u)∥ < r}
denote the open ℓ2-ball of radius r centered at f(u). We say that {f(u)}u∈V is well-spread
if |B(u, 1√

10
)| ≤ n

10
for all u ∈ V .

Theorem 3.6.2 (ℓ22 Structure Theorem [ARV09, Theorem 1]). Let {f(u)}u∈V be a set of
vectors19 that satisfy the ℓ22 triangle inequalities and with

∑
u,v∈V ∥f(u)− f(v)∥

2 = n2. If
{f(u)}u∈V is well-spread, then there exist two sets L,R ⊆ V such that |L|, |R| ≥ Ω(n) and

d(L,R) := min
u∈L,v∈R

∥f(u)− f(v)∥2 ≳ 1/
√

log n.

Moreover, there is a randomized polynomial-time algorithm that finds such sets with high
probability.

The proof consists of novel geometric arguments involving measure concentration and
chaining, which we refer the reader to [ARV09] for details. Using Theorem 3.6.2, they
derived an O(

√
log n) approximation algorithm for edge expansion.

Theorem 3.6.3 (O(
√
log n) Approximation of Edge Expansion [ARV09]). Let G = (V,E)

be an undirected graph and let λ∆2 (G) be the program in (3.18). Let φ(G) be the edge
expansion of G as defined in Section 2.3.1. Then,

φ(G)√
log n

≲ λ∆2 (G) ≤ φ(G).

Proof. We first prove the easy direction that λ∆2 (G) ≤ φ(G). Given a subset S ⊆ V such
that 0 < |S| ≤ n/2 and φ(S) = φ(G), consider the following vector solution to λ∆2 (G):

f(u) :=


0⃗, if u ∈ S,(

n√
2·|S|·|Sc|

, 0, . . . , 0

)T
, otherwise.

19In [ARV09], the vectors f(u) are assumed to be of unit length. We note that the structure theorem
holds without this assumption as well; see for example [Rot16] for a writeup.
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It is routine to check that this is feasible, and the objective value is

1

n

∑
uv∈E

∥f(u)− f(v)∥2 = |E(S, Sc)| · n

2 · |S| · |Sc|
≤ φ(S),

since |Sc| ≥ n/2.

Now we prove the hard direction that λ∆2 (G) ≳ φ(G)/
√
log n. The rounding technique

first appeared in [LR99]. Let f : V → Rn be an optimal solution to λ∆2 (G). There are two
cases to consider, depending on whether f is well-spread or not per Definition 3.6.1.

• Suppose that f is well-spread. Then, by Theorem 3.6.2, there exist two sets L,R ⊆ V
such that |L|, |R| ≥ Ω(n) and

d(L,R) := min
u∈L,v∈R

∥f(u)− f(v)∥2 ≳ 1/
√
log n.

Write D for d(L,R). Consider the following threshold set determined by the distance
of a vertex from L:

St := {u ∈ V : d(u, L) > t},

where 0 ≤ t < D. We see that L ⊆ Sct and R ⊆ St, so that∫ D

0

min(|St|, |Sct |) dt ≥ Dmin(|L|, |R|) ≳ n√
log n

,

and we also have∫ D

0

|E(St, Sct )| dt ≤
∑
uv∈E

|d(u, L)− d(v, L)|
(∗)
≤
∑
uv∈E

d(u, v) = nλ∆2 (G).

where (∗) uses that d(u, v) := ∥f(u)− f(v)∥2 satisfies triangle inequality. By the
usual averaging argument, there exists a t ∈ [0, D) such that by taking S = St or
S = Sct we have 0 < |S| ≤ n/2 and φ(S) ≲ λ∆2 (G) ·

√
log n.

• Suppose that f is not well-spread, so that it has a large core C := B(u0,
1√
10
) with

|C| > n/10 for some u0 ∈ V . That means d(u, u0) ≤ 1/10 for all u ∈ C. Consider
the following threshold set determined by the distance of a vertex from C:

St := {u ∈ S : d(u,C) > t},
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where t ∈ R≥0. We see that C ⊆ Sct so that |Sct | ≥ |St|/9, and so∫ ∞

0

min(|St|, |Sct |) dt ≥
1

9

∫ ∞

0

|St| dt =
1

9

∑
u∈V

d(u,C).

Recall that u0 is the center of C, so that d(u,C) ≥ d(u, u0)− 1/10 for all u ∈ V . To
lower bound

∑
u∈V d(u, u0) we use

2n
∑
u∈V

d(u, u0) =
∑
u,v∈V

(d(u, u0) + d(v, u0)) ≥
∑
u,v∈V

d(u, v) = n2,

which gives finally that∑
u∈V

d(u,C) ≥
∑
u∈V

(
d(u, u0)−

1

10

)
≥ n

(
1

2
− 1

10

)
≥ n

3
,

and so the “average” denominator satisfies∫ ∞

0

min(|St|, |Sct |) dt ≳ n.

The “average” numerator bound is the same as before:∫ ∞

0

|E(St, Sct )| dt =
∑
uv∈E

|d(u,C)− d(v, C)| ≤
∑
uv∈E

d(u, v) = nλ∆2 (G),

so in this case we can in fact find S = St or S = Sct such that 0 < |S| ≤ n/2 and
φ(S) ≲ λ∆2 (G).

Combining the two cases finishes the proof.

3.6.2 Fast Algorithms

The approximation algorithm in [ARV09] is only guaranteed to run in polynomial time,
while the Cheeger rounding algorithm for edge conductance runs in near-linear time. Sub-
sequently, [AHK05, AK07, She09] bridged the gap by designing fast primal-dual algorithms
to solve the SDP in (3.18). The theoretically fastest O(

√
log n) approximation algorithm

so far for edge expansion is by Sherman [She09], which requires solving no(1) maximum flow
problems, and by a recent breakthrough in maximum flow solvers [CKL+22] the overall
runtime of Sherman’s algorithm is almost linear in the input size.

There are also fast O(log n)-approximation algorithms for edge expansion (with arbi-
trary vertex weights) using the cut-matching game framework [KRV09, OSVV08]. These
algorithms only require solving a polylogarithmic number of maximum s-t flows and run
in almost-linear time [CKL+22].
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3.6.3 Tighter Programs for More General Settings

The ARV structure theorem of Theorem 3.6.2 is a general result about metric properties of
vectors satisfying the ℓ22 triangle inequalities, and has little to do with the underlying prob-
lem being the sparsest cut. By designing appropriate SDP relaxations of other expansion
quantities that incorporate the ℓ22 triangle inequalities, subsequent work apply the structure
theorem to prove O(

√
log n) integrality gaps, thus providing a randomized polynomial-time

algorithm for approximating these expansion quantities to within O(
√
log n) of the optimal.

Directed Edge Expansion

Agarwal, Charikar, Macharychev and Macharychev [ACMM05] designed an SDP for ap-
proximating directed edge expansion using a directed semi-metric. Their idea was to
introduce an extra vector f(0) to the embedding, and to define the semi-metric20 as

d⃗(u, v) := ∥f(u)− f(v)∥2 − ∥f(u)− f(0)∥2 + ∥f(v)− f(0)∥2 ≥ 0. (3.19)

For a given directed graph G = (V,E,w), their program sdp∆(G) is formulated as follows:

min
f :V ∪{0}→Rn

1

n

∑
uv∈E

(
∥f(u)− f(v)∥2 − ∥f(u)− f(0)∥2 + ∥f(v)− f(0)∥2

)
subject to ∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 ∀u, v, u′ ∈ V ∪ {0}∑

u,v∈V

∥f(u)− f(v)∥2 = n2. (3.20)

Note that taking u′ = 0 in the triangle inequality implies that d⃗(u, v) ≥ 0. This is an SDP
because the objective is a linear function in the Gram matrix X(u, v) = ⟨f(u), f(v)⟩ and
the constraints are linear equalities and inequalities in X as well.

Their main result is to prove that sdp∆(G) is an SDP relaxation of directed edge
expansion φ(G), and that the integrality gap is O(

√
log n).

Theorem 3.6.4 (O(
√
log n) Approximation of Directed Edge Expansion [ACMM05]). Let

G = (V,E) be a directed graph and let sdp∆(G) be the program in (3.20). Let φ⃗(G) be the
directed edge expansion of G as defined in Section 2.3.2. Then,

φ⃗(G)√
log n

≲ sdp∆(G) ≤ 2φ⃗(G).

20Note that d⃗(u, v) = d⃗(v, u) may not hold.
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Proof. We first prove the easy direction that sdp∆(G) ≤ φ⃗(G). Given a set S ⊆ V such that
|δ+(S)|/min(|S|, |Sc|) = φ⃗(G), consider the following vector solution f : V ∪ {0} → Rn+1

to sdp∆(G):

f(u) :=


0⃗, if u ∈ S ∪ {0},(

n√
2·|S|·|Sc|

, 0, . . . , 0

)T
, otherwise.

It is easy to check that f is feasible. To compute its objective value, note that for uv ∈ E,
if f(u) = f(v) then d⃗(u, v) = 0 (d⃗ as defined in (3.19)), and if f(u) ̸= f(v) then either

(u ∈ S, v ∈ Sc) or (u ∈ Sc, v ∈ S). In the second case we again have d⃗(u, v) = 0, and in

the first case d⃗(u, v) = n2/(|S| · |Sc|). Therefore, the objective is

|δ+(S)| · n2

|S| · |Sc|
≤ 2φ⃗(S).

Next, we prove the hard direction that sdp∆(G) ≳ φ⃗(G)/
√
log n. Let f : V ∪ {0} → Rn+1

be an optimal solution to sdp∆(G). Per the ARV structure theorem in Theorem 3.6.2,
there are two cases to consider.

• Suppose that {f(u)}u∈V is well-spread. Then, by Theorem 3.6.2, there exists two
sets L,R ⊆ V such that |L|, |R| ≥ Ω(n) and

d(L,R) := min
u∈L,v∈R

∥f(u)− f(v)∥2 ≳ 1/
√

log n.

To relate to the directed semi-metric d⃗, we would like to impose order on the term
∥f(u)− f(0)∥2. Let r ∈ R≥0 be a median of d(u, 0) for u ∈ L such that if

L+ := {u ∈ L : d(u, 0) ≥ r} and L− := {u ∈ L : d(u, 0) ≤ r},

then |L+|, |L−| ≥ |L|/2. Define R+ and R− similarly using the same threshold r.

If |R+| ≥ |R|/2, take L∗ := L− and R∗ := R+. Otherwise, take L∗ := L+ and R∗ :=
R−. By construction, we still have |L∗|, |R∗| ≥ Ω(n) and d(L∗, R∗) ≥ Ω(1/

√
log n).

Moreover, either d(u, 0) ≤ d(v, 0) for all u ∈ L∗, v ∈ R∗, or d(u, 0) ≥ d(v, 0) for all
u ∈ L∗, v ∈ R∗. Swapping L∗ and R∗ if necessary, assume that the former is the case,
so that

d⃗(u, v) = d(u, v)− d(u, 0) + d(v, 0) ≥ d(u, v) ≳
1√
log n
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for all u ∈ L∗ and v ∈ R∗. Consider the following threshold set determined by the
directed distance from L∗ to a vertex:

St := {v ∈ V : d⃗(L∗, v) > t}

Letting D := d⃗(L∗, R∗), and considering t ∈ [0, D), we see that L∗ ⊆ Sct and R
∗ ⊆ St,

so that the “average” denominator satisfies∫ D

0

min(|St|, |Sct |) dt ≥ D ·min(|L∗|, |R∗|) ≳ n/
√

log n.

The “average” numerator satisfies∫ D

0

min(|δ+(St)|, |δ+(Sct )|) dt ≤
∫ D

0

|δ+(Sct )| dt

≤
∑
uv∈E

max(0, d⃗(L∗, v)− d⃗(L∗, u))

(∗)
≤

∑
uv∈E

d⃗(u, v) = n · sdp∆(G).

The step (∗) requires explanation. Suppose d⃗(L∗, v) > d⃗(L∗, u) and suppose a ∈ L∗

is such that d⃗(a, u) = d⃗(L∗, u). Then

d⃗(L∗, v)− d⃗(L∗, u) ≤ d⃗(a, v)− d⃗(a, u) = d(a, v)− d(a, u) + d(v, 0)− d(u, 0) ≤ d⃗(u, v).

Since d⃗(u, v) ≥ 0, we have shown that

max(0, d⃗(L∗, v)− d⃗(L∗, u)) ≤ d⃗(u, v) (3.21)

for all uv ∈ E, and so (∗) goes through. Therefore, we can pick S = St for some
t ∈ [0, D) so that φ⃗(S) ≲ sdp∆(G) ·

√
log n.

• Suppose that {f(u)}u∈V is not well-spread, so that there exists a large core C :=
B(u0, 1/

√
10) (B is defined using ℓ2 distance) with |C| > n/10 for some u0 ∈ V .

That means d(u, u0) ≤ 1/10 for all u ∈ C. Note that

n
∑
u∈V

(
d⃗(u, u0) + d⃗(u0, u)

)
= 2n

∑
u∈V

d(u, u0) =
∑
u,v∈V

(d(u, u0) + d(u0, v))

≥
∑
u,v∈V

d(u, v) = n2,
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so that either
∑

u∈V d⃗(u0, u) ≥ n/2 or
∑

u∈V d⃗(u, u0) ≥ n/2.

Suppose for now that the former is true. Consider the following threshold sets deter-
mined by the directed distance from C to a vertex:

St := {u ∈ V : d⃗(C, u) > t}, t ∈ R≥0

Since |C| > n/10 and C ⊆ Sct , we have |Sct | ≥ |St|/9 and so min(|St|, |Sct |) ≥ |St|/9
for all t ∈ R≥0. Then, the “average” denominator is∫ ∞

0

min(|St|, |Sct |) dt ≥
1

9

∫ ∞

0

|St| dt =
1

9

∑
u∈V

d⃗(C, u)

(∗)
≥ 1

9

∑
u∈V

(
d⃗(u0, u)− 2max

c∈C
d(u0, c)

)
≥ 1

9

(n
2
− n

5

)
=

n

30
.

The step (∗) goes through because for any c ∈ C,

d⃗(c, u) = d(c, u)− d(c, 0) + d(u, 0)

≥ (d(u0, u)− d(u0, c))− (d(u0, 0) + d(u0, c)) + d(u, 0)

= d⃗(u0, u)− 2d(u0, c) ≥ d⃗(u0, u)− 2max
c′∈C

d(u0, c
′).

The “average” numerator is∫ ∞

0

min(|δ+(St)|, |δ+(Sct )|) dt ≤
∫ ∞

0

|δ+(Sct )| dt =
∑
uv∈E

max(0, d⃗(C, v)− d⃗(C, u))

≤
∑
uv∈E

d⃗(u, v) = n · sdp∆(G),

where the last inequality follows again from (3.21). This establishes the existence of
S = St for some t ∈ R≥0, such that φ⃗(S) ≲ sdp∆(G).

If
∑

u∈V d⃗(u, u0) ≥ n/2, we define the threshold sets as

St := {u ∈ V : d⃗(u,C) > t},

and the proof proceeds similarly.

Combining the two cases finishes the proof.
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Vertex Expansion

Feige, Hajiaghayi, and Lee [FHL08] designed an O(
√
log n) approximation algorithm for the

minimum ratio vertex cut problem, which is equivalent to the minimum vertex expansion
problem.21 Their approach is again to design an SDP relaxation of the problem, then show
that the integrality gap is O(

√
log n).

For simplicity, we present the setting under uniform vertex weights. Let G = (V,E) be
a graph. A vertex separator of G divides the graph into three disjoint vertex subsets A,
B, and S, where S is the separator and A and B are the separated. So, the requirements
are that V = S ⊔ A ⊔ B and E(A,B) = ∅. The sparsity of a vertex separator (A,B, S) is
defined as

α(A,B, S) :=
|S|

|A ∪ S| · |B ∪ S|
,

and α(G) is the minimum sparsity over all vertex separators of G.

Their vector program relaxation for minimum sparsity vertex separator is as follows:

min
a(u),b(u),z:V→R2n

1

K

∑
u∈V

(1− ∥a(u)∥2 − ∥b(u)∥2)

subject to ∥a(u)∥2 + ∥b(u)∥2 ≤ 1 ∀u ∈ V
⟨a(u), b(u)⟩ = 0 ∀u ∈ V
⟨a(u), b(v)⟩ = ⟨a(v), b(u)⟩ = 0 ∀uv ∈ E
∥z∥2 = 1

⟨z, a(u)⟩ = ∥a(u)∥2 , ⟨z, b(u)⟩ = ∥b(u)∥2 ∀u ∈ V∑
u,v∈V

∥a(u)− a(v)∥2 = 2K

∥a(u)− a(v)∥2 + ∥a(v)− a(u′)∥2 ≥ ∥a(u)− a(u′)∥2 ∀u, v, u′ ∈ V

where K is a parameter to be tuned. The motivation for this program is the integer
program where a(u), b(u), s(u) ∈ {0, 1} indicate membership in sets A,B, S respectively.

The proof that the integrality gap is O(
√
log n) is by applying the ℓ22 structure theorem

[ARV09] to the vectors a(u). Refer to their paper for more details.

21It is essential that min(1, ·) is part of the definition of vertex expansion ψ(G) in Section 2.3.1.

126



Directed Hypergraph Expansion

Chan and Sun [CS18] gave an approximation algorithm for directed hypergraph expansion
(see Section 2.2 and Section 2.3.3 for the relevant definitions) via a reduction to directed
edge expansion [ACMM05].

Definition 3.6.5 (Derived Graph of Directed Hypergraphs [CS18, Fact 1.1]). Let H =
(V,E,w) be a directed hypergraph over vertex measure π : V → R+. The derived graph
GH = (V ′, E ′, w′) over vertex measure π′ : V ′ → R+ is defined as follows:

• V ′ := V ∪ {u−e : e ∈ E} ∪ {u+e : e ∈ E}

• E ′ := {(v, u−e ) : v ∈ e−, e ∈ E} ∪ {(u−e , u+e ) : e ∈ E} ∪ {(u+e , v′) : v′ ∈ e+, e ∈ E}

• w′(v, u−e ) = w′(u+e , v
′) =∞ and w′(u−e , u

+
e ) = w(e) for all e ∈ E, (v, v′) ∈ e− × e+

• π′(u) = π(u) for all u ∈ V , and π′(u−e ) = π′(u+e ) = 0 for all e ∈ E.

Refer to Figure 3.4 for an illustration.

Figure 3.4: The construction described in Definition 3.6.5. On the left is a directed hyper-
edge in H with weight w(e) and on the right is the component in the derived graph GH

corresponding to e, where the number above an arc indicates its weight. The new nodes u−e
and u+e have vertex measure zero and all other nodes in GH inherit their original measures
in H.

From [CS18, Fact 1], there is a correspondence between subsets S ⊆ V and S ′ ⊆ V ′ so

that ϕ⃗π(S) = Θ
(
ϕ⃗π′(S ′)

)
. Therefore, if we perform a black-box reduction from ϕ⃗π(H) to
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ϕ⃗π′(GH) and apply Theorem 3.6.4, we obtain an O(
√
log |V ′|) approximation algorithm for

directed hypergraph expansion. However, the approximation guarantee using this approach
degrades to O(

√
log(n+m)) (since |V ′| = Θ(n+m)), which is worse whenm = ω(poly(n)).

Summary

While these results yield the best-known approximation ratios in their respective settings,
the design of the SDP relaxations appears to be rather disparate. It is desirable to use
one single recipe to derive SDP relaxations with O(

√
log n) integrality gaps for generalized

expansion quantities.

3.6.4 Orthogonal Separators and Higher Expansions

The study of k-way conductance ϕk(G) in undirected graphs is motivated by the higher-
order Cheeger inequality [LOT12, LRTV12] connecting ϕk(G) to the k-th smallest eigen-
value λk(G). Louis and Makarychev [LM14a] studied the related but different problem
of sparsest k-way partitioning Φk(G) and designed an O(

√
log n log k)-approximation al-

gorithm that runs in randomized polynomial time. To obtain their result, they designed
an SDP relaxation of Φk(G) which, again, incorporated the ℓ22 triangle inequalities. To
obtain disjoint subsets with small conductance from the vector solution to the SDP relax-
ation, they used the technique of orthogonal separators, originally devised to study Unique
Games [CMM06] and later applied to small-set expansion and other graph partitioning
problems [BFK+14]. We first introduce the problem of sparsest k-partitioning and their
SDP relaxation of the problem. Next, we define orthogonal separators, then state and
prove their approximation guarantee.

Definition 3.6.6 (Sparsest k-Partitioning). Let G = (V,E) be a graph, and let 2 ≤ k ≤ n.
The sparsest k-partitioning of G is defined as

Φk(G) := min
S1⊔···⊔Sk=V

Φk(S1, . . . , Sk) where Φk(S1, . . . , Sk) := max
i∈[k]

|E(Si, Sci )|
vol(Si)

.

Comparing the definition of Φk(G) with the definition of k-way conductance ϕk(G) in
Definition 3.1.5, the only difference is the collection of sets over which the minimum is
taken. Since every k-set partitioning is a collection of k disjoint subsets, we necessarily
have ϕk(G) ≤ Φk(G). The gap can, however, be large.
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Definition 3.6.7 (SDP Relaxation of ϕk(G) [LM14a]). Let G = (V,E) be a graph. The
SDP relaxation of ϕk(G) with ℓ22 triangle inequalities, denoted sdp∆k (G), is defined as fol-
lows:

min
f :V→Rn

1

k

∑
uv∈E

∥f(u)− f(v)∥2

subject to
∑
u∈V

deg(u) ∥f(u)∥2 = k∑
v∈V

deg(v)⟨f(u), f(v)⟩ = 1 ∀u ∈ V

∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 u, v, u′ ∈ V
0 ≤ ⟨f(u), f(v)⟩ ≤ ∥f(u)∥2 ∀u, v ∈ V.

The second constraint
∑

v∈V deg(v)⟨f(u), f(v)⟩ = 1 acts as a “spreading” constraint,
which asserts that the vectors f(v) cannot be too concentrated in one direction. The last
constraint is equivalent to the ℓ22 triangle inequality applied to f(u), f(v) and 0⃗.

Note that this is an SDP because the objective function and all the constraints are
linear in the Gram matrix X(u, v) = ⟨f(u), f(v)⟩. Note also that by changing deg(u) to an
arbitrary vertex weight function π(u), we can use sdp∆k (G) to approximate the following
π-weighted sparsest k-partitioning:

(Φπ)k(S1, . . . , Sk) := max
i∈[k]

|E(Si, Sci )|
π(Si)

and (Φπ)k(G) := min
S1⊔···⊔Sk=V

(Φπ)k(S1, . . . , Sk).

First, they have to show that sdp∆k (G) is indeed a relaxation of Φk(G).

Proposition 3.6.8 (Easy Direction [LM14a]). Let G = (V,E) be an undirected graph.
Then,

sdp∆k (G) ≤ Φk(G).

Proof. Suppose there is a partitioning S1, . . . , Sk such that Φk(S1, . . . , Sk) = Φk(G). Define
the following vector solution f : V → Rn:

fi(u) :=

{
1√

vol(Si)
, if u ∈ Si,

0, otherwise.
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Here fi(u) denotes the i-th coordinate of f(u). It is routine to check that this is a feasible
solution (crucially we need ∪i∈[k]Si = V ), and the objective value is

1

k

∑
uv∈E

∥f(u)− f(v)∥2 =
1

k

∑
i∈[k]

∑
uv∈E

(fi(u)− fi(v))2

=
1

k

∑
i∈[k]

|E(Si, Sci )|
vol(Si)

≤ max
i∈[k]

|E(Si, Sci )|
vol(Si)

= Φk(G).

This completes the proof.

As mentioned before, their rounding algorithm utilizes orthogonal separators. Infor-
mally, orthogonal separators is a way to sample vertex subsets S ⊆ V , such that two vertices
are unlikely to be both included in S if their embedding vectors are close to orthogonal,
and two vertices are unlikely to be separated by S (i.e. one included, one excluded) if their
embedding vectors are close to one another. The formal definition is below.

Definition 3.6.9 (Orthogonal Separators [CMM06, BFK+14, LM14a]). Let f : X → Rd

be a collection of vectors that satisfy the ℓ22 triangle inequalities. We say that a distribution
over subsets of X is an s-orthogonal separator of X with distortion D, probability scale
α > 0, and separation threshold β < 1, if the following conditions hold for S ⊆ X chosen
according to this distribution:

1. For all u ∈ X, Pr[u ∈ S] = α ∥f(u)∥2.

2. For all u, v ∈ X with ⟨f(u), f(v)⟩ ≤ βmax{∥f(u)∥2 , ∥f(v)∥2},

Pr[u, v ∈ S] ≤ αmin{∥f(u)∥2 , ∥f(v)∥2}
s

.

3. For all u, v ∈ X,
Pr[1S(u) ̸= 1S(v)] ≤ αD ∥f(u)− f(v)∥2 ,

where 1S is the indicator function of S.

The following theorem asserts the existence of orthogonal separators with small distor-
tion.

Theorem 3.6.10 (Existence of Orthogonal Separators [CMM06, BFK+14, LM14a]). There
exists a randomized polynomial-time algorithm that, given f : X → Rd satisfying the ℓ22
triangle inequalities, and parameters s and β < 1, generates an s-orthogonal separator with
distortion D = Oβ(

√
log n log s) and scale α ≥ 1/ poly(n).
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They also need to define a normalization of the solution vectors f(u). Define f(0) := 0⃗.

Proposition 3.6.11 (Normalization [CMM06]). Let f : V ∪{0} → Rn be vectors satisfying
the ℓ22 triangle inequality. Then, there is a mapping f(u) 7→ f̄(u) to an inner product space,
such that:

•
∥∥f̄(u)− f̄(v)∥∥2 + ∥∥f̄(v)− f̄(u′)∥∥2 ≥ ∥∥f̄(u)− f̄(u′)∥∥2 for all u, v, u′ ∈ V ;

• For all u, v ∈ V ∪ {0},

⟨f̄(u), f̄(v)⟩ = ⟨f(u), f(v)⟩
max(∥f(u)∥2 , ∥f(v)∥2)

;

•
∥∥f̄(u)∥∥2 = 1 if f(u) ̸= 0⃗;

• If ⟨f(u), f(v)⟩ = 0, then ⟨f̄(u), f̄(v)⟩ = 0;

• For all nonzero vectors f(u) and f(v),

∥∥f̄(u)− f̄(v)∥∥2 ≤ 2 ∥f(u)− f(v)∥2

max(∥f(u)∥2 , ∥f(v)∥2)
.

The rounding algorithm, as detailed in Algorithm 2, is by generating many (random)
orthogonal separators with appropriate parameters, then extract k disjoint sparse cuts
from them. A postprocessing procedure is required to turn this into a partitioning. We
define the mass of vertex subsets S ⊆ V as

µ(S) :=
∑
u∈S

deg(u) ∥f(u)∥2 .

Note that µ(V ) = k.

The “hard direction” of the main theorem amounts to showing that the ℓ = ⌊(1− ε)k⌋
sets generated by Algorithm 2 all have small edge conductance. To this end, they prove
the following guarantees about the algorithm.

Lemma 3.6.12 (Key Properties of Algorithm 2 [LM14a]). Let G = (V,E) be an undirected
graph. Then, the following guarantees about Algorithm 2 hold.

(a) For every vertex u ∈ V and i ∈ {1, . . . , T}, we have Pr[u ∈ S ′
i] ≥ α/2.

131



Algorithm 2 Rounding Algorithm using Orthogonal Separators

Input: Graph G = (V,E), solution f : V → Rn to sdp∆k (G), parameters k, ε
Output: ℓ := ⌊(1− ε)k⌋ disjoint subsets S1, . . . , Sℓ ⊆ V

1: Compute the normalization f̄ from f per Proposition 3.6.11
2: Sample T = 2n/α independent (12k/ε)-orthogonal separators S1, . . . , ST for vectors
f̄(u) and some choice of α ≥ 1/ poly(n), with separation threshold β = 1 − ε/4 and
distortion D = Oβ(

√
log n log k)

3: For each i ∈ [T ], define S ′
i := Si if µ(Si) ≤ 1 + ε/2 and S ′

i := ∅ otherwise
4: For each i ∈ [T ], let S ′′

i := S ′
i \ (∪j<iS ′

j)

5: For each i ∈ [T ], let Pi := {u ∈ S ′′
i : ∥f(u)∥2 ≥ ti}, where ti is chosen to minimize

ϕ(Pi)
6: return the ℓ sets from Pi with the smallest edge conductance ϕ(Pi)

(b) All sets S ′′
i are disjoint, and

Pr[µ(∪S ′′
i ) = k] ≥ 1− ne−n.

(c) For a set S ⊆ V , define

ν(S) :=
∑
uv∈E

u∈S,v ̸∈S

∥f(u)∥2 +
∑
uv∈E
u,v∈S

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣ .
Then,

E

∑
i∈[T ]

ν(S ′′
i )

 ≲ kD · sdp∆k (G).

Proof. To prove (a), note that we apply orthogonal separators to the normalized vectors
f̄(u). Due to the second constraint of sdp∆k (G) that∑

v∈V

deg(v)⟨f(u), f(v)⟩ = 1

for all u ∈ V , we have f(u) ̸= 0⃗ for all u ∈ V , and so Pr[u ∈ Si] = α
∥∥f̄(u)∥∥2 = α by

Proposition 3.6.11. Thus, it suffices to prove that

Pr[µ(Si) ≤ 1 + ε/2 |u ∈ Si] ≥ 1/2
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for all i ∈ [T ]. Let B := {v ∈ V : ⟨f̄(u), f̄(v)⟩ ≤ β}. Whenever v ∈ B, we have

Pr[v ∈ Si |u ∈ Si] =
Pr[u, v ∈ Si]
Pr[u ∈ Si]

≤ ε

12k

by the second property of orthogonal separators. Since µ(B) ≤ µ(V ) = k, by linearity of
expectation and Markov’s inequality it follows that

Pr
[
µ(Si ∩B) ≤ ε

6
|u ∈ Si

]
≥ 1

2
.

Next, use the spreading constraint to show that most of the vectors are in B. Indeed,

1 =
∑
v∈V

deg(v)⟨f(v), f(u)⟩

=
∑
v∈V

deg(v)⟨f̄(v), f̄(u)⟩ ·max(∥f(v)∥2 , ∥f(u)∥2) (by Proposition 3.6.11)

≥
∑
v ̸∈B

[
deg(v) ∥f(v)∥2 ·

(
1− ε

4

)]
,

which implies that µ(V \B) ≤ 1 + ε/3. To summarize, with Si = (Si ∩B) ∪ (Si \B),

Pr
[
µ(Si) ≤ 1 +

ε

2
|u ∈ Si

]
≥ Pr

[
µ(Si ∩B) ≤ ε

6
|u ∈ Si

]
≥ 1

2
.

This completes the proof of (a). (b) immediately follows since ∪S ′′
i = ∪S ′

i and the proba-
bility that a vertex u ∈ V is not in any S ′

i is at most(
1− α

2

)T
=
(
1− α

2

) 2n
α ≤ e−n.

A union bound yields the result.

To prove (c), consider the following partitioning of the vertex set

V = S ′′
1 ⊔ S ′′

2 ⊔ · · · ⊔ S ′′
T ⊔ (V \ (∪S ′′

i )).

If an edge uv ∈ E is cut by the partitioning, then the contribution to
∑

i∈[T ] ν(S
′′
i ) is at

most ∥f(u)∥2 + ∥f(v)∥2. Otherwise, the contribution is at most | ∥f(u)∥2 − ∥f(v)∥2 |. Let
Ecut be the set of all edges cut by the partitioning. Then,

E

∑
i∈[T ]

ν(S ′′
i )

 ≤ E

[ ∑
uv∈Ecut

(
∥f(u)∥2 + ∥f(v)∥2

)]
+
∑
uv∈E

| ∥f(u)∥2 − ∥f(v)∥2 |. (3.22)
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By ℓ22 triangle inequality, the latter is at most
∑

uv∈E ∥f(u)− f(v)∥
2 = k · sdp∆k (G). To

bound the former, we say that uv ∈ Ecut is cut by S ′
i if i is the smallest index that uv is

cut by S ′
i, i.e. 1S′

i
(u) ̸= 1S′

i
(v). Then, for any edge uv ∈ E,

Pr[uv ∈ Ecut] =
T∑
i=1

Pr [uv is cut by S ′
i] =

T∑
i=1

Pr
[
u, v ̸∈ ∪j<iS ′

j and 1S′
i
(u) ̸= 1S′

i
(v)
]

=
T∑
i=1

Pr
[
u, v ̸∈ ∪j<iS ′

j

]
· Pr

[
1S′

i
(u) ̸= 1S′

i
(v)
]
.

By (a), the first term in the i-th summand is bounded above by(
1− α

2

)i−1

,

and by Proposition 3.6.11 and properties of orthogonal separators, the second term in the
i-th summand has the uniform upper bound of

Pr
[
1S′

i
(u) ̸= 1S′

i
(v)
]
≤ αD

∥∥f̄(u)− f̄(v)∥∥2 ≤ 2αD ∥f(u)− f(v)∥2

max{∥f(u)∥2 , ∥f(v)∥2}
.

Summing up we then get

Pr[uv ∈ Ecut] ≤

(
T∑
i=1

(
1− α

2

)i−1
)
· 2αD ∥f(u)− f(v)∥2

max{∥f(u)∥2 , ∥f(v)∥2}
≲

D ∥f(u)− f(v)∥2

max{∥f(u)∥2 , ∥f(v)∥2}
.

Continuing from (3.22),

E

∑
i∈[T ]

ν(S ′′
i )

 ≤ E

[ ∑
uv∈Ecut

(
∥f(u)∥2 + ∥f(v)∥2

)]
+ k · sdp∆k (G)

≲
∑
uv∈E

[
D ∥f(u)− f(v)∥2

max{∥f(u)∥2 , ∥f(v)∥2}
·
(
∥f(u)∥2 + ∥f(v)∥2

)]
+ k · sdp∆k (G)

≲ D ·
∑
uv∈E

∥f(u)− f(v)∥2 + k · sdp∆k (G) ≲ kD · sdp∆k (G),

completing the proof of (c).
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Theorem 3.6.13 (Hard Direction [LM14a]). Let G = (V,E) be an undirected graph. Let
2 ≤ k ≤ n and ε ∈ (0, 1). Then,

ϕ⌊(1−ε)k⌋(G) ≤ Oε(
√

log n log k · sdp∆k (G))

Moreover, there is a randomized polynomial-time algorithm that produces ℓ = ⌊(1− ε)k⌋
sets P1, . . . , Pℓ such that ϕℓ(P1, . . . , Pℓ) satisfies the same upper bound.

Proof. We run Algorithm 2. Since Lemma 3.6.12(b) asserts that the probability that
∪S ′′

i ̸= V is exponentially low, and that S ′′
i are pairwise disjoint by construction, we may

assume that {S ′′
i } is indeed a partitioning of V . Let

Z :=

∑
i∈[T ] ν(S

′′
i )∑

i∈[T ] µ(S
′′
i )

=
1

k

∑
i∈[T ]

ν(S ′′
i ).

The correct way to view ν(S ′′
i ) is the expected edge boundary size under a certain threshold

rounding scheme, and so the following definition

I :=

{
i ∈ [T ] : S ′′

i ̸= ∅ and
ν(S ′′

i )

µ(S ′′
i )
≤ 2Z

ε

}
chooses precisely those sets that will round to a small conductance set. Let S ′′

I := ∪i∈IS ′′
i .

The total mass of sets S ′′
i for i outside I is upper bounded by∑

i ̸∈I

µ(S ′′
i ) <

ε

2Z

∑
i ̸∈I

ν(S ′′
i ) ≤

ε

2Z
· kZ,

and so

µ(S ′′
I) ≥ k − kε

2
= k

(
1− ε

2

)
.

Since µ(S ′′
i ) ≤ (1 + ε/2) for all i ∈ [T ], the set I has at least ℓ = ⌊(1− ε)k⌋ elements.

Now, for the threshold rounding, for any i ∈ [T ], let Mi := max{∥f(u)∥2 : u ∈ S ′′
i }

and define threshold sets
Ut := {u ∈ S ′′

i : ∥f(u)∥2 > t}
for t ∈ [0,Mi]. The “average” denominator is∫ Mi

0

vol(Ut) dt =
∑
u∈S′′

i

deg(u) ∥f(u)∥2 = µ(S ′′
i ).

Let uv ∈ E. We investigate when uv is cut by Ut.
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• If u, v ̸∈ S ′′
i , then uv ̸∈ δ(Ut) for any t ∈ [0,Mi].

• If u ∈ S ′′
i and v ̸∈ S ′′

i , then uv ∈ δ(Ut) if and only if t < ∥f(u)∥2.

• If u, v ∈ S ′′
i , then uv ∈ δ(Ut) if and only if

min(∥f(u)∥2 , ∥f(v)∥2) ≤ t < max(∥f(u)∥2 , ∥f(v)∥2).

Therefore, the “average” numerator is∫ Mi

0

|δ(Ut)| dt =
∑
uv∈E

u∈S′′
i ,v ̸∈S′′

i

∥f(u)∥2 +
∑
uv∈E
u,v∈S′′

i

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣ = ν(S ′′
i ).

Therefore, for i ∈ I, Pi in step 5 of Algorithm 2 satisfies

ϕ(Pi) ≤
ν(S ′′

i )

µ(S ′′
i )
≤ 2Z

ε
.

Since E[Z] ≤ O(D · sdp∆k (G)) by Lemma 3.6.12(c), with probability at least 1/2 picking
the ℓ sets Pi(1), . . . , Pi(ℓ) with the smallest conductance we have (note that β is a function
of ε)

ϕℓ(Pi(1), . . . , Pi(ℓ)) ≤ Oβ(ε
−1
√

log n log(12k/ε) · sdp∆k (G)) = Oε(
√
log n log k · sdp∆k (G)),

as required. Finally, a careful but straightforward inspection of Algorithm 2 verifies that
the algorithm indeed runs in randomized polynomial time.

The final step is to obtain a partitioning of V from the disjoint subsets.

Corollary 3.6.14 ([LM14a]). Let G = (V,E) be an undirected graph. Let 2 ≤ k ≤ n and
ε ∈ (0, 1). Then,

Φ⌊(1−ε)k⌋(G) ≤ Oε(
√

log n log k · sdp∆k (G)) ≤ Oε(
√
log n log k · Φk(G)).

Moreover, there is a randomized polynomial-time algorithm that produces ℓ = ⌊(1− ε)k⌋
sets P1, . . . , Pℓ such that P1 ⊔ · · · ⊔ Pℓ = V and Φℓ(P1, . . . , Pℓ) satisfies the same upper
bound.
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Proof. Run Algorithm 2 with ε′ = ε/2 and Theorem 3.6.13 guarantees ℓ′ := ⌊(1− ε′)k⌋
subsets P ′

1, . . . , P
′
ℓ′ such that

max
i∈[ℓ′]

ϕ(P ′
i ) ≤ Oε(

√
log n log k · sdp∆k (G)) := W.

Take the ℓ−1 subsets P1, . . . , Pℓ−1 with the smallest volumes and let Pℓ be the set containing
all the remaining vertices. We upper bound ϕ(Pℓ) as follows:

ϕ(Pℓ) =
|E(Pℓ, P c

ℓ )|
vol(Pℓ)

≤
∑

i∈[ℓ−1] |E(Pi, P c
i )|

ℓ′−ℓ+1
ℓ′

vol(V )

≤
W ·

∑
i∈[ℓ−1] vol(Pi)

ε · vol(V )
≤ W

ε
.

This together with Proposition 3.6.8 completes the proof.

Hypergraph Orthogonal Separators

Louis and Makarychev [LM14b] defined a variant of orthogonal separators, which they
call hypergraph orthogonal separators, to study approximation algorithms for small-set
hypergraph expansion and (via a reduction; see Section 2.3.4) small-set vertex expansion.
Once the existence of hypergraph orthogonal separators with the desired parameters is
established, the rounding algorithm and its analysis are very similar to those in [LM14a].
Therefore, we present the definition of hypergraph orthogonal separators, state the exis-
tance claim and the main approximation result, and leave the interested reader to [LM14b]
for details.

Definition 3.6.15 (Hypergraph Orthogonal Separators [LM14b]). Let f : X → Rd be
a collection of vectors that satisfy the ℓ22 triangle inequalities. We say that a distribution
over subsets of X is a hypergraph s-orthogonal separator of X with distortion D, probability
scale α > 0, and separation threshold β < 1, if the following conditions hold for S ⊆ X
chosen according to this distribution:

1. For all u ∈ X, Pr[u ∈ S] = α ∥f(u)∥2.

2. For all u, v ∈ X with ∥f(u)− f(v)∥2 ≥ βmin{∥f(u)∥2 , ∥f(v)∥2},

Pr[u, v ∈ S] ≤ αmin{∥f(u)∥2 , ∥f(v)∥2}
s

.
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3. For all e ⊆ X,
Pr[e is cut by S] ≤ αDmax

u,v∈e
∥f(u)− f(v)∥2 .

Compared to the definition of orthogonal separators in Definition 3.6.9, there is a slight
change in the second condition, and the third condition bounds the probability of cutting a
hyperedge instead of an edge, with the upper bound coming from the objective of the SDP
relaxation for hypergraph small-set expansion, which we shall give shortly. The existence
of hypergraph orthogonal separators with bounded distortion is established in [LM14b].

Theorem 3.6.16 (Existence of Hypergraph Orthogonal Separators [LM14b]). There exists
a randomized polynomial-time algorithm that, given f : X → Rd satisfying the ℓ22 triangle
inequalities, and parameters s and β < 1, generates a hypergraph s-orthogonal separator
with distortion D = O(β−1 · s log s log log s ·

√
log |X|) and scale α ≥ max(1/|X|, 1/s).

Now, we define the problem of hypergraph small-set expansion and the SDP relaxation
proposed in [LM14b].

Definition 3.6.17 (Hypergraph Small-Set Expansion [LM14b]). Let H = (V,E) be a
hypergraph, and η ∈ (0, 1/2] be a parameter. The η-small set expansion (or η-SSE) of
S ⊆ V and of H is defined as

ϕη(G) := min
0<vol(S)≤η·vol(V )

ϕ(S),

where ϕ(S) := |δ(S)|/vol(S) is the usual conductance22of S and δ(S) := {e ∈ E : e ∩ S ̸=
∅ and e ∩ Sc ̸= ∅} is the set of hyperedges cut by S.

Definition 3.6.18 (SDP Relaxation of Hypergraph Small-Set Expansion [LM14b]). Let
H = (V,E) be a hypergraph. The SDP relaxation of ϕη(H) with ℓ22 triangle inequalities,
denoted sdp∆η (H), is defined as follows:

min
f :V→Rn

∑
e∈E

max
u,v∈e
∥f(u)− f(v)∥2

subject to
∑
u∈V

deg(u) ∥f(u)∥2 = 1∑
v∈V

deg(v)⟨f(u), f(v)⟩ ≤ ηn · ∥f(u)∥2 ∀u ∈ V

∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 u, v, u′ ∈ V
0 ≤ ⟨f(u), f(v)⟩ ≤ ∥f(u)∥2 ∀u, v ∈ V.

22Here we define hypergraph SSE using degree-weighted vertex measure for consistency with the rest of
the subsection. The definition can be extended to arbitrary vertex measures and the same approximation
result applies by tweaking the definition of the SDP relaxation.
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Theorem 3.6.19 (Approximation of Hypergraph SSE [LM14b, Theorem 1.3]). There is
a randomized polynomial-time approximation algorithm for the hypergraph small-set ex-
pansion problem that, given a hypergraph H = (V,E) and parameters ε ∈ (0, 1) and
η ∈ (0, 1/2], finds a set S ⊆ V of size at most (1 + ε)η · n such that ϕ(S) is at most

Oε

(
η−1 log(η−1) log log(η−1) ·

√
log n

)
times the optimal. In particular, when η and ε are fixed, the algorithm gives an O(

√
log n)-

approximation.

Remark 3.6.20 (Implication for Small-Set Vertex Expansion). It is possible to obtain a
result analogous to Theorem 3.6.19 for small-set vertex expansion, via a reduction to small-
set hypergraph expansion. The reduction is by combining Proposition 2.3.6 and Proposi-
tion 2.3.7 and running the algorithm for hypergraph SSE on the constructed hypergraph,
which can be transformed into a small cut in the original graph with small vertex expansion.
Refer to [LM14b] for more details.

Summary

To summarize, orthogonal separators is a fitting tool for rounding vector programs whose
solution vectors satisfy the ℓ22 triangle inequalities as well as some kind of “spreading”
constraints. Such constraints are present, for example, in multi-way partitioning problems
and small-set expansion problems, and the rounding algorithms employing orthogonal sep-
arators attain good approximation ratios, matching the “gold standard” of O(

√
log n) in

the special cases of graph/hypergraph edge expansions.
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Chapter 4

Cheeger Inequalities for Vertex
Expansion using Reweighted
Eigenvalues

In this chapter, we derive an “optimal” Cheeger’s inequality for vertex expansion, connect-
ing the vertex expansion ψ(G) of a graph G = (V,E) and the maximum reweighted second
smallest eigenvalue λ∗2(G) of the Laplacian matrix:

ψ2(G)

log∆
≲ λ∗2(G) ≲ ψ(G).

This improves on an earlier result by Olesker-Taylor and Zanetti [OZ22] and also generalizes
to the weighted vertex expansion, answering an open question by them.

Building on this connection, we then develop a new spectral theory for vertex expan-
sion. We discover that several interesting generalizations of Cheeger inequalities relating
edge conductances and eigenvalues have a close analog in relating vertex expansions and
reweighted eigenvalues. These include:

• An analog of Trevisan’s result that relates the bipartite vertex expansion ψB(G) of a
graph and the maximum reweighted lower spectral gap ζ∗(G) of the adjacency matrix.
This implies the first approximation algorithm for bipartite vertex expansion.

• An analog of higher-order Cheeger’s inequalities that relates the k-way vertex expan-
sion ψk(G) of a graph and the maximum reweighted k-th smallest eigenvalue λ∗k(G)
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of the Laplacian matrix. This implies the first approximation algorithm for k-way
vertex expansion.

• An analog of improved Cheeger’s inequality that relates the vertex expansion ψ(G)
and the reweighted eigenvalues λ∗2(G) and λ

∗
k(G). This provides an improved bound

for ψ(G) using λ∗2(G), when the k-way vertex expansion ψk(G) is large for a small k.

Finally, inspired by this connection, we present negative evidence to the 0/1-polytope
edge expansion conjecture by Mihail and Vazirani. We construct 0/1-polytopes whose
graphs have very poor vertex expansion. This implies that the fastest mixing time to the
uniform distribution on the vertices of these 0/1-polytopes is almost linear in the graph
size. This does not provide a counterexample to the conjecture, but this is in contrast
with known positive results which proved poly-logarithmic mixing time to the uniform
distribution on the vertices of subclasses of 0/1-polytopes.

4.1 Our Results

We now present our results formally. The reader is advised to refer to Section 2.2 and
Section 2.3 for various notations and definitions.

4.1.1 Optimal Cheeger Inequality for Vertex Expansion

Our first main result is an “optimal” Cheeger inequality that relates the maximum reweighted
second smallest eigenvalue λ∗2(G) and vertex expansion ψ(G). This is the cumulation of a
line of work [BDX04, Roc05, OZ22] that studies the fastest mixing time problem and its
relation with vertex expansion, as we have thoroughly reviewed in Section 3.2.2. We recall
the definition of λ∗2(G) and of weighted vertex expansion here for convenience.

Definition 4.1.1 (Maximum Reweighted Spectral Gap [BDX04] (restatement of Defini-
tion 1.1.1). Given an undirected graph G = (V,E) and a probability distribution π on V ,
the maximum reweighted spectral gap is defined as

λ∗2(G) := max
P≥0

1− α2(P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.
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The graph is assumed to have a self-loop on each vertex, to ensure that the optimization
problem for λ∗2(G) is always feasible. In the context of Markov chains, this corresponds to
allowing a nonzero holding probability on each vertex.

Definition 4.1.2 (Weighted Vertex Expansion). Given an undirected graph G = (V,E)
and a probability distribution π on V , the vertex expansion of G is defined as

ψ(G) := min
{
1, min

∅≠S⊆V

{
ψ(S) | 0 < π(S) ≤ 1

2

}}
,

where ψ(S) := π(∂S)/π(S) and ∂S is the vertex boundary of S as defined in Section 2.3.1.

Olesker-Taylor and Zanetti proved the Cheeger-type inequality in Theorem 3.2.4 that

ψ(G)2

log n
≲ λ∗2(G) ≲ ψ(G).

when π is the uniform distribution. They posed the problem of reducing the log n factor
in Theorem 3.2.4 to log∆, and also the problem of generalizing their result to weighted
vertex expansion. Our first result provides a positive resolution of these two problems.

Theorem 4.1.3 (Cheeger Inequality for Weighted Vertex Expansion). For any undirected
graph G = (V,E) with maximum degree ∆ and any probability distribution π on V ,

ψ(G)2

log∆
≲ λ∗2(G) ≲ ψ(G). (4.1)

In terms of the fastest mixing time τ ∗mix(G) to the stationary distribution,

1

ψ(G)
≲ τ ∗mix(G) ≲

log∆ · log π−1
min

ψ2(G)
.

In Section 4.8, we show that the log∆ factor in Theorem 4.1.3 is optimal, by exhibiting

graphs G with λ∗2(G) ≍
ψ(G)2

log∆
. Note that the tightness result does not rely on the small-set

expansion hypothesis (c.f. Section 3.1.5).

The improvement to log∆ shows that λ∗2(G) is a strictly tighter parameter to relate to
vertex expansion than λ′2(G). The latter was studied in the early works of Tanner [Tan84],
Alon and Milman [AM85], and Alon [Alo86], where the Cheeger-type inequality relating
λ′2(G) and ψ(G) has a factor of ∆ between the upper and lower bounds (see Section 3.2.1).
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We note that Louis, Raghavendra and Vempala [LRV13] gave an SDP approximation
algorithm for vertex expansion with the same approximation guarantee (see Section 3.2.4),
but their SDP is different from and stronger than that in Definition 1.1.1 (as proven in
Lemma 4.3.2), and so it does not have the natural interpretation as the reweighted second
eigenvalue and does not imply the result on fastest mixing time.

The current best known approximation algorithm for vertex expansion ψ(G) is an
O(
√
log n) SDP-based approximation algorithm by Feige, Hajiaghayi and Lee [FHL08].

This is an extension of the O(
√
log n) SDP-based approximation algorithm for edge con-

ductance ϕ(G) by Arora, Rao, and Vazirani [ARV09]. The SDP formulation of [ARV09] is
known to be strictly more powerful than the spectral formulation by the second eigenvalue.
Refer to Section 3.6 for details.

Even though λ∗2(G), sdp∞ in [LRV13], and the SDP in [FHL08] are all semidefinite pro-
gramming relaxations for ψ(G) and satisfy similar inequalities, we note that the approach
of using reweighted eigenvalues has some additional features. One important feature is
that λ∗2(G) is closely related to fastest mixing time. This allows one to develop a spectral
theory for vertex expansion that relates (i) vertex expansion, (ii) reweighted eigenvalues
and (iii) fastest mixing time, which parallels the classical spectral graph theory that relates
(i) edge conductance, (ii) eigenvalues and (iii) mixing time.

More recently, Louis [Lou15] and Chan, Louis, Tang, Zhang [CLTZ18] developed a
spectral theory for hypergraphs (see Section 3.4.1). Through a reduction from vertex
expansion to hypergraph edge expansion (see Fact 3.2.19), they developed a spectral theory
for vertex expansion as well. This theory also relates (i) expansion, (ii) eigenvalues and
(iii) mixing time, and so their work is closest to the current work. Compared to their
approach, we note that the current approach using reweighted eigenvalues is more direct
and effective for vertex expansion. The reduction in Fact 3.2.19 from vertex expansion
ψ(S) for a graph G with maximum degree ∆max and minimum degree ∆min to hypergraph
edge conductance ϕH(S) only satisfies

∆min · ϕH(S) ≤ ψ(S) ≲ ∆max · ϕH(S),

and so the approximation ratio depends on the ratio between the maximum degree and
the minimum degree. In contrast, the current approach using reweighted eigenvalues does
not have this dependency. Also, the definitions of the hypergraph diffusion process and
its eigenvalues are quite technically involved and require considerable effort to make rigor-
ous [CTWZ19]. We believe that the definitions of reweighted eigenvalues are more intuitive
and more closely related to ordinary eigenvalues.
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Remark 4.1.4 (Reweighting Conjectures in Approximation Algorithms). Besides the
fastest mixing time problem, we note that these “reweighting problems” relating vertex
expansion and reweighted eigenvalues are also well motivated in the study of approxima-
tion algorithms. One example is a conjecture of Arora and Ge [AG11, Conjecture 12],
which roughly states that, if a graph G has almost perfect vertex expansion for every set,
then there exists a reweighted doubly stochastic matrix P of the adjacency matrix of G so
that P has few eigenvalues less than − 1

16
. They proved that if the conjecture was true,

then there is an improved subexponential time algorithm for coloring 3-colorable graphs.
Another example is a conjecture of Steurer [Ste10, Conjecture 9.2], which is also known
to be related to a reweighting problem between vertex expansion and the graph spectrum,
that if true would imply an improved subexponential time approximation algorithm for the
sparsest cut problem.

The proof of Theorem 4.1.3 is based on the techniques in [LRV13, BHT00], which we
have discussed in detail in Section 3.2.4.

4.1.2 Maximum Reweighted Lower Spectral Gap and Bipartite
Vertex Expansion

Trevisan [Tre09] proved that the lower spectral gap 1+αn(G) of the normalized adjacency
matrix of G = (V,E) is small if and only if there is a subset S ⊆ V which is an almost
bipartite component in G with small edge conductance ϕ(S). See Section 3.1.2 for a review
of their work.

We define the analogous notions for vertex expansion and for reweighted lower spectral
gap.

Definition 4.1.5 (Bipartite Vertex Expansion). Given an undirected graph G = (V,E)
and a probability distribution π on V , the bipartite vertex expansion of G is defined as

ψB(G) := min
{
1, min

∅≠S⊆V

{
ψ(S) | G[S] is an induced bipartite graph

}}
.

Definition 4.1.6 (Maximum Reweighted Lower Spectral Gap). Given an undirected graph
G = (V,E) and a probability distribution π on V , the maximum reweighted lower spectral
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gap is defined as

ζ∗(G) := max
P≥0

λmin(DP + P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) ≤ 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.

where DP is the diagonal matrix of row sums of P such that DP (u, u) =
∑

v∈V P (u, v) for
u ∈ V . We note that this program is slightly different from that in Definition 1.1.1, and
the main reason is that self-loops should not be allowed in this problem. We will explain
more about this in Section 4.4.

We prove an analog of Trevisan’s result that the maximum reweighted lower spectral
gap is small if and only if there is an induced bipartite subgraph on S with small vertex
expansion ψ(S).

Theorem 4.1.7 (Cheeger Inequality for Bipartite Vertex Expansion). For any undirected
graph G = (V,E) with maximum degree ∆ and any probability distribution π on V ,

ψB(G)
2

log∆
≲ ζ∗(G) ≲ ψB(G).

This is the first approximation algorithm for bipartite vertex expansion to our knowl-
edge. Finding a two-colorable set with small vertex expansion is one of the three ways in
Blum’s coloring tools [Blu94] to make progress in designing approximation algorithms for
coloring 3-colorable graphs. Indeed, it is in this context that Arora and Ge [AG11] made
the reweighting conjecture mentioned in the introduction. Theorem 4.1.7 does not imply
anything new about approximating graph coloring, but we hope that it is a step towards
answering Arora and Ge’s conjecture.

4.1.3 Higher-Order Cheeger Inequality for Vertex Expansion

Lee, Oveis Gharan and Trevisan [LOT12] and Louis, Raghavendra, Tetali and Vem-
pala [LRTV12] proved the higher-order Cheeger inequality, which state that the k-th
smallest eigenvalue λk(G) of the normalized Laplacian matrix of G = (V,E) is small if
and only if the k-way edge conductance ϕk(G) is small. More precisely, they proved that
λk ≲ ϕk ≲ k2

√
λk and ϕ k

2
≲
√
λk log k. See Section 3.1.3 for a review of their work.

We consider the analogous notion of k-way vertex expansion.
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Definition 4.1.8 (k-Way Vertex Expansion). Given an undirected graph G = (V,E) and
a probability distribution π on V , the k-way vertex expansion of G is defined as

ψk(G) := min
{
1, min

S1,...,Sk⊆V
max
1≤i≤k

ψ(Si)
}
,

where the minimum is taken over pairwise disjoint subsets S1, . . . , Sk of V .

Definition 4.1.9 (Maximum Reweighted k-th Smallest Eigenvalue). Given an undirected
graph G = (V,E) and a probability distribution π on V , the maximum reweighted k-
th smallest eigenvalue of the normalized Laplacian matrix of G is defined as λ∗k(G) :=
maxP≥0 λk(I − P ), where P is subject to the same constraints stated in Definition 1.1.1.

We prove an analog of higher-order Cheeger inequalities that the maximum reweighted
k-th smallest eigenvalue is small if and only if the k-way vertex expansion is small. As in
previous work [LOT12, LRTV12], there is a better approximation guarantee if we consider
only k

2
-way vertex expansion.

Theorem 4.1.10 (Higher-Order Cheeger Inequality for Vertex Expansion). For any undi-
rected graph G = (V,E) with maximum degree ∆ and any probability distribution π on
V ,

λ∗k(G) ≲ ψk(G) ≲ k
9
2 log k

√
log∆ · λ∗k(G) and ψ k

2
(G) ≲

√
k log k

√
log∆ · λ∗k(G).

Chan, Louis, Tang and Zhang [CLTZ18] developed a spectral theory for hypergraphs
and proved a higher-order Cheeger inequality for hypergraph (edge) expansion. Through
a reduction from vertex expansion to hypergraph expansion (see Fact 3.2.19), they proved

that ψ k
2
(G) ≲ k

5
2 log k log log k · log∆ ·

√
ξk for graphs with constant ratio between the max-

imum degree and the minimum degree, where ξk ≲ ψk(G) is a relaxation for k-way vertex
expansion. Compared to their result, Theorem 4.1.10 does not require the assumption
about the maximum degree and the minimum degree of G, and has a better approxima-
tion ratio for k

2
-way vertex expansion. Furthermore, Theorem 4.1.10 provides the first true

approximation algorithm for k-way vertex expansion ψk(G) to our knowledge.

4.1.4 Improved Cheeger Inequality for Vertex Expansion

Kwok, Lau, Lee, Oveis Gharan, and Trevisan [KLL+13] proved an improved Cheeger in-
equality that ϕ(G) ≲ kλ2(G)/

√
λk(G) for any k ≥ 2. This shows that λ2(G) is a tighter
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approximation to ϕ(G) when λk(G) is large for a small k. The result provides an ex-
planation for the good empirical performance of the spectral partitioning algorithm. See
Section 3.1.4 for a review of their work.

We prove an analogous result that if the λ∗k(G) is large for a small k, then λ∗2(G) is a
tighter approximation to the vertex expansion ψ(G). The following result is close to the
tight result in [KLL+13] for edge conductance as we will elaborate in Remark 4.6.4.

Theorem 4.1.11 (Improved Cheeger Inequality for Vertex Expansion). For any undirected
graph G = (V,E) with maximum degree ∆, and for any probability distribution π on V and
any k such that 2 ≤ k ≤ n

2
,

λ∗2(G) ≲ ψ(G) ≲
k · λ∗2(G) · log∆√

λ∗k(G)
.1

We remark that the reweightings used in λ∗2(G) and λ
∗
k(G) may be different. Through

Theorem 4.1.10, we obtain the following corollary that only depends on the graph struc-
ture: If the k-way vertex expansion ψk(G) is large for a small k, then λ∗2(G) is a tighter
approximation to ψ(G).

4.1.5 Vertex Expansion of 0/1-Polytopes

Mihail and Vazirani (see [FM92]) conjectured that the graph G = (V,E) (i.e. 1-skeleton) of
any 0/1-polytope is an edge expander, such that |δ(S)|/|S| ≥ 1 for every subset S ⊆ V with
|S| ≤ |V |/2, where δ(S) denotes the set of edges between S and V \S. This conjecture would
imply fast mixing time of random walks to the stationary distribution, with applications
in designing fast sampling algorithms for many classes of combinatorial objects. The
conjecture is proved to be correct in several cases [FM92, Kai04, ALOV19], most notably
the recent resolution of the matroid expansion conjecture [ALOV19] by Anari, Liu, Oveis
Gharan and Vinzant.

In all these positive results, the Markov chain can be set up so that the stationary
distribution is the uniform distribution, with the mixing time to the stationary distribution
poly-logarithmic in the graph size. Then the fast sampling algorithms can also be used
to obtain an approximate counting algorithm on the number of vertices in the given 0/1-
polytope, with poly-logarithmic runtime in the graph size. Therefore, sampling from the
uniform distribution is usually the setting of interest.

1This improves the original result in [KLT22], which had k
3
2 in the upper bound instead of k.
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Inspired by the connection between fastest mixing time and vertex expansion, we con-
sider a variant of Mihail and Vazirani’s conjecture: Is the graph of every 0/1-polytope a
vertex expander? Perhaps surprisingly, we show that there are 0/1-polytopes whose graphs
are very poor vertex expanders.

Theorem 4.1.12 (0/1-Polytopes with Poor Vertex Expansion). Let π be the uniform
distribution. For any k > 2 and any n > 2k sufficiently large, there is a 0/1-polytope
Q = Qn,k ⊆ {0, 1}n with O(nk) vertices and

ψ(Q) ≲
(4k)k

nk−2
.

Theorem 4.1.12 and Theorem 3.2.4 together imply that even the fastest mixing time of
the reversible random walks on some 0/1-polytopes is almost linear in the graph size.

Corollary 4.1.13 (Torpid Mixing to Uniform Distribution). For any constant k > 2, there
exists a 0/1-polytope Q such that any reversible Markov chain on its graph GQ = (V,E)

with stationary distribution 1⃗/|V | has mixing time Ω
(
|V |1− 2

k

)
.

While Theorem 4.1.12 does not provide a counterexample to the conjecture of Mihail
and Vazirani, it shows that even if the conjecture is true, there are 0/1-polytopes for which
random walks cannot be used for efficient uniform sampling and for efficient approximate
counting.

Remark 4.1.14. After posting the first version of the paper [KLT22] on arXiv, we found
out that Gillmann [Gil07, Chapter 3.2] has already constructed examples of 0/1-polytopes
whose graphs have poor vertex expansion. The polytopes Q ⊆ {0, 1}n constructed have
2(h(c)+o(1))n vertices and satisfy

ψ(Q) ≲ 2−(h(c)−2c)n,

where h(x) := −x log x − (1 − x) log(1 − x) is the binary entropy function and c := 1/5
(correspondingly h(c) = 0.7219...). Applying Theorem 3.2.4, this would imply a fastest
mixing time bound of Ω(|V |0.4459...). By choosing smaller values of c, an almost linear
fastest mixing time bound can be obtained as in Corollary 4.1.13.

4.2 Our Techniques

From a technical perspective, the advantage of relating reweighted eigenvalues to vertex
expansions is that many ideas relating eigenvalues to edge conductances can be carried
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over to the new setting. So, many steps in our proofs are natural extensions of previous
arguments, and we focus our discussion here on the new elements.

Vertex Expansion: The proof of Theorem 3.2.4 by Olesker-Taylor and Zanetti is
based on the dual characterization of reweighted second eigenvalue in Proposition 3.2.3,
due to Roch [Roc05], and it has two main steps. In the first step, they used the Johnson-
Lindenstrass lemma to project the SDP solution into a O(log n)-dimensional solution, and
then further reduce it to a 1-dimensional “spectral” solution by taking the best coordinate.
This is the step where the log n factor is lost. In the second step, they introduced an
interesting new concept called the “matching conductance”, and used some combinatorial
arguments about greedy matchings for the analysis of Cheeger rounding on Roch’s dual
program.

In our proof of Theorem 4.1.3, we also use Roch’s dual characterization and follow
the same two steps. In the first step, we use the Gaussian projection method in [LRV13]
(see Section 3.2.4) to reduce the SDP solution to a 1-dimensional solution directly, and
adapt their analysis to show that only a factor of log∆ is lost. In the second step, we
bypass the concept of matching conductance and do a more traditional analysis of Cheeger
rounding as in Bobkov, Houdré and Tetali [BHT00] (see Section 3.2.4). It turns out that
this analysis works smoothly for weighted vertex conductance, while the approach using
matching conductance faced some difficulties as described in [OZ22] (c.f. Section 3.2.2). A
new element in our proof is the introduction of an intermediate dual program using graph
orientation, which is important in the analysis of both steps.

Bipartite Vertex Expansion: The proof of Theorem 4.1.7 for bipartite vertex ex-
pansion follows closely the proof of Theorem 4.1.3 and Trevisan’s result [Tre09] (see Sec-
tion 3.1.2), once the correct formulation in Definition 4.1.6 is found.

Multiway Vertex Expansion: For the proof of higher-order Cheeger inequality for
vertex expansion in Theorem 4.1.10, one technical issue is that we do not know of a
convex relaxation for the maximum reweighted k-th smallest eigenvalue in Definition 4.1.9.
Instead, we define a related quantity σ∗

k(G) called the maximum reweighted sum of the k
smallest eigenvalues in Definition 4.5.1, which can be written as a semidefinite program. We
show in Proposition 4.5.2 that this quantity has a nice dual characterization that satisfies
the sub-isotropy condition. This allows us to adapt the techniques in [LOT12] to decompose
the SDP solution into k disjointly supported SDP solutions with small objective values, so
that we can apply Theorem 4.1.3 to find k disjoint sets with small vertex expansion. A
review of the background from [LOT12] needed for the proof is available in Section 3.1.3.

Improved Cheeger Inequality: The proof of improved Cheeger inquality for vertex
expansion is similar to that in [KLL+13], which has two main steps. The first step is
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to prove that if the 1-dimensional solution to Roch’s dual program is close to a k-step
function, then Cheeger rounding performs well. The second step is to prove that if the
1-dimensional solution to Roch’s dual program is far from a k-step function, then we can
construct an SDP solution to σ∗

k with small objective value, which proves that λ∗k is small.
Therefore, if λ∗k is large, then the 1-dimensional solution must be close to a k-step function,
and hence Cheeger rounding performs well. One interesting aspect in this proof is to relate
the performance of a rounding algorithm of one SDP (in this case λ∗2(G)) to the objective
value of another SDP (in this case σ∗

k(G)). A review of the background from [KLL+13] is
available in Section 3.1.4.

Vertex Expansion of 0/1-Polytopes: The examples in Theorem 4.1.12 for 0/1-
polytope is obtained by a simple probabilistic construction. The graph of a 0/1-polytope
is defined by the set of points chosen in {0, 1}n. Let L be the set of points with k ones, and
let R be the set of points with (n− k) ones. We prove that if we choose a random set M
of points with n/2 ones and set |M | ≍ 4kn2, then with high probability there are no edges
between L and R in the resulting polytope, and so M is a small vertex separator of L and
R where each has

(
n
k

)
points. The proof is by elementary geometric arguments about the

edges of a polytope, and a simple result bounding the number of linear threshold functions
in the boolean hypercube {0, 1}n.

Remark 4.2.1 (Concurrent Work). Jain, Pham, and Vuong [JPV22] independently pub-
lished a proof of Theorem 4.1.3 for the uniform distribution case. Their approach is based
on a better analysis of dimension reduction for maximum matching, which is quite different
from our approach as we bypassed the concept of matching conductance in [OZ22]; see Sec-
tion 3.2.3 for a review. In Chapter 5, we will adopt their approach in analyzing dimension
reduction.

4.3 Optimal Cheeger Inequality for Vertex Expansion

The goal of this section is to prove Theorem 4.1.3. Our starting point is the dual program
by [Roc05], which we copy here for convenience.

Proposition 4.3.1 (Dual Programs for Fastest Mixing [Roc05] (restatement of Proposi-
tion 3.2.3 and Definition 3.2.5)). Given an undirected graph G = (V,E) and a probability
distribution π on V , the following semidefinite program is dual to the primal program in
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Definition 1.1.1 with strong duality λ∗2(G) = γ(G) where

γ(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗

g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E.

γ(1)(G) as defined in Definition 3.2.5 is the 1-dimensional program of γ(G) with f : V → R
instead of f : V → Rn.

The proof is by combining the proofs in [OZ22, LRV13, BHT00] with a graph orientation
idea. We follow the same two-step plan as in [OZ22]. We will prove in Proposition 4.3.6 in
Section 4.3.2 that γ(1)(G) ≲ γ(G) · log∆ for any probability distribution π. Note that this
already improves Theorem 3.2.4 to the optimal bound, when π is the uniform distribution.
Then, we will prove in Theorem 4.3.7 in Section 4.3.3 that ψ(G)2 ≲ γ(1)(G) ≲ ψ(G)
for any probability distribution π on V , which generalizes Theorem 3.2.7. As in [OZ22],
combining Proposition 4.3.1 and Proposition 4.3.6 and Theorem 4.3.7 gives Theorem 4.1.3.
We recommend reading the relevant subsections in Section 3.2 before continuing with this
section.

4.3.1 Dual Program on Graph Orientation

To extend the techniques in [LRV13, BHT00] to prove the two steps, we will introduce a
“directed” program γ⃗(G) to bring γ(G) closer to sdp∞(G) in Definition 3.2.16.

Observe that the two programs γ(G) and sdp∞(G) have very similar form. The only
difference is that the last constraint in γ(G) only requires that g(u)+g(v) ≥ ∥f(u)− f(v)∥2
for uv ∈ E, while the last constraint in Definition 3.2.16 has a stronger requirement that
min{g(u), g(v)} ≥ ∥f(u)− f(v)∥2 for uv ∈ E. So sdp∞(G) is a stronger relaxation than
γ(G) = λ∗2(G).

Lemma 4.3.2. For any undirected graph G = (V,E) and any distribution π on V ,

λ∗2(G) ≤ sdp∞(G).
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For our analysis of λ∗2(G), we consider the following “directed” program γ⃗(G) where
the last constraint is max{g(u), g(v)} ≥ ∥f(u)− f(v)∥2 for uv ∈ E. We also state the
corresponding 1-dimensional version as in Proposition 4.3.1 in the following definition.

Definition 4.3.3 (Directed Dual Programs for γ(G)). Given an undirected graph G =
(V,E) and a probability distribution π on V ,

γ⃗(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗

max{g(u), g(v)} ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E.

γ⃗(1)(G) is defined as the 1-dimensional program of γ⃗(G) where f : V → R instead of
f : V → Rn.

Note that γ⃗(G) is not a semidefinite program because of the max constraint, but γ(G)
and γ⃗(G) are closely related and γ⃗(G) is only used in the analysis as a proxy for γ(G).

Lemma 4.3.4. For any undirected graph G = (V,E) and any probability distribution π on
V ,

γ(G) ≤ γ⃗(G) ≤ 2γ(G) and γ(1)(G) ≤ γ⃗(1)(G) ≤ 2γ(1)(G).

Proof. As g ≥ 0, any feasible solution f, g to γ⃗(G) is a feasible solution to γ(G) and so
the first inequalities follow. On the other hand, for any feasible solution f, g to γ(G), note
that f, 2g is a feasible solution to γ⃗(G) and so the second inequalities follow.

The reason that we call γ⃗(G) the “directed” program is as follows. For each edge uv ∈
E, the constraint in sdp∞(G) requires both g(u) and g(v) to be at least ∥f(u)− f(v)∥2,
while the constraint in γ⃗(G) only requires at least one of g(u) or g(v) to be at least
∥f(u)− f(v)∥2. We think of γ⃗(G) as assigning a direction to each edge and requiring that
g(v) ≥ ∥f(u)− f(v)∥2 for each directed edge u → v. Then, we can rewrite the programs
γ⃗(G) and γ⃗(1)(G) by eliminating the variables g(v) for v ∈ V , by minimizing over all
possible orientations of the edge set E.
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Lemma 4.3.5 (Directed Dual Programs Using Orientation for γ(G)). Let G = (V,E) be

an undirected graph and π be a probability distribution on V . Let
−→
E be an orientation of

the undirected edges in E. Then

γ⃗(G) = min
f :V→Rn

min−→
E

∑
v∈V

π(v) max
u:uv∈

−→
E

∥f(u)− f(v)∥2

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1∑
v∈V

π(v)f(v) = 0⃗.

Similarly, γ⃗(1)(G) can be written in the same form with f : V → R instead of f : V → Rn.

Proof. In one direction, given an orientation
−→
E , define g(v) := max

u:uv∈
−→
E
∥f(u)− f(v)∥2,

so that f, g is a feasible solution to γ⃗(G) as stated in Definition 4.3.3 with the same objective
value.

In the other direction, given a solution f, g in Definition 4.3.3, we can define an orien-

tation
−→
E of E so that each directed edge uv satisfies g(v) ≥ ∥f(u)− f(v)∥2. Note that

g(v) ≥ max
u:uv∈

−→
E
∥f(u)− f(v)∥2, and setting it to be an equality would satisfy all the

constraints and not increase the objective value as g ≥ 0.

This formulation will be useful in both the Gaussian projection step for Proposi-
tion 4.3.6 and the threshold rounding step for Theorem 4.3.7.

4.3.2 Gaussian Projection

The following proposition is an improvement of Proposition 3.2.6 in [OZ22]. The formula-
tion in Lemma 4.3.5 allows us to use the expected maximum of Gaussian random variables
in Fact 2.10.6 to analyze the projection as was done in [LRV13].

Proposition 4.3.6 (Gaussian Projection for γ(G)). For any undirected graph G = (V,E)
with maximum degree ∆ and any probability distribution π on V ,

γ(G) ≤ γ(1)(G) ≲ γ(G) · log∆.

Proof. We will prove that γ⃗(G) ≤ γ⃗(1)(G) ≲ γ⃗(G) · log∆, and the proposition will follow
from Lemma 4.3.4. The first inequality is immediate as γ⃗(1)(G) is a restriction of γ⃗(G), so
we focus on proving the second inequality.
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The proof is almost identical to the proof of Theorem 3.2.17 that

sdp∞(G) ≤ λ∞(G) ≲ sdp∞(G) · log∆.

Let f : V → Rn and
−→
E be a solution to γ⃗(G) as stated in Lemma 4.3.5. As in [LRV13],

we construct a 1-dimensional solution y ∈ Rn to γ⃗(1)(G) by setting y(v) = ⟨f(v), z⟩, where
h ∼ N(0, 1)n is a Gaussian random vector with independent entries.

First, consider the expected objective value of y to γ⃗(1)(G). For each max term in the
summand,

E
[
max
u:u→v

(
y(u)− y(v)

)2]
= E

[
max
u:u→v

〈
f(u)− f(v), z

〉2]
≤ 2 max

u:u→v
∥f(u)− f(v)∥2 · log∆,

where the last inequality is by applying Fact 2.10.6 on the centered Gaussian random
variable ⟨f(u)−f(v), z⟩ with variance ∥f(u)− f(v)∥2 for each of the at most ∆ terms. By
linearity of expectation, the expected objective value of γ⃗(1)(G) is

E

[∑
v∈V

π(v) max
u:u→v

(
y(u)− y(v)

)2] ≤ 2 log∆ ·
∑
v∈V

π(v) max
u:u→v

∥f(u)− f(v)∥2 = 2γ⃗(G) · log∆.

Therefore, by Markov’s inequality,

Pr

[∑
v∈V

π(v) max
u:u→v

(
y(u)− y(v)

)2 ≥ 48 log∆ · γ⃗(G)

]
≤ 1

24
.

Next, by applying Fact 2.10.7 with Yv =
√
π(v) · y(v), it follows that

E

[∑
v∈V

π(v)y(v)2

]
=
∑
v∈V

π(v) ∥f(v)∥2 = 1 =⇒ Pr

[∑
v∈V

π(v)y(v)2 ≥ 1

2

]
≥ 1

12
.

Finally, since
∑

v∈V π(v)f(v) = 0⃗, it holds that∑
v∈V

π(v)y(v) =
∑
v∈V

π(v)⟨f(v), h⟩ =
〈∑
v∈V

π(v)f(v), h
〉
= 0.

Therefore, with probability at least 1
24
, all of these events hold simultaneously. The second

event ∑
v∈V

π(v)y(v)2 ≥ 1

2

means we can rescale y by a factor of at most
√
2, so that the constraint

∑
v∈V π(v)y(v)

2 = 1
is satisfied and the objective value is at most 96 log∆ · γ⃗(G). Hence we conclude that
γ⃗(1)(G) ≲ γ⃗(G) · log∆.
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4.3.3 Cheeger Rounding for Vertex Expansion

We generalize Theorem 3.2.7 to weighted vertex expansion. Our proof does not use the
concept of matching conductance in [OZ22]; rather, it is based on a more traditional
analysis as in [BHT00] using the directed program γ⃗(1)(G) in Lemma 4.3.5.

Theorem 4.3.7 (Cheeger Inequality for Weighted Vertex Expansion). For any undirected
graph G = (V,E) and any probability distribution π on V ,

ψ(G)2 ≲ γ(1)(G) ≲ ψ(G).

The organization is as follows. We will prove the easy direction Lemma 4.3.8 in Sec-
tion A.1. For the hard direction, we will work on γ⃗(1)(G) instead. We will follow the
two-step proof template for Theorem 3.1.1.2 First, we relate γ⃗(1)(G) with an ℓ1 version of
the program, denoted η⃗(G). We will show that

η⃗(G)2 ≲ γ⃗(1)(G).

Then in the second step, we define a modified vertex boundary condition for directed
graphs and use it for the analysis of the threshold rounding. In the end, to find a set
with small vertex expansion in the underlying undirected graph, we clean up the solution
obtained from threshold rounding.

Below is the precise statement of the easy direction. The proof is deferred to Section A.1.

Lemma 4.3.8 (Easy Direction). For any undirected graph G = (V,E) and any probability
distribution π on V ,

γ(1)(G) ≤ 2ψ(G).

We now turn to proving the hard direction.

Step 1 (ℓ22 to ℓ1). In the first step, we would like to show that η⃗(G)2 ≲ γ⃗(1)(G), where
γ⃗(1)(G) is defined in Lemma 4.3.5 (with f : V → R) and η⃗(G) is defined as

η⃗(G) := min
h:V→R

min−→
E

∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u)− h(v)|

subject to
∑
v∈V

π(v)|h(v)| = 1

max
(
π({v ∈ V : h(v) < 0}), π({v ∈ V : h(v) > 0})

)
≤ 1

2
.

2Note that this is different from the proof flow in [KLT22].
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The last constraint is equivalent to requiring that 0 be a π-weighted median of h. It is the
appropriate “balance” constraint for ℓ1 programs and ensures that the set S produced by
threshold rounding in the second step satisfies π(S) ≤ 1/2, without needing any truncation
of the solution h.

Let (f,
−→
E ) be a feasible solution to γ⃗(1)(G) and let c ∈ R be a π-weighted median of f ,

and define h : V → R as in (3.1) in Theorem 3.1.1. Clearly, 0 is a π-weighted median of h,
and comparing the constraints we have∑

v∈V

π(v)|h(v)| =
∑
v∈V

π(v)(f(v)− c)2 ≥
∑
v∈V

π(v)f(v)2 = 1, (4.2)

where the inequality follows from
∑

v∈V π(v)f(v) = 0.

To compare the objective values, note that (3.2) holds here as well, and so∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u)− h(v)|

≤
∑
v∈V

π(v) max
u:uv∈

−→
E

|f(u)− f(v)| (|f(u)− c|+ |f(v)− c|) (by (3.2))

≤
∑
v∈V

π(v) max
u:uv∈

−→
E

|f(u)− f(v)| (2|f(v)− c|+ |f(u)− f(v)|)

(∗)
≤

∑
v∈V

π(v) max
u:uv∈

−→
E

(f(u)− f(v))2 + 2

√∑
v∈V

π(v)(f(v)− c)2 ·
∑
v∈V

π(v) max
u:uv∈

−→
E

(f(u)− f(v))2

= γ⃗(1)(G) + 2

√∑
v∈V

π(v)(f(v)− c)2 · γ⃗(1)(G),

where the step (∗) uses the Cauchy-Schwarz inequality. Combining this with (4.2),∑
v∈V π(v)max

u:uv∈
−→
E
|h(u)− h(v)|∑

v∈V π(v)|h(v)|
≤ γ⃗(1)(G) +

2
√∑

v∈V π(v)(f(v)− c)2 · γ⃗(1)(G)∑
v∈V π(v)(f(v)− c)2

= γ⃗(1)(G) + 2

√
γ⃗(1)(G)∑

v∈V π(v)(f(v)− c)2

≤ γ⃗(1)(G) + 2
√
γ⃗(1)(G) ≲

√
γ⃗(1)(G),

where the last asymptotic inequality is because

γ⃗(1)(G) ≤ 2γ(1)(G) ≤ 4ψ(G) ≤ 4
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by Lemma 4.3.4, Lemma 4.3.8, and the definition of ψ(G). Therefore, we can scale down

h so that
∑

v∈V π(v)|h(v)| = 1 and take the same
−→
E , and (h,

−→
E ) is a feasible solution to

η⃗(G), thus certifying that

η⃗(G) ≤
∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u)− h(v)| ≲
√
γ⃗(1)(G),

as we have set out to prove.

Step 2 (threshold rounding). For the threshold rounding, we first define the appropriate

“vertex cover” boundary ∂⃗τS for the analysis of the directed program η⃗(G). Note that,

unlike ∂S, ∂⃗τS may contain vertices in S. A good interpretation is to think of ∂⃗τS as a
vertex cover of the edge boundary δ(S) in the undirected sense.

Definition 4.3.9 (Directed Vertex Cover Boundary and Expansion). Let G = (V,
−→
E ) be

a directed graph, and π be a distribution on V . For S ⊆ V , define the directed vertex cover
boundary and the directed vertex cover expansion as

∂⃗τS :=
{
v ∈ S | ∃u /∈ S with uv ∈

−→
E
}
∪
{
v /∈ S | ∃u ∈ S with uv ∈

−→
E
}

and ψ⃗τ (S) := π(∂⃗τS)/π(S).

The main step is to prove that threshold rounding will find a set S with small directed
vertex cover expansion ψ⃗τ (S).

Proposition 4.3.10 (Threshold Rounding for η⃗(G)). Let G = (V,E) be an undirected

graph and π be a distribution on V . Given a solution (h,
−→
E ) to η⃗(G) with∑

v∈V π(v)max
u:uv∈

−→
E
|h(u)− h(v)|∑

v∈V π(v)|h(v)|
= ηh,

threshold rounding on h yields a set S ⊆ V with 0 < π(S) ≤ 1/2 and ψ⃗τ (S) ≲ ηh.

Proof. Let t ∈ R be a parameter, and define St ⊆ V as in (3.3) in Theorem 3.1.1. Note
that, since 0 is a π-weighted median of h, π(St) is at most 1/2 for any t ∈ R. The “average”
π-weight of St is∫ ∞

−∞
π(St) dt =

∑
v∈V

π(v)

∫ ∞

−∞
1[v ∈ St] dt =

∑
v∈V

π(v)|h(v)|.
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Since ∫ ∞

−∞
π(∂⃗τSt) dt =

∑
v∈V

π(v)

∫ ∞

−∞
1[v ∈ ∂⃗τSt] dt,

to analyze the “average” size of ∂⃗τSt we investigate when a given vertex v is included in
∂⃗τSt.
Verify that a vertex v is in ∂⃗τSt if and only if min{h(u) | uv ∈

−→
E } ≤ t ≤ max{h(u) | uv ∈

−→
E }, where we recall the assumption that every vertex has a self loop, and so vv ∈

−→
E and

thus min{h(u) | uv ∈
−→
E } ≤ h(v) ≤ max{h(u) | uv ∈

−→
E }. Therefore, the “average” size of

∂⃗τSt is ∫ ∞

−∞
π(∂⃗τSt) dt =

∑
v∈V

π(v)

∫ ∞

−∞
1[v ∈ ∂⃗τSt] dt

=
∑
v∈V

π(v)

(
max
u:uv∈

−→
E

h(u)− min
u:uv∈

−→
E

h(u)

)
≤ 2

∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u)− h(v)|.

Note that π(∂⃗τS) = 0 whenever π(S) = 0. Therefore, S = St for some t ∈ R satisfies
0 < π(S) ≤ 1/2 and

ψ⃗τ (S) ≤
∫∞
−∞ π(∂⃗τSt) dt∫∞
−∞ π(St) dt

≤
2
∑

v∈V π(v)max
u:uv∈

−→
E
|h(u)− h(v)|∑

v∈V π(v)|h(v)|
= 2ηh.

This completes the proof.

Finally, given a set S with small directed vertex cover expansion ψ⃗τ (S), we show how
to find a set S ′ ⊆ S with small vertex expansion ψ(S ′). This step is similar to the step
in [OZ22] from matching conductance to vertex expansion (c.f. Proposition 3.2.10).

Lemma 4.3.11 (Postprocessing for Vertex Expansion). Let G = (V,
−→
E ) be a directed

graph. Given a set S with ψ⃗τ (S) < 1/2, there is a set S ′ ⊆ S with ψ(S ′) ≤ 2ψ⃗τ (S) in the
underlying undirected graph of G.

Proof. From Definition 4.3.9, the observation is that all undirected edges in δ(S) are inci-

dent to at least one vertex in ∂⃗τS. Define S ′ := S − ∂⃗τS. Then observe that ∂S ′ ⊆ ∂⃗τS,
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as there are no incoming edges to S ′ from V − (S ′ ∪ ∂⃗τS) and all outgoing edges from S ′

go to ∂⃗τ (S). This implies that

π(∂S ′) ≤ π
(
∂⃗τS

)
= ψ⃗τ (S) · π(S) ≤ 2ψ⃗τ (S) · π(S ′),

where the last inequality uses the assumption that ψ⃗τ (S) = π
(
∂⃗τS

)
/π(S) < 1/2 and so

π(S ′) ≥ π(S)− π
(
∂⃗τS

)
≥ π(S)/2. We conclude that ψ(S ′) ≤ 2ψ⃗τ (S).

We put together the steps and complete the proof of Theorem 4.3.7 in Section A.1.

4.4 Cheeger Inequality for Bipartite Vertex Expan-

sion

The goal of this section is to prove Theorem 4.1.7, which relates the maximum reweighted
lower spectral gap ζ∗(G) in Definition 4.1.6 and the bipartite vertex expansion ψB(G) in
Definition 4.1.5. The proof follows closely the proof of Theorem 4.1.3 in the previous
section, so some steps will be stated without proofs, and the focus will be on the threshold
rounding step.

4.4.1 Primal and Dual Programs

The primal program ζ∗(G) in Definition 4.1.6 has the following dual program which is
similar to γ(G) in Proposition 4.3.1.

Proposition 4.4.1 (Dual Program for Lower Spectral Gap [Roc05]). Given an undirected
graph G = (V,E) and a probability distribution π on V , the following semidefinite program
is dual to the primal program in Definition 4.1.6 with strong duality ζ∗(G) = ν(G) where

ν(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1

g(u) + g(v) ≥ ∥f(u) + f(v)∥2 ∀uv ∈ E.
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There are two differences between γ(G) in Proposition 4.3.1 and ν(G) in Proposi-
tion 4.4.1. One is that the constraint g(u) + g(v) ≥ ∥f(u)− f(v)∥2 in γ(G) is replaced by
the constraint g(u) + g(v) ≥ ∥f(u) + f(v)∥2 in ν(G), which are handled in a similar way.
The other is that the constraint of

∑
v∈V π(v)f(v) = 0⃗ in γ(G) is not present in ν(G).

The nice form of the dual program ν(G) is the main reason behind the definition of the
primal program ζ∗(G). By the variational characterization of eigenvalues, the quadratic
form of DP + P , and the π-reversibility of P ,

λmin(DP + P ) = min
x:V→R

xT (DP + P )x

xTx
= min

x:V→R

∑
uv∈E π(u)P (u, v)(x(u) + x(v))2∑

u∈V π(u)x(u)
2

,

and this is the intermediate form we need to derive the dual; see [Roc05].

Later, as in Section 4.3.1, we will define a directed dual program ν⃗(G), and the dual
constraint g ≥ 0 crucially enables us to relate the two programs. The dual constraint g ≥ 0
comes from the primal constraint

∑
v∈V P (u, v) ≤ 1, whereas if we use

∑
v∈V P (u, v) = 1

then g will be unconstrained.

For λ∗2(G), we sidestep the issue by adding self loops to each vertex of G. The
non-negativity of g in the dual program γ(G) follows indirectly from g(u) + g(u) ≥
∥f(u)− f(u)∥2, as now (u, u) ∈ E. Moreover, adding self loops does not change the
vertex expansion of G. Therefore, λ∗2(G) can take the more natural form where P does
correspond to a transition matrix. However, we cannot do the same for ζ∗(G), because
the additional constraint on g becomes g(u) + g(u) ≥ ∥f(u) + f(u)∥2 which changes the
objective value, and also that adding self loops takes away the bipartiteness of subgraphs.
This is why we have to explicitly impose the non-negativity of g here.

4.4.2 Proof of Theorem 4.1.7

We use the same two-step plan as in Section 4.3. First, we project the solution to the dual
program in Proposition 4.4.1 into a 1-dimensional solution to the following program.

Definition 4.4.2 (One-Dimensional Dual Program for Lower Spectral Gap). Given an
undirected graph G = (V,E) and a probability distribution π on V , ν(1)(G) is defined as

min
f :V→R, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1

g(u) + g(v) ≥ ∥f(u) + f(v)∥2 ∀uv ∈ E.
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As in Proposition 4.3.6, we use the Gaussian projection method in [LRV13] to prove
the following guarantee.

Proposition 4.4.3 (Gaussian Projection for ν(G)). For any undirected graph G = (V,E)
with maximum degree ∆ and any probability distribution π on V ,

ν(G) ≤ ν(1)(G) ≲ ν(G) · log∆.

In the second step, we prove a Cheeger-type inequality relating ψB(G) and ν(G).

Theorem 4.4.4. For any undirected graph G = (V,E) and any probability distribution π
on V ,

ψB(G)
2 ≲ ν(1)(G) ≲ ψB(G).

Combining Proposition 4.4.1 and Proposition 4.4.3 and Theorem 4.4.4 gives

ψB(G)
2 ≲ ν(1)(G) ≲ ν(G) · log∆ = ζ∗(G) · log∆ and ζ∗(G) = ν(G) ≤ ν(1)(G) ≲ ψB(G),

proving Theorem 4.1.7. We will prove Proposition 4.4.3 and Theorem 4.4.4 in the following
subsections.

4.4.3 Dual Program on Graph Orientation

As in Section 4.3.1, we introduce a directed program for the analysis of both steps.

Definition 4.4.5 (Directed Dual Programs for ν(G)). Given an undirected graph G =
(V,E) and a probability distribution π on V ,

ν⃗(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1

max{g(u), g(v)} ≥ ∥f(u) + f(v)∥2 ∀uv ∈ E.

ν⃗(1)(G) is defined as the 1-dimensional program of ν⃗(G) where f : V → R instead of
f : V → Rn.

As in Lemma 4.3.4, we show that ν(G) and ν⃗(G) are closely related. The proof is the
same as in Lemma 4.3.4 and is omitted, but note that g ≥ 0 is needed.
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Lemma 4.4.6. For any undirected graph G = (V,E) and any probability distribution π on
V ,

ν(G) ≤ ν⃗(G) ≤ 2ν(G) and ν(1)(G) ≤ ν⃗(1)(G) ≤ 2ν(1)(G).

As in Lemma 4.3.5, we use an orientation of the edges to eliminate the variables g(v)
for v ∈ V in ν⃗(G). The proof is the same as in Lemma 4.3.5 and is omitted, but note that
g ≥ 0 is needed.

Lemma 4.4.7 (Directed Dual Programs Using Orientation for ν(G)). Let G = (V,E) be

an undirected graph and π be a probability distribution on V . Let
−→
E be an orientation of

the undirected edges in E. Then

ν⃗(G) = min
f :V→Rn

min−→
E

∑
v∈V

π(v) max
u:uv∈

−→
E

∥f(u) + f(v)∥2

subject to
∑
v∈V

π(v) ∥f(v)∥2 = 1.

Similarly, ν⃗(1)(G) can be written in the same form with f : V → R instead of f : V → Rn.

Once we have this formulation using orientation, we can use the same proof as in
Proposition 4.3.6 to show that ν⃗(G) ≤ ν⃗(1)(G) ≲ log∆ · ν⃗(G), and thus Proposition 4.4.3
follows from Lemma 4.4.6 and we omit the proof. It remains to prove Theorem 4.4.4, which
will be done in the next subsection.

4.4.4 Cheeger Rounding for Bipartite Vertex Expansion

The goal of this subsection is to prove Theorem 4.4.4. We will prove the following easy
direction in Section A.2.

Lemma 4.4.8 (Easy Direction). For any undirected graph G = (V,E) and any probability
distribution π on V ,

ν(1)(G) ≤ 2ψB(G).

For the hard direction, we will work with ν⃗(1)(G) instead. We will follow the two-
step proof template for Theorem 3.1.1.3 First, we relate ν⃗(1)(G) with an ℓ1 version of the

program ξ⃗(G) that

ξ⃗(G)2 ≲ ν⃗(1)(G).

3Again, note that this is different from the proof flow in [KLT22].
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Then, in the second step, we define a modified bipartite vertex expansion condition for
directed graphs and use it for the analysis of the threshold rounding.

We now begin the proof of the hard direction.

Step 1 (ℓ22 to ℓ1). In the first step, we would like to show that ξ⃗(G)2 ≲ ν⃗(1)(G), where

ν⃗(1)(G) is defined in Lemma 4.4.7 (with f : V → R) and ξ⃗(G) is defined as

ξ⃗(G) := min
h:V→R

min−→
E

∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u) + h(v)|

subject to
∑
v∈V

π(v)|h(v)| = 1.

Let (f,
−→
E ) be a feasible solution to ν⃗(1)(G). Define h : V → R as in the proof of Trevisan’s

result in Theorem 3.1.4, i.e.

h(u) :=

{
f(u)2 if f(u) ≥ 0

−f(u)2 if f(u) < 0.

Clearly,
∑

v∈V π(v)|h(v)| =
∑

v∈V π(v)f(v)
2 = 1, and by the inequality (3.4) we have∑

v∈V

π(v) max
u:uv∈

−→
E

|h(u) + h(v)|

≤
∑
v∈V

π(v) max
u:uv∈

−→
E

|f(u) + f(v)| (|f(u)|+ |f(v)|)

≤
∑
v∈V

π(v) max
u:uv∈

−→
E

|f(u) + f(v)| (2|f(v)|+ |f(u) + f(v)|)

(∗)
≤

∑
v∈V

π(v) max
u:uv∈

−→
E

(f(u) + f(v))2 + 2

√∑
v∈V

π(v)f(v)2 ·
∑
v∈V

π(v) max
u:uv∈

−→
E

(f(u) + f(v))2

= ν⃗(1)(G) + 2
√
ν⃗(1)(G) ≲

√
ν⃗(1)(G),

where the step (∗) uses the Cauchy-Schwarz inequality and the last asymptotic inequality
is because

ν⃗(1)(G) ≤ 2ν(1)(G) ≤ 4ψB(G) ≤ 4

by Lemma 4.4.6, Lemma 4.4.8, and the definition of ψB(G). Therefore, (h,
−→
E ) is a feasible

solution to ξ⃗(1)(G), and certifies that

ξ⃗(1)(G) ≤
∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u) + h(v)| ≲
√
ν⃗(1)(G).
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Step 2 (threshold rounding). Let S1, S2 be two disjoint subsets of V . In the edge
conductance setting, rephrasing using our terminology, Trevisan [Tre09] defined the “bi-
partite edge boundary” δ(S1, S2) as E(S1) ∪ E(S2) ∪ δ(S1 ∪ S2) where E(Si) is the set
of induced edges in Si for i ∈ {1, 2}, and the “bipartite edge conductance” ϕ(S1, S2) as
|δ(S1, S2)|/vol(S1 ∪ S2) (see Section 3.1.2). We define the appropriate “bipartite vertex

cover boundary” ∂⃗τ (S1, S2) for vertex expansion and for directed graphs in the following

definition. As in Definition 4.3.9, note that ∂⃗τ (S1, S2) could contain vertices in V \(S1∪S2).

Again, a good intuition is to think of ∂⃗τ (S1, S2) as a vertex cover of the edges in the bipartite
edge boundary δ(S1, S2) in the undirected sense.

Definition 4.4.9 (Directed Bipartite Vertex Cover Boundary and Expansion). Let G =

(V,
−→
E ) be a directed graph. Let S1, S2 be two disjoint subsets of V . The directed bipartite

vertex cover boundary of (S1, S2) is defined as

∂⃗τ (S1, S2) :=
{
v ∈ S1 | ∃u ̸∈ S2 with uv ∈

−→
E
}
∪{

v ∈ S2 | ∃u ̸∈ S1 with uv ∈
−→
E
}
∪{

v /∈ S1 ∪ S2 | ∃u ∈ S1 ∪ S2 with uv ∈
−→
E
}
,

and the directed bipartite vertex cover expansion as

ψ⃗τ (S1, S2) :=
π
(
∂⃗τ (S1, S2)

)
π(S1 ∪ S2)

.

An example of directed bipartite vertex cover expansion is provided in Figure 4.1.

We prove that threshold rounding as in Section 3.1.2, when applied on ξ⃗(1)(G), will give
a set with small directed bipartite vertex cover expansion.

Proposition 4.4.10 (Threshold Rounding for ξ⃗(G)). Let G = (V,E) be an undirected

graph and π be a probability distribution on V . Given a solution (h,
−→
E ) with∑

v∈V

π(v) max
u:uv∈

−→
E

|h(u) + h(v)| = ξh and
∑
v∈V

π(v)|h(v)| = 1,

threshold rounding on h yields two disjoint subsets S1, S2 ⊆ V with ψ⃗τ (S1, S2) ≲ ξh.

Proof. Let t ∈ R≥0 be a parameter. Define St := {v ∈ V | h(v) > t} and S−t := {v ∈ V |
h(v) < −t}. Then, the “average” denominator value is∫ ∞

0

π(St ∪ S−t) dt =
∑
v∈V

π(v)|h(v)| = 1.

164



Figure 4.1: In the graph shown, the bipartitions are S1 = {a, b, c, d} and S2 = {e, f, g}.
The vertices a, b, e, i, with thick outlines, are the vertices in ∂⃗τ (S1, S2).

For the numerator, we consider when a vertex v is in ∂⃗τ (St, S−t). Assume without loss

that h(v) ≥ 0; the other case is symmetric. There are two scenarios where v ∈ ∂⃗τ (St, S−t):

1. The first scenario is when uv ∈ E[St] in the undirected sense for some directed
edge u → v. For a fixed edge u → v, this happens when t < min(h(u), h(v)) ≤
|h(u) + h(v)|/2 (note that h(u) ≥ 0). Therefore, the first scenario happens when

t < max
u:uv∈

−→
E

max{0,min(h(u), h(v))} ≤ 1

2
max
u:uv∈

−→
E

|h(u) + h(v)|.

2. The second scenario is when uv ∈ δ(St ∪ S−t) in the undirected sense for some
directed edge u→ v. For a fixed edge u→ v, this happens when |h(u)| ≤ t < |h(v)|
(so u /∈ St ∪ S−t and v ∈ St ∪ S−t), or when |h(v)| ≤ t < |h(u)| (so u ∈ St ∪ S−t and
v /∈ St ∪ S−t). Therefore, the second scenario happens when

min
u:u→v

|h(u)| ≤ t < |h(v)| or |h(v)| ≤ t < max
u:u→v

|h(u)|.
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Therefore, the “average” numerator value is∫ ∞

0

π
(
∂⃗τ (St, S−t)

)
dt

=
∑
v∈V

π(v) ·
∫ ∞

0

1

[
v ∈ ∂⃗τ (St, S−t)

]
dt

≤
∑
v∈V

π(v)

[
1

2
max
u:u→v

|h(u) + h(v)|+max

(
0, |h(v)| − min

u:u→v
|h(u)|

)

+max

(
0, max

u:u→v
|h(u)| − |h(v)|

)]

≤
∑
v∈V

π(v)

[
1

2
max
u:u→v

|h(u) + h(v)|+ max
u:u→v

|h(u) + h(v)|+ max
u:u→v

|h(u) + h(v)|
]

≤ 5

2
ξh.

We conclude that there exists (St, S−t) with ψ⃗τ (St, S−t) ≲ ξh.

Finally, as in Lemma 4.3.11, given (S1, S2) with small directed bipartite vertex expan-
sion, we show how to extract an induced bipartite graph with small vertex expansion.

Lemma 4.4.11 (Postprocessing for Bipartite Vertex Expansion). Let G = (V,
−→
E ) be a

directed graph. Given two disjoint subsets S1, S2 ⊆ V with ψ⃗τ (S1, S2) < 1/2, there are

S ′
1 ⊆ S1 and S ′

2 ⊆ S2 with ψ(S ′
1 ∪ S ′

2) ≤ 2ψ⃗τ (S1, S2) and S ′
1 ∪ S ′

2 is an induced bipartite
graph in the underlying undirected graph of G.

Proof. From Definition 4.4.9, the observation is that ∂⃗τ (S1, S2) is a vertex cover of E(S1)∪
E(S2) ∪ δ(S1 ∪ S2). So, by setting S ′

1 := S1 \ ∂⃗τ (S1, S2) and S ′
2 := S2 \ ∂⃗τ (S1, S2), then

(S ′
1, S

′
2) is an induced bipartite graph as there could be no edges induced in S ′

1 and no

edges induced in S ′
2. Also, ∂(S ′

1 ∪ S ′
2) ⊆ ∂⃗τ (S1, S2), as there could be no edges between

S ′
1 ∪ S ′

2 and V \ (S1 ∪ S2 ∪ ∂⃗τ (S1, S2)). Therefore,

π(∂(S ′
1 ∪ S ′

2)) ≤ π
(
∂⃗τ (S1, S2)

)
= ψ⃗τ (S1, S2) · π(S1 ∪ S2) ≤ 2ψ⃗τ (S1, S2) · π(S ′

1 ∪ S ′
2),

where the last inequality uses the assumption that ψ⃗τ (S1, S2) = π
(
∂⃗τ (S1, S2)

)
/π(S1∪S2) <

1/2 and so π(S ′
1∪S ′

2) ≥ π(S1∪S2)−π
(
∂⃗τ (S1, S2)

)
≥ π(S1∪S2)/2. We thus conclude that

ψ(S ′
1 ∪ S ′

2) ≤ 2ψ⃗τ (S1, S2).

We complete the proof of Theorem 4.4.4 in Section A.2.
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4.5 Higher-Order Cheeger Inequality for Vertex Ex-

pansion

The goal of this section is to prove Theorem 4.1.10. There are four main steps in the proof.

The first step is to reformulate the problem as a semidefinite program using the maxi-
mum reweighted sum of the k smallest eigenvalues σ∗

k(G). Using von Neumann’s minimax
theorem, we construct the dual program of σ∗

k(G) and see that it satisfies the so-called
sub-isotropy condition. The main focus in this section will then be to relate σ∗

k(G) and
ψk(G), rather than to relate λ∗k(G) and ψk(G) directly.

The second step is to project the dual solution to σ∗
k(G) into a low-dimensional solution.

In this step, we use a similar apporach as in Section 4.3, by introducing an intermediate
directed dual program and then using the Gaussian projection method. Also, we use a
theorem in [LOT12] that proves that Gaussian projection approximately preserves the
sub-isotropy condition.

The third step is to partition the low-dimensional solution into k disjointly supported
functions each with small objective value. In this step, we closely follow the techniques
in [LOT12], such as radial projection distance, smooth localization and random parititon-
ing. A review of the techniques in [LOT12] can be found in Section 3.1.3.

The last step is to apply the Cheeger inequality for vertex expansion in Section 4.3 on
these k functions to find disjoint sets with small vertex expansion. We will prove the easy
direction and put together the steps to prove Theorem 4.1.10 in Section 4.5.4.

The last three steps mirror the three steps in the proof of Theorem 3.1.6, and we suggest
reading Section 3.1.3 before continuing with this section.

4.5.1 Primal and Dual Programs

As mentioned in Section 4.2, the maximum reweighted k-th smallest eigenvalue λ∗k(G) as
formulated in Definition 4.1.9 is not a convex program. Instead, we will study the following
related quantity.

Definition 4.5.1 (Maximum Reweighted Sum of k Smallest Eigenvalues). Given an undi-
rected graph G = (V,E) and a probability distribution π on V , the maximum reweighted
sum of k smallest eigenvalues of the normalized Laplacian matrix of G is defined as
σ∗
k(G) := maxP≥0

∑k
i=1 λk(I − P ), where P is subject to the same constraints stated in
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Definition 1.1.1. Note that

λ∗k(G) ≤ σ∗
k(G) ≤ k · λ∗k(G).

We reformulate the primal program in Definition 4.5.1 as the semidefinite program in
Proposition 4.5.2. The proof of Proposition 4.5.2 has a few small steps. First we rewrite
the sum

∑k
i=1 λk(I − P ) as

∑k
i=1 λk(I − Q) for a symmetric matrix Q. Then we use

Proposition 2.8.3 to write
∑k

i=1 λk(I − Q) as a minimization problem using semidefinite
programming. Next we apply von Neumann’s minimax theorem to change the order of
max-min to min-max. Then we do a change of variable and rewrite the program into
a vector program form. Finally, we use linear programming duality to rewrite the inner
maximization problem as a minimization problem as was done in [Roc05].

Proposition 4.5.2 (Dual Program for σ∗
k(G)). For any undirected graph G = (V,E) with

a self loop at each vertex and any probability distribution π on V , the following semidefinite
program is dual to the primal program in Definition 4.5.1 with strong duality σ∗

k(G) = κ(G)
where

κ(G) := min
f :V→Rn, g:V→R≥0

∑
v∈V

π(v)g(v)

subject to g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E∑
v∈V

π(v)f(v)f(v)T ⪯ In∑
v∈V

π(v) ∥f(v)∥2 = k.

Proof. By Definition 4.5.1, σ∗
k(G) = maxP≥0

∑k
i=1 λi(I−P ), where the maximum is over all

P satisfying the constraints in Definition 1.1.1. Consider the sum of eigenvalues for a fixed
P that satisfies the constraints. The time reversible constraint π(u)P (u, v) = π(v)P (v, u)
for all uv ∈ E is equivalent to the matrix Q := ΠP being symmetric where Π := diag(π).
Let Q := Π−1/2QΠ−1/2 be the normalized adjacency matrix of Q. Note that P and Q
have the same spectrum, as Q = Π−1/2QΠ−1/2 = Π1/2PΠ−1/2. Therefore

∑k
i=1 λi(I−P ) =∑k

i=1 λi(I −Q) where I −Q is a symmetric matrix.

By Proposition 2.8.3, the sum of the k smallest eigenvalues of the symmetric matrix
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I −Q can be written as the following semidefinite program:

k∑
i=1

λi(I −Q) = min
Y ∈Rn×n

tr
(
Y · (I −Q)

)
subject to 0 ⪯ Y ⪯ I

tr(Y ) = k.

Note that I − Q is the normalized Laplacian matrix of Q. We consider the change of
variables Y = Π1/2ZΠ1/2, so as to rewrite the objective function in terms of Π−Q which
is the Laplacian matrix of Q:

k∑
i=1

λi(I −Q) = min
Z∈Rn×n

tr
(
Z · (Π−Q)

)
subject to 0 ⪯ Π

1
2ZΠ

1
2 ⪯ I

tr(Π
1
2ZΠ

1
2 ) = k.

Therefore, the primal program for σ∗
k(G) can be rewritten in terms of Q as follows:

σ∗
k(G) = max

Q≥0
min

Z∈Rn×n
tr
(
Z · (Π−Q)

)
subject to Q(u, v) = 0 ∀uv /∈ E∑

v∈V

Q(u, v) = π(u) ∀u ∈ V

Q(u, v) = Q(v, u) ∀uv ∈ E
0 ⪯ Π

1
2ZΠ

1
2 ⪯ I

tr
(
Π

1
2ZΠ

1
2

)
= k.

Now we write the dual program by using von Neumann’s minimax theorem in The-
orem 2.8.1 to switch the max-min to min-max in the objective function. Note that von
Neumann’s theorem can be applied because the objective function is multi-linear in Z and
Q (hence concave in Q and convex in Z), the feasible region of Q is compact and convex as
it is bounded and defined by linear constraints, and the feasible region of Z is compact and
convex as it is bounded and defined by PSD and trace constraints. Hence, we can switch
the order of maxQminZ to obtain the dual program by rewriting the objective function as

min
Z∈Rn×n

max
Q≥0

tr
(
Z · (Π−Q)

)
.
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Next we rewrite this dual program into a vector program form. As Z ⪰ 0, we can write
Z = FF T where F is an n × n matrix. We denote the i-th column of F by fi ∈ Rn for
1 ≤ i ≤ n and think of it as an eigenvector, denote the v-th row of F by f(v) ∈ Rn and
think of it as the spectral embedding of a vertex v, and denote the (v, i)-th entry of F by
fi(v) for 1 ≤ i ≤ n and v ∈ V . As Π−Q is the Laplacian matrix of Q, the quadratic form
for a vector x ∈ Rn is xT (Π−Q)x =

∑
uv∈E(x(u)− x(v))2 ·Q(u, v), and thus the objective

function can be rewritten as

tr(F T (Π−Q)F ) =
n∑
i=1

fTi (Π−Q)fi =
n∑
i=1

∑
uv∈E

(fi(u)− fi(v))2 ·Q(u, v)

=
∑
uv∈E

∥f(u)− f(v)∥2 ·Q(u, v).

Note that Π1/2ZΠ1/2 = (Π1/2F )(F TΠ1/2) and F TΠF = (F TΠ1/2)(Π1/2F ) have the same
spectrum by Fact 2.4.2. So the first constraint can be rewritten as

0 ⪯ F TΠF =
∑
v∈V

π(v)f(v)f(v)T ⪯ I,

and the second constraint can be rewritten as

tr(F TΠF ) = tr
(∑
v∈V

π(v)f(v)f(v)T
)
=
∑
v∈V

π(v) ∥f(v)∥2 = k.

Therefore, the dual program for σ∗
k(G) can be rewritten as follows:

κ(G) := min
f :V→Rn

max
Q≥0

∑
uv∈E

∥f(u)− f(v)∥2 ·Q(u, v)

subject to Q(u, v) = 0 ∀uv /∈ E∑
v∈V

Q(u, v) = π(u) ∀u ∈ V

Q(u, v) = Q(v, u) ∀uv ∈ E∑
v∈V

π(v)f(v)f(v)T ⪯ In∑
v∈V

π(v) ∥f(v)∥2 = k.
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Finally, as in [Roc05], note that the inner maximization problem is just a linear program
in Q. For a fixed embedding f : V → Rn, we can use standard LP duality to rewrite the
inner maximization problem into the following minimization problem:

min
g:V→R≥0

∑
v∈V

π(v)g(v)

subject to g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E,

where g(u) is a dual variable for the constraint
∑

v∈V Q(u, v) = π(u). Recall that we
assumed the graph has a self-loop Q(v, v) at each vertex v so that the primal program is
always feasible, and the primal variable Q(v, v) gives the dual constraint g(v) ≥ 0.

To summarize, we rewrite the max-min optimization problem in the primal program
into a min-min optimization problem using von Neumann’s minimax theorem and linear
programming duality. The resulting program in the statement is a semidefinite program
in the vector program form.

4.5.2 Gaussian Projection

The second step is to project a solution to κ(G) in Proposition 4.5.2 into a low-dimensional
solution and prove that several properties are approximately preserved. The projection
algorithm is a high dimensional version of the simple Guassian projection algorithm in
Section 4.3.2, and is exactly the same as defined in Definition 3.1.7 and used in [LOT12].
We copy the definition here for convenience.

Definition 4.5.3 (Gaussian Projection (restatement of Definition 3.1.7)). Let f : V → Rp

be an embedding where each vertex v is mapped to a vector f(v) ∈ Rp. Given an integer
1 ≤ h ≤ p, let Γ be an h × p matrix where each entry Γi,j for 1 ≤ i ≤ h and 1 ≤ j ≤ p
is an independent standard Gaussian random variable N(0, 1). The Gaussian projection
f̄ : V → Rh of f is an embedding of each vertex v ∈ V to an h-dimensional vector defined
as

f̄(v) =
1√
h
· Γ
(
f(v)

)
.

As in Section 4.3.2, we consider a related directed program κ⃗(G) for the analysis of
the Gaussian projection algorithm. The proof of the following lemma is the same as in
Lemma 4.3.4 and Lemma 4.3.5 and is omitted.
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Lemma 4.5.4 (Directed Dual Program Using Orientation for κ(G)). Let G = (V,E) be

an undirected graph and π be a probability distribution on V . Let
−→
E be an orientation of

the undirected edges in E. Define

κ⃗(G) := min
f :V→Rn

min−→
E

∑
v∈V

π(v) max
u:uv∈

−→
E

∥f(u)− f(v)∥2

subject to
∑
v∈V

π(v)f(v)f(v)T ⪯ In∑
v∈V

π(v) ∥f(v)∥2 = k.

Then κ(G) ≤ κ⃗(G) ≤ 2κ(G).

As in Section 3.1.3, we shall prove that the energy, the mass, and the spreading property
of f to κ⃗(G) are preserved by f̄ . Here, the energy of the function f is defined as the
objective value of κ⃗(G). It is a modification of the definition in Section 3.1.3 to fit the
current setting.

Definition 4.5.5 (Energy). Given a directed graph G = (V,
−→
E ) and a probability distribu-

tion π on V , the energy of an embedding f : V → Rh is defined as

E(f) :=
∑
v∈V

π(v) max
u:uv∈

−→
E

∥f(u)− f(v)∥2 .

The (π-)mass is the LHS of the last constraint, which is denoted

∥f∥2π =
∑
v∈V

π(v) ∥f(v)∥2 .

The spreading property is related to the constraint
∑

v∈V π(v)f(v)f(v)
T ⪯ In, which is

called the sub-isotropy condition for the vectors
{√

π(v)f(v)
}
v∈V . In [LOT12], the sub-

isotropy condition is used to establish the following spreading property, which is used
crucially in the spectral partitioning algorithm for k-way edge conductance.

Definition 4.5.6 (Spreading Property [LOT12] (restatement of Definition 3.1.8 with
w = π)). Let π be a probability distribution on V . For two parameters δ ∈ [0, 1] and
η ∈ [0, 1], an embedding f : V → Rh is called (δ, η)-spreading if for every subset S ⊆ V ,

diamdf (S) ≤ δ =⇒
∑
v∈S

π(v) ∥f(v)∥2 ≤ η ·
∑
v∈V

π(v) ∥f(v)∥2 ,

where diamdf (S) := maxu,v∈S df (u, v) is the diameter of the set S under the radial projec-
tion distance function df as defined in Definition 3.1.10.
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Any feasible solution f to κ⃗(G) has ∥f∥2π = k and satisfies the sub-isotropy condition.
Then, by Lemma 3.1.11, f is (δ, 1

k(1−δ2))-spreading, so we can regard η = 1
k(1−δ2) in the

following. The precise parameters and also the definition of the radial projection distance
are not important in this subsection.

The main result in this subsection is the following lemma which compares the energy,
the mass, and the spreading property of f and of its Gaussian projection f̄ . Note that the
second and the third items of the following lemma are directly from the second and third
items in Lemma 3.1.9, and only the first item requires a new proof.

Lemma 4.5.7 (Dimension Reduction). Let G = (V,
−→
E ) be a directed graph with maximum

indegree ∆in and π be a probability distribution on V . Let f : V → Rn be an embedding
that is (δ, η)-spreading. Let f̄ : V → Rh be a Gaussian projection of f as defined in
Definition 3.1.7. By setting h ≲ 1

δ2
log( 1

ηδ
), with probability at least 1/4, the following three

properties hold simultaneously:

E(f̄) ≲
(
1+

log∆in

h

)
· E(f) and

∥∥f̄∥∥2
π
≥ 1

2
∥f∥2π and f̄ is

(δ
4
,
(
1+δ

)
η
)
−spreading.

Proof. The second and the third items are from Lemma 3.1.9. We will prove the first item
holds with probability at least 3/4 by using Proposition 2.10.5, and this would imply the

lemma by union bound. Let Γi be the i-th row of Γ in Definition 3.1.7. For uv ∈
−→
E ,

∥∥f̄(u)− f̄(v)∥∥2 =
h∑
i=1

(
1√
h

〈
Γi, f(u)− f(v)

〉)2

=
1

h

h∑
i=1

g2i ,

where gi = ⟨Γi, f(u)− f(v)⟩ is an independent Gaussian random variable with mean zero
and variance ∥f(u)− f(v)∥2. Applying Proposition 2.10.5 on each v ∈ V with indegree at
most ∆in,

E
[
max
u:u→v

∥∥f̄(u)− f̄(v)∥∥2 ] ≤ 4

(
1 +

1 + log∆in

h

)
· max
u:u→v

∥f(u)− f(v)∥2 .

By linearity of expectation and Markov’s inequality,

Pr

[∑
v∈V

π(v) max
u:u→v

∥∥f̄(u)− f̄(v)∥∥2 ≤ 16
(
1 +

1 + log∆in

h

)
·
∑
v∈V

π(v) max
u:u→v

∥f(u)− f(v)∥2
]

is at least 3/4, implying that E(f̄) ≲ (1 + log∆in

h
) · E(f) with probability at least 3/4.
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4.5.3 Spectral Partitioning

The third step is to show that given f̄ : V → Rh in Lemma 4.5.7, we can construct ℓ
disjointly supported functions f̄1, . . . , f̄ℓ : V → Rh with comparable energy and mass to
that of f̄ .

Lemma 4.5.8 (Spectral Partitioning). Let G = (V,E) be an undirected graph and π be

a probability distribution on V . Let
−→
E be an orientation of E and f̄ : V → Rh be an

embedding. Let ℓ be the targeted number of disjointly supported functions where 1 ≤ ℓ ≤ k.
Suppose that there exist δ ∈ (0, 1) and β ∈ (0, 1) such that

f̄ is
(δ
4
,

1

k(1− δ)

)
−spreading and δ ≤ 1− 2(ℓ− 1)

2(1− β)k − 1
.

Then there exist embeddings f̄1, . . . , f̄ℓ : V → Rh such that the supports of {f̄i}ℓi=1 are
pairwise disjoint and

E(f̄i) ≲
(
1 +

h

δβ

)2
· E(f̄) and

∥∥f̄i∥∥2π ≳
1

k

∥∥f̄∥∥2
π
.

The proof of this step follows closely the proof in [LOT12], which we have reviewed in
Section 3.1.3 and serves well as an overview of our proof.

Given an embedding f̄ : V → Rh and a target ℓ ≤ k, we would like to find ℓ disjoint
subsets S1, . . . , Sℓ of V such that

1. for 1 ≤ i ≤ ℓ, the mass µ(Si) :=
∑

u∈Si
π(u)

∥∥f̄(u)∥∥2 of each Si is at least
1
2k
· µ(V ),

where µ(V ) =
∥∥f̄∥∥2

π
, and

2. for 1 ≤ i ̸= j ≤ ℓ, the distance df̄ (Si, Sj) := minu∈Si,v∈Sj
df̄ (u, v) between Si and Sj

is at least 2ε for some ε > 0 to be determined later, where df̄ is the radial projection
distance in Definition 3.1.10.

To this end, equip V with the pseudo-metric df̄ and consider the metric space (V, df̄ ).
Let P = P1 ⊔ P2 ⊔ · · · ⊔ PT be a

(
δ
4
, ch
β
, 1− β

)
-padded random partitioning sampled from

Theorem 3.1.13, where c is a universal constant and δ ∈ (0, 1) and β ∈ (0, 1) are to
be determined. By the assumption that f̄ is ( δ

4
, 1
k(1−δ))-spreading, the first property in

Definition 3.1.12 implies that µ(Pi) ≤ 1
k(1−δ) · µ(V ) for 1 ≤ i ≤ T . Denote by B(x, r) the

open df̄ -ball of radius r centered at x, and let U := {x ∈ V | B(x, δβ
4ch

) ̸⊆ P (x)} be the set
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of points that are close to the boundaries of P . The second property in Definition 3.1.12
implies that there exists a realization of P such that µ(V \ U) ≥ (1 − δ) · µ(V ). We take
such a realization P = P1 ⊔P2 ⊔ · · · ⊔PT and remove all points in U to obtain P ′

i := Pi \U
for 1 ≤ i ≤ T . By doing so, we end up with disjoint sets P ′

1, P
′
2, . . . , P

′
T with the following

properties:

1. µ(P ′
i ) ≤ 1

k(1−δ) · µ(V ) for 1 ≤ i ≤ T ,

2.
∑T

i=1 µ(P
′
i ) ≥ (1− β) · µ(V ),

3. df̄ (P
′
i , P

′
j) ≥

2δβ
ch

for i ̸= j ∈ [T ].

Next, we will merge some of the sets P ′
1, . . . , P

′
T to form disjoint sets S1, . . . , Sℓ so that

µ(Si) ≥ 1
2k
· µ(V ) for 1 ≤ i ≤ ℓ. This can be done by a simple greedy process, where

we sort the P ′
i by nonincreasing mass, and put consecutive sets into a group Sj until

µ(Sj) ≥ 1
2k
· µ(V ). By the first property and the greedy process, each group Sj produced

has µ(Sj) ≤ 1
k(1−δ) · µ(V ). Hence, by the second property, the greedy process will succeed

to produce at least ℓ groups, each with mass at least 1
2k
· µ(V ), as long as

(1− β) · µ(V )− (ℓ− 1) · µ(V )

k(1− δ)
≥ µ(V )

2k
⇐⇒ δ ≤ 1− 2(ℓ− 1)

2(1− β)k − 1
,

which is exactly the assumption we made in the statement of Lemma 4.5.8 about δ. There-
fore, we can produce S1, . . . , Sℓ satisfying the two requirements µ(Si) ≥ 1

2k
· µ(V ) for

1 ≤ i ≤ ℓ and df̄ (Si, Sj) ≥ 2ε := 2δβ
ch

for i ̸= j ∈ [ℓ], by the third property of P ′
1, . . . , P

′
T .

Now, we apply the smooth localization procedure in Lemma 3.1.14 on each Si with
ε = δβ

ch
to obtain an embedding f̄i : V → Rh for each 1 ≤ i ≤ ℓ. First, we check that

f̄1, . . . , f̄ℓ are disjointly supported. This follows from df̄ (Si, Sj) ≥ 2ε for i ̸= j and the
second property in Lemma 3.1.14. Second, since µ(Si) ≥ 1

2k
· µ(V ) and f̄i(v) = f̄(v) for

v ∈ Si by the first property in Lemma 3.1.14, it follows that
∥∥f̄i∥∥2π = µ(Si) ≥ 1

2k
· µ(V ).

Finally, by the third property in Lemma 3.1.14, it follows that

E(f̄i) =
∑
v∈V

π(v) max
u:u→v

∥∥f̄i(u)− f̄i(v)∥∥2
≤

(
1 +

2ch

δβ

)2∑
v∈V

π(v) max
u:u→v

∥∥f̄(u)− f̄(v)∥∥2 ≲ (1 + h

δβ

)2
E(f̄).

Therefore, we conclude that f̄1, . . . , f̄ℓ satisfy all the properties stated in Lemma 4.5.8.
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4.5.4 Cheeger Rounding

The fourth step is to apply the results in Section 4.3 on f̄1, . . . , f̄l from Lemma 4.5.8 to
obtain disjoint subsets with small vertex expansion.

Lemma 4.5.9 (Cheeger Rounding). Let G = (V,E) be an undirected graph with maximum

degree ∆ and π be a probability distribution π on V . Given an orientation
−→
E and an

embedding f̄ : V → Rh, there exists a set S ⊆ supp(f̄) with

ψ(S)2 ≲ min{h, log∆} · E(f̄)
µ(f̄)

.

Proof. Given
−→
E and f̄ , we apply the Gaussian projection step in Proposition 4.3.6 to

obtain a 1-dimensional embedding x : V → R with E(x)/ ∥x∥2π ≲ log∆ · E(f̄)/
∥∥f̄∥∥2

π
.

Alternatively, if h ≤ log∆, we can choose the best coordinate from f̄ to obtain a 1-

dimensional embedding x : V → R with E(x)/ ∥x∥2π ≤ h·E(f̄)/
∥∥f̄∥∥2

π
as was done in [OZ22].

So we have a 1-dimensional embedding x with E(x)/ ∥x∥2π ≲ min{h, log∆} · E(f̄)/
∥∥f̄∥∥2

π
.

Then, we apply the Cheeger rounding procedure in Section 4.3.3 on x, but with c = 0
instead of the π-weighted median of x in the construction of the ℓ1 solution h. This
ensures that the set S obtained satisfies S ⊆ supp(h) ⊆ supp(x) ⊆ supp(f̄) in addition to

the vertex cover expansion guarantee ψ⃗τ (S)
2 ≲ E(x)/ ∥x∥2π ≤ min{h, log∆} · E(f̄)/

∥∥f̄∥∥2
π
.4

Finally, we apply the postprocessing step in Lemma 4.3.11 to obtain a set S ′ ⊆ S with
ψ(S ′) ≤ 2ψ⃗τ (S) satisfying the requirements of this lemma.

We are ready to put together the steps to prove the hard direction of the higher-order
Cheeger inequality for vertex expansion.

Theorem 4.5.10 (Hard Direction for Multiway Vertex Expansion). Let G = (V,E) be an
undirected graph with maximum degree ∆ and π be a probability distribution on V . For
any 2 ≤ k ≤ n and 0 ≤ ε < 1, letting ξ := max{ε, 1

2k
}, it holds that

ψ(1−ε)k(G) ≲
log k

ξ4
·
√
log∆ · σ∗

k(G).

4We give up the requirement that 0 be a π-weighted median of h, and so the produced set S may no
longer satisfy π(S) ≤ 1/2. The latter is however not a requirement in the current context.
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Proof. The first step is to compute an optimal solution (f ∗, g∗) to the dual program in
Proposition 4.5.2 with objective value κ(G) = σ∗

k(G). Then, we use Lemma 4.5.4 to obtain
a solution f : V → Rn to the directed program κ⃗(G) with energy E(f) ≤ 2σ∗

k(G) and
µ(f) = k. As f satisfies the sub-isotropy condition

∑
u π(u)f(u)f(u)

T ⪯ In in κ⃗(G), we
know from Lemma 3.1.11 that f is

(
δ, 1/

(
k(1 − δ2)

))
-spreading for any δ ∈ (0, 1) of our

choice.

The second step is to apply the Gaussian projection algorithm in Lemma 4.5.7 on f
with η = 1/

(
k(1− δ2)

)
to obtain f̄ : V → Rh with

h ≍ 1

δ2
log
( 1

δη

)
=

1

δ2
log
(k(1− δ2)

δ

)
such that

E(f̄) ≲
(
1 +

log∆

h

)
· E(f) and µ(f̄) ≳ µ(f) and f̄ is

(δ
4
,

1

k(1− δ)

)
−spreading.

The third step is to apply the spectral partitioning algorithm in Lemma 4.5.8 on f . Let
ℓ := (1− ε)k be the target number of output sets. By setting

δ = min
{1
2
,
2(k − ℓ) + 1

2(k + ℓ)− 3

}
and β =

2(k − ℓ) + 1

4k
,

we can check that the conditions of Lemma 4.5.8 are satisfied, and so we can construct
functions f̄1, . . . , f̄ℓ : V → Rh with disjoint support, such that for each 1 ≤ i ≤ ℓ it holds
that

E(f̄i) ≲
(
1 +

h

δβ

)2
· E(f̄) and

∥∥f̄i∥∥2π ≳
1

k

∥∥f̄∥∥2
π
.

The fourth step is to apply Lemma 4.5.9 to f̄1, . . . f̄ℓ to obtain disjoint subsets S1, . . . , Sℓ,
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such that for every 1 ≤ i ≤ ℓ,

ψ(Si)
2 ≲ min{h, log∆} · E(f̄i)∥∥f̄i∥∥2π

≲ min{h, log∆} · k ·
(
1 +

h

δβ

)2
· E(f̄)∥∥f̄∥∥2

π

≲ min{h, log∆} ·
(
1 +

log∆

h

)
·
(
1 +

h

δβ

)2
· k · E(f)
∥f∥2π

≲ log∆ ·
(
1 +

h

δβ

)2
· σ∗

k(G)

≲ log∆ · 1

δ6β2
· log2

(k(1− δ2)
δ

)
· σ∗

k(G),

where the fourth inequality uses that min{h, log∆} ·
(
1 + log∆

h

)
≤ 2 log∆ and ∥f∥2π = k,

and the last inequality uses the fact that h
δβ
≥ 1, so that 1 + h/δβ ≲ h/δβ. The above

calculation implies that

ψℓ(G) ≲
1

δ3β
log
(k
δ

)
·
√

log∆ · σ∗
k(G).

Finally, we plug in ℓ = (1 − ε)k and consider two cases. In the case when ε ≥ 1
2k
, we

see that δ = Θ(ε) and β = Θ(ε), and so ψℓ(G) ≤ 1
ε4
· log k ·

√
log∆ · σ∗

k(G). In the case
when ε < 1

2k
, we simply set l = k and see that δ = Θ(1/k) and β = Θ(1/k) and so

ψℓ(G) ≤ k4 · log k ·
√
log∆ · σ∗

k(G). Combining the two cases proves the theorem.

We prove the following easy direction in Section A.3. Note that it is about λ∗k(G)
instead of σ∗

k(G).

Lemma 4.5.11 (Easy Direction for Multiway Vertex Expansion). For any undirected graph
G = (V,E) and any probability distribution π on V , λ∗k(G) ≤ 2ψk(G) for any k ≥ 2.

Combining Lemma 4.5.11 and Theorem 4.5.10, we conclude this section with the fol-
lowing higher-order Cheeger inequality for vertex expansion that implies Theorem 4.1.10.

Theorem 4.5.12 (Higher-Order Cheeger Inequality for Vertex Expansion). For any undi-
rected graph G = (V,E) with maximum degree ∆ and any probability distribution π on
V ,

σ∗
k(G)

k
≤ λ∗k(G) ≲ ψk(G) ≲ k4 log k

√
log∆ · σ∗

k(G) ≤ k
9
2 log k

√
log∆ · λ∗k(G)
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Furthermore, for any 1 > ε ≥ 1
2k
,

ψ(1−ε)k(G) ≲
1

ε4
log k

√
log∆ · σ∗

k(G) ≤
1

ε4
log k

√
k log∆ · λ∗k(G).

4.6 Improved Cheeger Inequality for Vertex Expan-

sion

The goal of this section is to prove Theorem 4.1.11. The proof in [KLL+13] for k-way edge
conductance has two main steps. The first step is to prove that if the second eigenvector
is close to a k-step function, then the approximation guarantee of threshold rounding is
improved. The second step is to prove that if λk is large for a small k, then the second
eigenfunction is close to a k-step function. Refer to Section 3.1.4 for details.

We follow the a similar plan to prove an improved version of the Cheeger inequality for
γ(1)(G) in Theorem 4.3.7, where in the second step we replace λk(G) by σ

∗
k(G).

The following is the precise statement of the first step for γ(1)(G), which informally says
that if there is a good k-step approximation (see Definition 3.1.17) to an optimal solution to
γ(1)(G), then the performance of threshold rounding is better than that in Theorem 4.3.7.

Proposition 4.6.1 (Rounding k-Step Approximation). Let G = (V,E) be an undirected
graph and π be a probability distribution on V . For any feasible solution (f, g) to the γ(1)(G)
program with objective value γf and any k-step function yf : V → R approximating f ,

ψ(G) ≲ k · γf + k ∥f − yf∥π
√
γf .

Our second step is to prove that if σ∗
k(G) in Proposition 4.5.2 is large for a small k,

then there is a good k-step approximation to a good solution to γ(1)(G).

Proposition 4.6.2 (Constructing k-Step Approximation). Let G = (V,E) be an undirected
graph and π be a probability distribution on V . For any feasible solution (f, g) to the γ(1)(G)
program with objective value γf , there exists a k-step function y with

∥f − y∥2π ≲
k · γf
σ∗
k(G)

.

Assuming Proposition 4.6.1 and Proposition 4.6.2, we prove an exact analog of the
improved Cheeger’s inequality in [KLL+13] for vertex expansion, with σ∗

k(G)/k playing the
role of λ∗k(G) .
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Theorem 4.6.3 (Improved Cheeger Inequality for Vertex Expansion). For any undirected
graph G = (V,E) and any probability distribution π on V and any k ≥ 2,

γ(1)(G) ≲ ψ(G) ≲ k · γ(1)(G) ·

√
k

σ∗
k(G)

.

Proof. The easy direction is proved in Lemma 4.3.8. For the hard direction, let (f ∗, g∗) be
an optimal solution to the γ(1)(G) program in Definition 3.2.5 with objective value γ∗, and
σ∗ be the optimal value of the σ∗

k(G) program in Proposition 4.5.2. By Proposition 4.6.2,
there exists a k-step function y : V → R with

∥f ∗ − y∥2π ≲
k · γ∗

σ∗ .

Applying Proposition 4.6.1 with y, it follows that

ψ(G) ≲ k ·
(
γ∗ + ∥f ∗ − y∥π ·

√
γ∗
)
≲ k · γ∗

(
1 +

√
k

σ∗

)
≲ k · γ∗ ·

√
k

σ∗ ,

and the proof is complete.

We can now prove Theorem 4.1.11.

Proof of Theorem 4.1.11. Note that σ∗
2k(G) ≥ k · λ∗k(G)5 by plugging the reweighting P

that maximizes λk(I − P ) in Definition 4.1.9 into Definition 4.5.1, so that

σ∗
2k(G) ≥

2k∑
j=1

λj(I − P ) ≥
2k∑
j=k

λj(I − P ) ≥ kλk(I − P ).

Therefore,

λ∗2(G) = γ(G) ≤ γ(1)(G) ≲ ψ(G) ≲ 2k · γ(1)(G) ·

√
2k

σ∗
2k(G)

≲
k · λ∗2(G) · log∆√

λ∗k(G)
,

where we use γ(G) = λ∗2(G) in Proposition 3.2.3 and γ(G) ≤ γ(1)(G) ≲ log∆ · γ(G) in
Proposition 4.3.6.

5In the proof in [KLT22], we used the relation σ∗
k(G) ≥ λ∗k(G), resulting in the factor

√
k loss as

mentioned in the footnote to Theorem 4.1.11.
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Remark 4.6.4 (Tight Examples). We remark that Theorem 4.6.3 is tight. The loss in
Theorem 4.1.11 is because of the factor log∆ loss in the dimension reduction step.

As an example, let G be an n-cycle, where n is odd, and π the uniform distribution.
Suppose k ≪ n. Then σ∗

k(G) = σk(G), because the only possible “reweighting” is the one
with equal edge weight. Since ψ(G) = Θ(1/n), γ(1)(G) = O(1/n2) (choose f : V → R that
maps vertex l ∈ [n] to point C(1 − 4

n
· min(l, n − l)), where C = Θ(1) is a normalizing

factor, and g(l) ≡ 8C2

n2 ), and

σk(G) =
k−1∑
l=0

(
1− cos

(
2πl

n

))
= Θ

(
k3

n2

)
,

one can verify that in this case the hard direction of Theorem 4.6.3 is tight.

We prove Proposition 4.6.1 and Proposition 4.6.2 in the following two subsections.

4.6.1 Rounding k-Step Approximation

We prove Proposition 4.6.1 in this subsection. We follow the proof of the hard direction of
Theorem 4.3.7, with the key modification being how we define the ℓ1 solution h : V → R.

First, we do some preprocessing on the solution (f, g) as in Section 4.3. Given a feasible
solution (f, g) to the γ(1)(G) program with objective value γf , we use Lemma 4.3.4 and

Lemma 4.3.5 to obtain a solution (f,
−→
E ) to the directed program γ⃗(1)(G) in Definition 4.3.3

with objective value at most 2γf . With Proposition 4.3.10 and Lemma 4.3.11 in mind, it
suffices then to construct an h : V → R such that 0 is a π-weighted median of h, and∑

v∈V π(v)max
u:uv∈

−→
E
|h(u)− h(v)|∑

v∈V π(v)|h(v)|
=: ηh ≲ k · γf + k ∥f − yf∥π

√
γf .

We will follow closely the proof of Proposition 3.1.18. Let yf : V → R be a k-step
function, taking values t1 < t2 < · · · < tk. Choose c ∈ R to be a π-weighted median of f ,
and define h : V → R so that

h(u) :=

∫ f(u)

c

ν(t) dt,

where ν(t) := mini∈[k] |t− ti|. Note that the integral is negative when f(u) < c and positive
when f(u) > c, and so 0 is a π-weighted median of h.
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Now, we lower bound the denominator and upper bound the numerator. In the denom-
inator, the same calculations give∑

v∈V

π(v)|h(v)| ≳ 1

k

∑
v∈V

π(v)(f(v)− c)2 ≥ 1

k
.

In the numerator, we have∑
v∈V

π(v) max
u:uv∈

−→
E

|h(u)− h(v)|

=
∑
v∈V

π(v) max
u:uv∈

−→
E

∣∣∣∣∣
∫ f(u)

f(v)

ν(t) dt

∣∣∣∣∣
≤

∑
v∈V

π(v) max
u:uv∈

−→
E

[
1

2
|f(u)− f(v)|(2ν(f(v)) + |f(u)− f(v)|)

]
(∵ ν(t) is 1-Lipschitz)

(∗)
≲ γf +

√
γf ·

∑
v∈V

π(v)ν(f(v))2 ≤ γf + ∥f − yf∥π
√
γf .

Again, the step (∗) is where Cauchy-Schwarz inequality is applied. Combining the two
bounds yields the desired result.

4.6.2 Constructing k-Step Approximation

We prove Proposition 4.6.2 in this subsection. The high level plan is similar to that
in [KLL+13], and the proof follows closely that of Proposition 3.1.19. Given a feasible
solution (f, g) to the γ(1)(G) program, we aim to construct a good k-step approximation
y of f using a simple procedure. If we fail to do so, then we show that f can be used
to construct a good k-dimensional solution f̄ = (f̄1, f̄2, . . . , f̄k) to the σ∗

k(G) program,
contradicting that the value of σ∗

k(G) is large. Therefore, the simple process must succeed
to find a good k-step approximation yf of f .

LetM > 0 be a parameter to be determined later. Let t0 = −∞ and successively choose
t1, t2, . . . so that ti > ti−1 is the smallest real number such that the following function

f̄i(u) :=

{
min (f(u)− ti−1, ti − f(u)) , if ti−1 < f(u) ≤ ti

0, otherwise

satisfies
∥∥f̄i∥∥2π ≥M . The role of the functions f̄i is to measure how well the two threshold

values ti−1 and ti approximate the values of the function at between them. If such a ti
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does not exist, we set ti = ∞ and terminate the process. The process always terminates
within n steps, and if it terminates with tk+1 = ∞ then the following function (which is
determined once f and the ti’s are fixed)

yf (u) := arg min
ti:i∈[k]

|f(u)− ti|

is a k-step function. Observe also that the hi’s have disjoint support, and in fact

k+1∑
i=1

∥∥f̄i∥∥2π = ∥f − yf∥2π .

Consider the scenario that the process does not terminate after k steps. That means

f̄1, f̄2, . . . , f̄k are all well-defined and each having mass
∥∥f̄i∥∥2π exactly M . We will construct

from f̄1, . . . , f̄k a solution (f̄ , ḡ) to the σ∗
k(G) program with small objective value. Define

f̄ : V → Rn and ḡ : V → R as follows:

f̄(v) :=
( f̄1(v)√

M
, . . . ,

f̄k(v)√
M

, 0, . . . , 0
)T

and ḡ(v) :=
1

M
g(v).

We will check that (f̄ , ḡ) is a feasible solution to the σ∗
k(G) program defined in Proposi-

tion 4.5.2. Define Si := supp f̄i ⊆ V . For the sub-isotropy condition, note that each f̄(v)
has at most one nonzero entry, and∑

v∈V

π(v)f̄(v)f̄(v)T

= diag
( 1

M

∑
v∈S1

π(u)f̄1(u)
2,

1

M

∑
v∈S2

π(v)f̄2(u)
2, . . . ,

1

M

∑
v∈Sk

π(v)f̄k(v)
2, 0, . . . , 0

)
=

1

M
diag

(∥∥f̄1∥∥2π ,∥∥f̄2∥∥2π , . . . ,∥∥f̄k∥∥2π , 0, . . . , 0)
= diag(1, 1, . . . , 1, 0, . . . , 0) ⪯ In.

The mass constraint is satisfied as∑
v∈V

π(v)
∥∥f̄(v)∥∥2 = tr

(∑
u∈V

π(u)f̄(u)f̄(u)T
)

= tr
(
diag

(
1, 1, . . . , 1, 0, . . . , 0

))
= k.

For the constraint on each edge uv ∈ E,

∥∥f̄(u)− f̄(v)∥∥2 = 1

M

k∑
i=1

(
f̄i(u)−f̄i(v)

)2 ≤ 1

M

(
f(u)−f(v)

)2 ≤ 1

M

(
g(u)+g(v)

)
= ḡ(u)+ḡ(v),
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where for the first inequality we consider two cases: (i) suppose u ∈ Si and v ∈ Sj for i = j,

then
∑k

l=1

(
f̄l(u) − f̄l(v)

)2
=
(
f̄i(u) − f̄i(v)

)2 ≤ (f(u) − f(v))2, and (ii) suppose u ∈ Si
and v ∈ Sj for i ̸= j, then

∑k
l=1

(
f̄l(u) − f̄l(v)

)2
=
(
f̄i(u) − f̄i(v)

)2
+
(
f̄j(u) − f̄j(v)

)2 ≤(
f(u)− f(v)

)2
since

∣∣f̄i(u)− f̄i(v)∣∣+ ∣∣f̄j(u)− f̄j(v)∣∣ ≤ ∣∣f(u)− f(v)∣∣.
Therefore, (f̄ , ḡ) is a feasible solution to the σ∗

k(G) program, and its objective value is∑
v∈V

π(v)ḡ(v) =
1

M

∑
v∈V

π(v)g(v) =
1

M
· γf ≥ σ∗

k(G).

ChooseM = 2γf/σ
∗
k(G) so that the above inequality fails. This means that the process

terminates after at most k steps, and with tk =∞, which gives

∥f − yf∥2π =
k∑
i=1

∥∥f̄i∥∥2π ≤ kM ≲
kγf
σ∗
k(G)

.

This completes the proof of Proposition 4.6.2.

4.7 Vertex Expansion of 0/1-Polytopes

(In this section, we revert to using |V | to denote the number of vertices of a graph and
reserve n for other uses.)

The goal of this section is to present a construction of 0/1-polytopes with poor vertex
expansion as described in Theorem 4.1.12, which has implications about sampling from
the uniform distribution as described in Section 4.1.5.

A 0/1-polytope is defined by a subset of vertices in the boolean hypercube {0, 1}n. Our
examples are based on the following simple probabilistic construction.

Definition 4.7.1 (Probabilistic Construction). Let n be an even number and k < n/2.
For a binary string x ∈ {0, 1}n, denote its 1-norm by |x| :=

∑n
i=1 |xi|. The set of vertices

of our constructed polytope is the union of three subsets:

1. A left part L := {x ∈ {0, 1}n | |x| = k} that consists of all binary strings with k ones.

2. A right part R := {x ∈ {0, 1}n | |x| = n− k} that consists of all binary strings with
n− k ones.
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3. A middle part M ⊂ {x ∈ {0, 1}n | |x| = n/2} that consists of Θ(4kn2) uniformly
random binary strings with n/2 ones.

The graph GQ = (V,E) of a polytope Q is defined as the 1-skeleton of the polytope
Q. Our plan is to prove that for a random polytope Q constructed in Definition 4.7.1, the
middle part M “blocks” all the edges between L and R in GQ with constant probability.
This would imply that ∂L ⊆ M and ∂R ⊆ M , and thus ψ(L), ψ(R) ≲ 4kn2/nk are very
small.

The organization of this section is as follows. First, in Section 4.7.1, we provide a
sufficient condition for two binary strings x, y to have no edge in GQ, using geometric
arguments. Then, in Section 4.7.2, we outline the main probabilistic argument to prove
Theorem 4.1.12, by using a union bound over the set of linear threshold functions. Finally,
we show Corollary 4.1.13 in Section 4.7.3. We defer all the proofs in Section 4.7.1 and
Section 4.7.2 to Section A.4.

As mentioned in Remark 4.1.14 in the introduction, Gillmann [Gil07] has constructed
similar examples of 0/1-polytopes with poor vertex expansion. Following the same simple
argument as in Section 4.7.3, one obtains analogous lower bounds on the fastest mixing
time of these polytopes. We remark that the construction in [Gil07] is similar to our
construction, but the proofs are different and so we present our proofs even though the
results follow from [Gil07].

4.7.1 A Sufficient Condition for Edge Blocking

Let Q be a 0/1-polytope and GQ = (V,E) be its graph/1-skeleton. For two binary strings
x, y ∈ {0, 1}n, if xy is an edge inGQ, then there is a separating hyperplane l with l(x), l(y) ≥
0 while l(z) < 0 for all other binary strings z in the 0/1-polytope Q.

In the construction of Q in Definition 4.7.1, if x ∈ L and y ∈ R then 1
2
(x + y) has

1-norm equal to n/2. If xy is an edge in GQ, then there is a separating hyperplane l with
l
(
1
2
(x + y)

)
≥ 0 while l(z) < 0 for all other binary strings z in the middle part M . So,

if we could establish that 1
2
(x + y) is in the convex hull conv(M) of M for all x ∈ L and

y ∈ R, then there are no edges between L and R in the graph GQ. This is the sufficient
condition that we will formalize.

In the analysis, we use the following definitions to group the pairs of vertices x ∈ L,
y ∈ R based on their common patterns.
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Definition 4.7.2 (Patterns). For n ∈ N, a pattern is an element p ∈ {0, 1,∨}n, where 0,
1, and ∨ are regarded as symbols.

The support of a pattern p ∈ {0, 1,∨}n is defined as supp(p) := {i ∈ [n] | pi ̸= ∨}. We
also define supp0(p) := {i ∈ [n] | pi = 0} and supp1(p) := {i ∈ [n] | pi = 1}.

Given two binary strings x, y ∈ {0, 1}n, their common pattern p(x,y) ∈ {0, 1,∨}n is
defined as

p
(x,y)
i =


0, if xi = yi = 0

1, if xi = yi = 1

∨, if xi ̸= yi.

Given a pattern p ∈ {0, 1,∨}n and a binary string x ∈ {0, 1}n, x is said to match p if and
only if pi ̸= ∨ implies pi = xi.

For each pattern p, we consider a potential separating hyperplane of the following
specific form, which will be convenient for the probability analysis.

Definition 4.7.3 (Consistent Affine Function). Let p ∈ {0, 1,∨}n be a pattern. An affine
function l : (u1, u2, . . . , un) ∈ Rn 7→ β +

∑
i αiui is called p-consistent if

αi = 0 for i ∈ supp(p) and β +
1

2

∑
i:i/∈supp(p)

αi = 0.

If p is the common pattern of x and y, then l being p-consistent implies l
(
1
2
(x+ y)

)
= 0.

We formulate the sufficient condition described above for the middle part M blocking
the edge xy for x ∈ L and y ∈ R using the definitions that we have developed. The proof
is deferred to Section A.4.

Lemma 4.7.4 (Blocking One Edge). Let Q = L ∪M ∪ R be a 0/1-polytope from Defini-
tion 4.7.1. Let x ∈ L, y ∈ R and p = p(x,y) ∈ {0, 1,∨}n be the common pattern of x and y.
If for any p-consistent affine function l there exists a point z ∈M matching the pattern p
and satisfying l(z) ≥ 0, then there is no edge connecting x and y in the graph of Q.

The following is a sufficient condition for the middle part M blocking all the edges
between L and R, by considering all possible common patterns of an x ∈ L and a y ∈ R.

Lemma 4.7.5 (Blocking All Edges). Let Q = L ∪M ∪ R be a 0/1-polytope from Defini-
tion 4.7.1. Suppose for every pattern p ∈ {0, 1,∨}n with | supp0(p)| = | supp1(p)| ≤ k and
for any p-consistent affine function l : Rn → R, there is z ∈ M matching the pattern p
with l(z) ≥ 0. Then there are no edges between L and R in the graph of Q.
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4.7.2 Probabilistic Analysis

Our plan is to use the sufficient condition in Lemma 4.7.5 to prove that a random M with
not many points can block all the edges between L and R. To this end, we prepare with
two simple lemmas about the probability of z ∈ M satisfying l(z) ≥ 0 and matching a
particular pattern p with | supp0(p)| = | supp1(p)| ≤ k.

The geometric intuition of the first lemma is simple: when we restrict a p-consistent
affine function l on the coordinates in [n] \ supp(p), then l is an “unbiased” hyperplane
that goes through the point 1

2
· 1⃗ on [n] \ supp(p) (because of the second condition in

Definition 4.7.3), and thus a random vertex in M matching the pattern p lies on the
non-negative side of l with probability at least 1/2.

Lemma 4.7.6. Let Q = L ∪M ∪ R be a 0/1-polytope from Definition 4.7.1. Let p be the
common pattern of x ∈ L and y ∈ R, and l be a p-consistent affine function. Let Z be the
uniform distribution on {z ∈ {0, 1}n : |z| = n

2
}. Then,

Pr
z∼Z

[
l(z) ≥ 0 | z matches pattern p

]
≥ 1

2
.

The second lemma gives a lower bound on the probability that a random point z ∼ Z
matches a pattern p with | supp0(p)| = | supp1(p)| ≤ k.

Lemma 4.7.7. Let p ∈ {0, 1,∨}n be a pattern with |supp0(p)| = |supp1(p)| = s ≤ k, and
let Z be the uniform distribution on {z ∈ {0, 1}n : |z| = n/2}. Then

Pr
z∼Z

[z matches pattern p] ≳ 4−s.

With the above two lemmas, we can show that for any pattern p with | supp0(p)| =
| supp1(p)| = s ≤ k and any p-consistent affine function l, the probability that a random
point in {z ∈ {0, 1}n : |z| = n/2} matches the pattern p and satisfies l(z) ≥ 0 with
probability not too small. So, by adding enough number of random points in the middle
part M , such a point z exists in M with high probability for a fixed p and l. Then, we
would like to use a union bound over p and l to prove that there will be no edges between
L and R in the graph of the polytope with constant probability.

One technical issue of this approach is that there are infinitely many affine functions
l : Rn → R. Note, however, that we only care about the values of l on the hypercube
vertices. This reduces the number of different functions to 22

n
. Indeed, we only care about

whether l(z) ≥ 0 for z ∈ {0, 1}n for Lemma 4.7.5. Therefore, we only need to apply a
union bound over the set of linear threshold functions over the boolean hypercube, which
further reduces the number of different such functions to 2n

2
.
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Proposition 4.7.8 ([Cov65]). The number of linear threshold functions on {0, 1}n is at
most 2n

2
. A linear threshold function on {0, 1}n is a function of the form τ : {0, 1}n →

{0, 1}, where

τ(u1, . . . , un) =

{
1, if β +

∑
i αiui ≥ 0;

0, if β +
∑

i αiui < 0,

for some α1, . . . , αn, β ∈ R.

The complete proof of Theorem 4.1.12 can be found in Section A.4.

4.7.3 Mixing Time

Corollary 4.1.13 follows from Theorem 4.1.12 and the easy direction of Cheeger’s inequality
for vertex expansion in Theorem 3.2.4.

Proof of Corollary 4.1.13. Let Q = L ∪M ∪ R be a 0/1-polytope from Definition 4.7.1.
The number of vertices of Q is |L| + |M | + |R| ≲

(
n
k

)
≤ (en/k)k. By Theorem 4.1.12, the

vertex expansion of the graph GQ is ψ(GQ) ≲ (4k)k/nk−2. Therefore, by the easy direction
in Theorem 3.2.4, the mixing time of any reversible chain P ∈ RV×V on GQ with stationary
distribution π = 1

|V | 1⃗ is at least

τ ∗mix(G) ≳
1

ψ(GQ)
≳

nk−2

(4k)k
≳
(en
k

)k−2

≳ |V |1−
2
k ,

where the second last inequality is by the assumption that k is a constant and so only the
exponent of n matters, and the last inequality is by |V | ≤ (en/k)k explained above.

The implication of Corollary 4.1.13 has been discussed in Section 4.1.5 and we won’t
repeat here.

4.8 Tight Example to Cheeger Inequality for Vertex

Expansion

The goal of this section is to construct a family of tight examples to Theorem 4.1.3 when
π = 1⃗/|V |. The graphs constructed will have non-constant maximum degree ∆ and satisfy

ψ(G)2

log∆
≍ λ∗2(G).
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These examples are suggested to us by Shayan Oveis Gharan.

The graphs are realized as proximity graphs on Sk−1. We employ the following nota-
tions: µ denotes the normalized Lebesgue measure on Sk−1. d(·, ·) denotes the geodesic
distance on Sk−1. For θ ∈ Sk−1 and r > 0, B(θ, r) denotes the set of points on Sk−1 of
geodesic distance less than r from θ. Cap(r) denotes a generic spherical cap on Sk−1 of
radius r. For S ⊆ Sk−1, we use Sr or S + Cap(r) to denote the set of points of distance
less than r from S.

Definition 4.8.1 (Spherical Proximity Graph). Given k, a (γ, δ)-spherical proximity graph
in k dimensions is a graph Gk = (V,E) that can be constructed as follows:

1. Partition Sk−1 into n cells: S1, S2, . . . , Sn, such that each cell has diameter at most
γ and measure between ε := µ(Cap(γ/4)) and 2ε. Take a point xu ∈ Su for each
u ∈ [n].

2. Set V = [n] and E = {(u, v) ∈ V × V : d(xu, xv) < δ}.

We shall show that, for suitable choices of γ and δ, the resulting graph will be a vertex
expander with λ∗2 = O(1/ log∆).

Theorem 4.8.2 (Tight Example of Theorem 4.1.3). There exist constants 0 < c1 < c2
such that, for any (c1/

√
k, c2/

√
k)-spherical proximity graph Gk, the following hold:

• the maximum degree ∆ of Gk is 2O(k);

• ψ(Gk) = Θ(1); and

• λ∗2(Gk) = O(1/ log∆).

The rest of the section is organized as follows. First, we show that the construction of
the spherical proximity graph is indeed possible. Then, we prove the degree and expansion
bounds, by relating them to volume ratios on the sphere. Finally, we prove the bound on
reweighted eigenvalue, using the spherical embedding of the graph. All the proofs in this
section are deferred to Section A.5.

4.8.1 The Graph Construction

The following proposition is modified from [GM12, Lemma 8.3.22] and shows that we can
always construct a spherical proximity graph.
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Proposition 4.8.3 (Constructing Spherical Proximity Graph). For every k and γ > 0,
there exists n such that Sk−1 can be partitioned into cells S1, . . . , Sn with diam(Si) ≤ γ and
µ(Si) ∈ [ε, 2ε] for all i ∈ [n], where ε := µ(Cap(γ/4)). Therefore, n = Θ(µ(Cap(γ/4))−1).

4.8.2 Degree and Expansion Bounds

Now, we establish bounds on the maximum degree and vertex expansion of Gk. We do so
by connecting the quantities with the continuous notion of volume.

Recall our choice of parameters γ = c1/
√
k and δ = c2/

√
k, where 0 < c1 < c2 are

constants.

Lemma 4.8.4 (Degree, Expansion, and Volume). Let Gk = (V,E) be the (γ, δ)-spherical
proximity graph constructed above.

• The maximum degree of Gk is at most

µ(Cap(δ + γ))

µ(Cap(γ/4))
.

• For any T ⊆ V with |T | ≤ |V |/2, if we let ST := ∪i∈TSi, then

ψ(T ) ≥ µ(ST + Cap(δ − γ))− µ(ST )
2µ(ST )

.

After relating the graph degree and vertex expansion to volumes of portions of sphere,
we shall now use results from high-dimensional geometry to obtain bounds on the maximum
degree and vertex expansion.

Proposition 4.8.5 (Degree Bound). For constants 0 < c1 < c2, it holds that

µ(Cap(δ + γ))

µ(Cap(γ/4))
≤ 2O(k).

Proposition 4.8.6 (Small-Volume Expansion of the Sphere). For constants 0 < c1 < c2
with c2 − c1 sufficiently large, it holds that for all T ⊆ V with |T | ≤ |V |/2,

µ(ST + Cap(δ − γ))− µ(ST )
µ(ST )

≥ Ω(1).

Combining Lemma 4.8.4, Proposition 4.8.5, and Proposition 4.8.6 gives the first two
parts of Theorem 4.8.2.
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4.8.3 Reweighted eigenvalue bound

Finally, we bound λ∗2(G). On a high level, if a graph can be embedded in S2 via u 7→ f(u),
such that the centre of mass is the origin and that each edge uv satisfies ∥f(u)− f(v)∥ ≤ δ,
then the embedding certifies that λ∗2(G) ≤ δ2. This is basically the proof. The details can
be found in Section A.5.

Proposition 4.8.7 (Reweighted Eigenvalue Bound). Let Gk be the graph from Theo-
rem 4.8.2. For constants 0 < c1 < c2, it holds that

λ∗2(Gk) ≲
1

k
≲

1

log∆
.

Proposition 4.8.7 gives the last part of Theorem 4.8.2. Thus, the proof of Theorem 4.8.2
is complete.

4.9 Concluding Remarks

We present a new spectral theory which relates (i) reweighted eigenvalues, (ii) vertex ex-
pansion and (iii) fastest mixing time. This is analogous to the classical spectral theory
which relates (i) eigenvalues, (ii) edge conductance and (iii) mixing time. This spectral
approach for vertex expansion via reweighted eigenvalues has the advantage that most
existing results and proofs for edge conductances and eigenvalues have a close analog for
vertex expansion and reweighted eigenvalues with almost tight bounds. The results pre-
sented here are not exhaustive, and we fully expect that other results relating eigenvalues
and edge conductances also have an analog for vertex expansion using reweighted eigen-
values.

To conclude, we believe that our work provides an interesting spectral theory for vertex
expansion, as the formulations have the natural interpretation as reweighted eigenvalues
and also have close connections to other important problems such as fastest mixing time
and the reweighting conjectures in approximation algorithms.
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Chapter 5

Cheeger Inequalities for Directed
Graphs and Hypergraphs using
Reweighted Eigenvalues

In this chapter, we derive Cheeger inequalities for directed graphs and hypergraphs using
the reweighted eigenvalue approach. The goal is to develop a new spectral theory for
directed graphs and an alternative spectral theory for hypergraphs.

The first main result is a Cheeger inequality relating the vertex expansion ψ⃗(G) of a

directed graph G to the vertex-capacitated maximum reweighted second eigenvalue λ⃗v∗2 (G)
that

λ⃗v∗2 (G) ≲ ψ⃗(G) ≲

√
λ⃗v∗2 (G) · log ∆

λ⃗v∗2 (G)
.

This provides a combinatorial characterization of the fastest mixing time of a directed
graph by vertex expansion, and builds a new connection between reweighted eigenvalues,
vertex expansion, and fastest mixing time for directed graphs.

The second main result is a stronger Cheeger inequality relating the edge conductance
ϕ⃗(G) of a directed graph G to the edge-capacitated maximum reweighted second eigenvalue

λ⃗e∗2 (G) that

λ⃗e∗2 (G) ≲ ϕ⃗(G) ≲

√
λ⃗e∗2 (G) · log 1

λ⃗e∗2 (G)
.
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This provides a certificate for a directed graph to be an expander and a spectral algorithm
to find a sparse cut in a directed graph, playing a similar role as Cheeger’s inequality in
certifying graph expansion and in the spectral partitioning algorithm for undirected graphs.

We also use this reweighted eigenvalue approach to derive the improved Cheeger in-
equality for directed graphs, and furthermore to derive several Cheeger inequalities for
hypergraphs that match and improve the existing results in [Lou15, CLTZ18]. These are
supporting results that this provides a unifying approach to lift the spectral theory for
undirected graphs to more general settings.

5.1 Our Results

We formulate reweighted eigenvalues for directed graphs and hypergraphs. The main idea
is to reduce the study of expansion properties in directed graphs and hypergraphs to the
basic setting of edge conductances in undirected graphs. We show that this provides an
intuitive and unifying approach to lift the spectral theory for undirected graphs to more
general settings.

For convenience, we recall the definition of directed vertex expansion and directed edge
conductance, which are the main combinatorial quantities of interest in this chapter.

Definition 5.1.1 (Directed Vertex Expansion (restatement of Definition 2.3.2)). Let G =
(V,E, π) be a vertex-weighted directed graph. For a subset S ⊆ V , let ∂+(S) := {v /∈ S |
∃u ∈ S with uv ∈ E} be the set of out-neighbors of S. The directed vertex expansion of a
set S ⊆ V and of the graph G are defined as1

ψ⃗(S) :=
min

{
π
(
∂+(S)

)
, π
(
∂+(Sc)

)}
min

{
π(S), π(Sc)

} and ψ⃗(G) := min
∅≠S⊂V

ψ⃗(S).

Note that ψ⃗(S) ≤ 1 for all S ⊆ V as ∂+(Sc) ⊆ S.

Definition 5.1.2 (Directed Edge Conductance [Yos16, Yos19] (restatement of Defini-
tion 2.3.1)). Let G = (V,E,w) be an edge-weighted directed graph. For a subset S ⊆ V ,
let δ+(S) := {uv ∈ E | u ∈ S and v /∈ S} be the set of outgoing edges of S and

1When specialized to undirected graphs (by considering the bidirected graph), the current definitions
are slightly different from that in Section 2.3.1. We remark that the two definitions of ψ(G) are within
a factor of 2 of each other. The current definitions have the advantages that ψ(S) ≤ 1 and are more
convenient in the proofs.
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volw(S) :=
∑

v∈S
∑

u∈V (w(uv) + w(vu)) be the volume of S. The directed edge conduc-
tance of a set S ⊆ V and of the graph G are defined as

ϕ⃗(S) :=
min

{
w
(
δ+(S)

)
, w
(
δ+(Sc)

)}
min

{
volw(S), volw(Sc)

} and ϕ⃗(G) := min
∅≠S⊂V

ϕ⃗(S).

5.1.1 Cheeger Inequality for Directed Vertex Expansion

Classical spectral theory connects (i) undirected edge conductance, (ii) second eigenvalue,
and (iii) mixing time of random walks on undirected graphs. We present a new spectral
formulation that connects (i) directed vertex expansion, (ii) reweighted second eigenvalue,
and (iii) fastest mixing time of random walks on directed graphs.

To certify that a directed graph G = (V,E) has large vertex expansion, our idea
is to find the best reweighted Eulerian subgraph G′ = (V,E,w′) of G with arc weight
w′(uv) for uv ∈ E and weighted degrees

∑
u∈V w

′(uv) =
∑

u∈V w
′(vu) = π(v) for all

v ∈ V , and then use the edge conductance of G′ as a lower bound on the vertex expansion
of G. Since the weighted directed graph G′ is Eulerian, the edge conductance of G′ is
equal to the edge conductance of the underlying undirected graph G′′ with edge weight
w′′(uv) = 1

2

(
w′(uv) + w′(vu)

)
. Now, as the graph G′′ is undirected, we can use Cheeger’s

inequality to lower bound the edge conductance of G′′ by the second smallest eigenvalue of
its normalized Laplacian matrix. This leads to the following formulation of the reweighted
second eigenvalue for directed vertex expansion (see Proposition 5.3.1 for more about this
reduction).

Definition 5.1.3 (Maximum Reweighted Spectral Gap with Vertex Capacity Constraints).
Given a directed graph G = (V,E) and a weight function π : V → R+, the maximum
reweighted spectral gap with vertex capacity constraints is defined as

λ⃗v∗2 (G) := max
A≥0

λ2

(
I − Π− 1

2

(A+ AT

2

)
Π− 1

2

)
subject to A(u, v) = 0 ∀uv /∈ E∑

v∈V

A(u, v) =
∑
v∈V

A(v, u) ∀u ∈ V∑
v∈V

A(u, v) = π(u) ∀u ∈ V

where A is the adjacency matrix of the reweighted Eulerian subgraph and Π := diag(π) is
the diagonal degree matrix of A. Then 1

2
(A+AT ) is the adjacency matrix of the underlying
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undirected graph of the reweighted Eulerian subgraph, L := I − 1
2
Π−1/2(A+AT )Π−1/2 is its

normalized Laplacian matrix, and λ2(L) is the second smallest eigenvalue of L.

To ensure that the optimization problem for λ⃗v∗2 (G) is always feasible, we assume that
the graph has a self-loop at each vertex. In the context of Markov chains, this corresponds
to allowing a non-zero holding probability on each vertex.

Our first main result is a Cheeger-type inequality that relates λ⃗v∗2 (G) and ψ⃗(G), proving
that the directed vertex expansion is large if and only if the reweighted eigenvalue is large.

Theorem 5.1.4 (Cheeger Inequality for Directed Vertex Expansion). For any directed
graph G = (V,E) and any weight function π : V → R≥0,

λ⃗v∗2 (G) ≲ ψ⃗(G) ≲

√
λ⃗v∗2 (G) · log ∆

ψ⃗(G)
≲

√
λ⃗v∗2 (G) · log ∆

λ⃗v∗2 (G)
,

where ∆ is the maximum (unweighted) degree of a vertex of G.

Since directed vertex expansion is more general than undirected vertex expansion and
Theorem 1.1.2 is tight up to a constant factor, we know that the log∆ term in Theo-
rem 5.1.4 is necessary. But we do not know whether the log(1/ψ⃗(G)) term in Theorem 5.1.4
is necessary or not.

The Fastest Mixing Time Problem: The notion of reweighted eigenvalue for undi-
rected graphs was first formulated in [BDX04] for studying the fastest mixing time problem

on reversible Markov chains. It turns out that the reweighted eigenvalue λ⃗v∗2 (G) in Def-
inition 5.1.3 can be used to study the fastest mixing time problem on general Markov
chains.

Definition 5.1.5 (Fastest Mixing Time on General Markov Chain). Given a directed graph
G = (V,E) and a probability distribution π on V , the fastest mixing time problem is defined
as

τ ∗mix(G) := min
P≥0

τmix(P )

subject to P (u, v) = 0 ∀uv /∈ E∑
u∈V

P (v, u) = 1 ∀v ∈ V∑
u∈V

π(u)P (u, v) = π(v) ∀v ∈ V
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where P is the transition matrix of the Markov chain. The constraints are to ensure that
P has nonzero entries only on the edges of G, that P is a row stochastic matrix, and that
the stationary distribution of P is π. The objective is to minimize the mixing time τmix(P )
to the stationary distribution π.

For the fastest mixing time problem on reversible Markov chains introduced in Sec-
tion 3.2.2, we are given an undirected graph G = (V,E) and a probability distribution π,
and the last set of constraints in Definition 5.1.5 is replaced by the stronger requirement
that π(u)P (u, v) = π(v)P (v, u) for all uv ∈ E. With this stronger requirement, P has real
eigenvalues and it is well known (c.f. Proposition 2.6.2) that τmix(P ) ≲ 1

1−α2(P )
· log( 1

πmin
),

where α2(P ) is the second largest eigenvalue of P and πmin := minv∈V π(v). Thus, the
reweighted eigenvalue formulation in [BDX04] is to find such a transition matrix P that
maximizes the spectral gap 1−α2(P ), which can be solved by a semidefinite program and
can be used as a proxy for upper bounding the fastest mixing time (see Section 3.2.2).

This is a well-motivated problem in the study of Markov chains and has generated
considerable interest (see the references in [OZ22]), but there had been no known com-
binatorial characterization of the fastest mixing time for quite some time. The result
by Oleskar-Taylor and Zanetti [OZ22], and our subsequent improvement in Theorem 4.1.3,
give a combinatorial characterization of the fastest mixing time of reversible Markov chains
by the vertex expansion of the graph.

For general Markov chains, P may have complex eigenvalues, and there was no known
efficient formulation for the fastest mixing time problem. We observe that the reweighted
spectral gap λ⃗v∗2 (G) in Definition 5.1.3 provides such a formulation through the results
in [Fil91, Chu05]. An interesting consequence of Theorem 5.1.4 is a combinatorial charac-
terization of the fastest mixing time of general Markov chains, showing that small directed
vertex expansion is the only obstruction of fastest mixing time.

Theorem 5.1.6 (Fastest Mixing Time and Directed Vertex Expansion). For any directed
graph G = (V,E) with maximum total degree ∆, and any probability distribution π on V ,

1

ψ⃗(G)
≲ τ ∗(G) ≲

1

ψ⃗(G)2
· log ∆

ψ⃗(G)
· log 1

πmin

.

(Note that the lower bound is improved from that in [LTW23].)

Together, Theorem 5.1.4 and Theorem 5.1.6 connect (i) the reweighted second eigen-
value, (ii) directed vertex expansion, and (iii) fastest mixing time on directed graphs, in
a similar way that classical spectral graph theory connects (i) the second eigenvalue, (ii)
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undirected edge conductance, and (iii) mixing time on undirected graphs. Theorem 5.1.6
is a significant generalization of the aforementioned results on reversible Markov chains to
general Markov chains, and we believe it to be of independent interest.

5.1.2 Cheeger Inequality for Directed Edge Conductance

Two key applications of Cheeger’s inequality are to use the second eigenvalue to certify
whether an undirected graph is an expander graph, and to provide a spectral algorithm for
graph partitioning that is useful in many areas. We present a new inequality for directed
graphs for these purposes.

We use the same approach as described in Section 5.1.1 to prove a Cheeger-type in-
equality for directed edge conductance.2 To certify that a directed graph G = (V,E,w)
has large edge conductance, we find the best reweighted Eulerian subgraph G′ with edge
weight w′(uv) ≤ w(uv) for each uv ∈ E, and use the edge conductance of G′ (with respect
to the volumes using w) to provide a lower bound on the edge conductance of G. Then,
the edge conductance of G′ is reduced to the edge conductance of the underlying undi-
rected graph G′′ with edge weight w′′(uv) = 1

2
(w′(uv) + w′(vu)), and the second smallest

eigenvalue of the normalized Laplacian matrix of G′′ is used to provide a lower bound on
the edge conductance of G′′. See Proposition 5.3.2 for a proof.

Definition 5.1.7 (Maximum Reweighted Spectral Gap with Edge Capacity Constraints
(Restatement of Definition 1.2.1)). Given a directed graph G = (V,E) and a weight function
w : E → R≥0, the maximum reweighted spectral gap with edge capacity constraints is defined
as

λ⃗e∗2 (G) := max
A≥0

λ2

(
D− 1

2

(
DA −

A+ AT

2

)
D− 1

2

)
subject to A(u, v) = 0 ∀uv /∈ E∑

v∈V

A(u, v) =
∑
v∈V

A(v, u) ∀u ∈ V

A(u, v) ≤ w(uv) ∀uv ∈ E

where A is the adjacency matrix of the reweighted Eulerian subgraph, DA is the diagonal
degree matrix of (A + AT )/2 with DA(v, v) =

∑
u∈V

1
2
(A(u, v) + A(v, u)), and D is the

2The reader may wonder whether it is possible to reduce directed edge conductance to directed vertex
expansion, and use Theorem 5.1.4 to obtain a Cheeger-type inequality for directed edge conductance. This
is indeed possible, but the result obtained in this way will have a dependency on the maximum total degree
∆ as in Theorem 5.1.4, while the result that we present in Theorem 5.1.8 has no such dependency.
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diagonal degree matrix of G with D(v, v) =
∑

u∈V (w(uv)+w(vu)) equal to the total weighted
degree of v in G.

Our second main result is a stronger Cheeger inequality that relates λ⃗e∗2 (G) and ϕ⃗(G).

Theorem 5.1.8 (Cheeger Inequality for Directed Edge Conductance). For any directed
graph G = (V,E) and any weight function w : E → R≥0,

λ⃗e∗2 (G) ≲ ϕ⃗(G) ≲

√
λ⃗e∗2 (G) · log 1

ϕ⃗(G)
≲

√
λ⃗e∗2 (G) · log 1

λ⃗e∗2 (G)
.

An important point about Theorem 5.1.8 is that there is no dependence on the maxi-
mum degree of G as in Theorem 5.1.4 or on the number of vertices of G as in [ACMM05,

Yos19]. As a consequence, λ⃗e∗2 (G) is a polynomial time-computable quantity that can be
used to certify whether a directed graph has constant edge conductance. This is similar to
the role of the second eigenvalue in Cheeger’s inequality to certify whether an undirected
graph has constant edge conductance.

Also, as in the proof of Cheeger’s inequality, the proof of Theorem 5.1.8 provides a

polynomial time algorithm to return a set S with ϕ⃗(S) ≤
√
ϕ⃗(G) log 1/ϕ⃗(G). Since many

real-world networks are directed [Yos16], we hope that this “spectral” algorithm will find
applications in clustering and partitioning for directed graphs, as the classical spectral
partitioning algorithm does in clustering and partitioning for undirected graphs [SM00,
Lux07].

Fill [Fil91] and Chung [Chu05] defined some symmetric matrices for directed graphs,
and related their eigenvalues to Cheeger constant and to mixing time (see Section 3.3.1).
The main difference between our formulation and Chung’s formulation is that we search
for an optimal reweighting while Chung used a specific vertex-based reweighting by the
stationary distribution. We note that the Cheeger constant in (3.9) could be very different
from the directed edge conductance in Definition 5.1.2 and the directed vertex expansion
in Definition 5.1.1; see Section 5.9.1 for some examples. We remark that many subsequent
works used Cheeger constant as the objective for clustering and partitioning for directed
graphs, and these examples illustrate their limitations in finding sets of small directed
edge conductance or directed vertex expansion, which are much more suitable notions for
clustering and partitioning; see [Yos16] for related discussions.

Additional Previous Work: Besides the matrices in [Fil91, Chu05], there are other
Hermitian matrices associated to a directed graph studied in the literature. Guo and
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Mohar [GM17] and Liu and Li [LL15] defined the Hermitian adjacency matrix H of a
directed graph as H(u, v) = 1 if both uv, vu ∈ E, H(u, v) = ı if uv ∈ E and vu /∈ E
where ı is the imaginary unit, H(u, v) = −ı if uv /∈ E and vu ∈ E, and H(u, v) = 0 if
both uv, vu /∈ E. There are also other Hermitian matrices defined for clustering directed
graphs [LS20, CLSZ20] and for the Max-2-Lin problem [LSZ19]. We confirm that there are
no known relations between the eigenvalues of these Hermitian matrices and the expansion
properties of a directed graph.

Yoshida [Yos16] introduced a nonlinear Laplacian operator for directed graphs and used
it to define the second eigenvalue λG, and later [Yos19] supplied an SDP approximation

for λG. This gives a polynomial time computable quantity λ̃G that satisfies λ̃G ≲ ϕ⃗(G) ≲√
λ̃G · log n (see Section 3.3.2). We note that this result is comparable to but improved

by our result3 for ϕ⃗(G) in (5.1), and cannot be used for certifying constant directed edge
conductance as in Theorem 5.1.8. We also note that this result is dominated by the
SDP-based O(

√
log n)-approximation algorithm for ϕ⃗(G) in [ACMM05] (see Section 3.6.3)

that we recap below. To our knowledge, this is the only spectral formulation known in the
literature that relates to directed edge conductance, and no spectral formulation was known
for directed vertex expansion. We also believe that the reweighted eigenvalue approach is
simpler and more intuitive than the nonlinear Laplacian operator approach.

Agarwal, Charikar, Makarychev, Makarychev [ACMM05] gave an SDP-basedO
(√

log n
)
-

approximation algorithm for the directed sparsest cut problem on a directed graph G =
(V,E), where the objective is to find a set S that minimizes |δ+(S)|/min{|S|, |Sc|}. We
note that in the unweighted case, directed vertex expansion and directed edge conductance
can be reduced to directed sparsest cut via standard reductions. In the weighted case, the
SDP for directed sparsest cut can be slightly modified to obtain aO

(√
log n

)
-approximation

algorithm for directed edge conductance; see Section 5.9.2. To our knowledge, it was not
known that the SDP in [ACMM05] can be used to certify whether a directed graph has
constant edge conductance as in Theorem 5.1.8, as the analysis using triangle inequali-
ties based on [ARV09] has a

√
log n factor loss. We show in Section 5.9.2 that the SDP

in [ACMM05] is stronger than the SDP for directed edge conductance in Proposition 5.4.2.
Therefore, using the new analysis in this chapter, we prove that the SDP in [ACMM05]
also provides a polynomial time computable quantity to certify constant directed edge
conductance as in Theorem 5.1.8.

3We remark that we can use the Johnson-Lindenstrauss lemma to do the dimension reduction step as

in [OZ22], and this would give ϕ⃗(G) ≲
√
λ⃗e∗2 (G) · log n as well.
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5.1.3 Generalizations of Cheeger’s Inequality for Directed Graphs

For undirected graphs, there are several interesting generalizations of Cheeger’s inequality:
Trevisan’s result [Tre09] that relate λn to bipartite edge conductance, the higher-order
Cheeger’s inequality [LOT12, LRTV12] that relates λk to k-way edge conductance, and
the improved Cheeger’s inequality [KLL+13] that relates λ2 and λk to edge conductance.
See Section 3.1 for a review of these results.

As in Chapter 4, we study whether there are close analogs of these results for directed
graphs, using reweighted eigenvalues for directed vertex expansion in Definition 5.1.1 and
directed edge conductance in Definition 5.1.2. Perhaps surprisingly, we show that the
natural analogs of Trevisan’s result and higher-order Cheeger’s inequality do not hold, but
we obtain analogs of the improved Cheeger’s inequality for directed vertex expansion and
directed edge conductance. See Section 5.10 for these results.

Chan, Tang and Zhang [CTZ15] gave a higher-order Cheeger inequality for directed
graphs. Roughly speaking, they showed that there are k disjoint subsets S1, . . . , Sk ⊆ V

with λk(L̃) ≲ h(Si) ≲ k2 ·
√
λk(L̃) for 1 ≤ i ≤ k, where h(Si) is the Cheeger constant

in (3.9) and λk(L̃) is the k-th smallest eigenvalue of the Laplacian in (3.8). The proof is
a direct application of the higher-order Cheeger inequality for undirected graphs on the
reweighted subgraph by the stationary distribution. In Section 5.9.1, we show an example
that rules out the possibility of having a higher-order Cheeger inequality for directed graphs
relating λk(L̃) to k-way directed edge conductance.

5.1.4 Cheeger Inequalities for Hypergraph Edge Conductance

We also formulate reweighted eigenvalues for hypergraphs and use them to derive Cheeger-
type inequalities for hypergraphs, as supporting results that reweighted eigenvalues provide
a unifying approach to study expansion properties in different settings. The idea is simply
to consider the “clique-graph” of the hypergraph H, and find the best reweighted subgraph
of the clique-graph to certify the edge conductance of H, subject to the constraint that
the total weight of the “clique-edges” of a hyperedge e is bounded by w(e).

Definition 5.1.9 (Maximum Reweighted Spectral Gap for Hypergraphs). Given an edge-
weighted hypergraph H = (V,E,w), the maximum reweighted spectral gap for H is defined
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as

γ∗2(H) := max
A≥0

λ2

(
D− 1

2

(
DA − A

)
D− 1

2

)
subject to

∑
u,v∈e

c(u, v, e) ≤ w(e) ∀e ∈ E

A(u, v) =
∑

e∈E:u,v∈e

c(u, v, e) ∀u, v ∈ V.

In this formulation, there is a clique-edge variable c(u, v, e) for each pair of vertices u, v in
a hyperedge e, with the constraints that the total weight of the clique-edges in e is bounded
by w(e). Then, A is the adjacency matrix of the reweighted subgraph of the clique-graph
with edge weight A(u, v) equal to the sum of the weight of the clique-edges involving u and
v, DA is the diagonal degree matrix of A with DA(v, v) =

∑
u∈V A(u, v), and D is the

diagonal degree matrix of H with D(v, v) =
∑

e∈E:v∈ew(e) equal to the weighted degree of
v in H.

There is a spectral theory for hypergraphs based on a continuous time diffusion process
with several Cheeger-type inequalities proven in [Lou15, CLTZ18]; see Section 3.4.1. We
show that the reweighted eigenvalue approach can be used to provide a simpler and more
intuitive way to obtain similar results.

Theorem 5.1.10 (Cheeger Inequality for Hypergraph Edge Conductance). For any edge-
weighted hypergraph H = (V,E,w) of rank r,

γ∗2(H) ≲ ϕ(H) ≲
√
γ∗2(H) · log r.

We also obtain generalizations of Cheeger’s inequalities for hypergraphs using other
reweighted eigenvalues such as γ∗k(H) and a new result about improved Cheeger inequality
for hypergraphs. Using the reweighted eigenvalue approach, we can define the maximum
reweighted k-th eigenvalue γ∗k as in Definition 5.1.9 and prove the following analog of
higher-order Cheeger inequality for hypergraph edge conductance in Theorem 5.11.1: for
any ε ≥ 1/k, there are disjoint subsets S1, . . . , S(1−ε)k with

ϕ(Si) ≲
√
k · ε−4 · log k ·

√
log r ·

√
γ∗k

for all i ≤ (1−ε)k. This bound is comparable to that in [CLTZ18] when ε ≈ 1/k, and is an
improvement when ε = Θ(1) by a factor of more than k2. This also improves the approxi-
mation algorithm for the small-set hypergraph edge conductance problem in [CLTZ18] by
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a factor of more than k. In addition, we also prove an analog of the improved Cheeger’s
inequality [KLL+13] for hypergraphs. See Section 5.11 for the precise statements of all
these results, and see Section 3.4.1 for a more detailed survey of the results in [CLTZ18].

Compared to the spectral theory in [Lou15, CLTZ18] for hypergraphs using the contin-
uous time diffusion process, we believe that the reweighted eigenvalue approach is simpler
and more intuitive. The definitions of the hypergraph diffusion process and its eigenvalues
are quite technically involved and require considerable effort to make rigorous [CTWZ19].
The reweighted eigenvalue approach allows us to recover and improve their results on hyper-
graph partitioning, and also to obtain a new result. Since their spectral theory for hyper-
graph partitioning is gaining more attention in machine learning lately (see e.g. [LM18]),
we believe that it would be beneficial to have an alternative approach that is easier to
understand and to prove new results and to have efficient implementations.

5.2 Our Techniques

Conceptually, our contribution is to come up with new spectral formulations for expansion
properties in directed graphs and hypergraphs, and to show that the reweighted eigenvalue
approach provides a unifying method to reduce expansion problems in more general settings
to the basic setting of edge conductances in undirected graphs.

Technically, the proofs are based on the framework developed in Chapter 4 in relating
reweighted eigenvalues to undirected vertex expansion in Theorem 1.1.2. Recall that there
are two main steps in proving Theorem 1.1.2. The first step is to construct the dual SDP for
the reweighted eigenvalue, and to do random projection to obtain a 1-dimensional solution
to the dual program. The second step is to analyze the threshold rounding algorithm
for the 1-dimensional solution. Below we highlight some new elements in our proofs for
directed graphs.

For directed graphs, we identify a key parameter for our analysis.

Definition 5.2.1 (Asymmetric Ratio of Directed Graphs). Given an edge-weighted graph
G = (V,E,w), the asymmetric ratio of a set S ⊆ V and of the graph G are defined as

α(S) :=
w(δ+(S))

w(δ+(Sc))
and α(G) := max

∅≠S⊂V
α(S).

Given a vertex-weighted graph G = (V,E, π), we define the π-induced weight of an edge
uv ∈ E as wπ(uv) = min{π(u), π(v)}, and the asymmetric ratio of a set S ⊆ V and of the
graph are defined as above using the edge weight function wπ.
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We note that the asymmetric ratio of an edge-weighted graph was defined in [EMPS16]
with the name “α-balanced” and was used in the analysis of oblivious routing in directed
graphs. The asymmetric ratio is a measure of how close a directed graph is to an undirected
graph for our purpose, as when α(G) = 1 the directed graph is Eulerian and so its edge
conductance is the same as the edge conductance of the underlying undirected graph.

This parameter is defined to satisfy two useful properties. The first is that it can be
used to prove more refined Cheeger inequalities that

ϕ⃗(G) ≤
√
λ⃗e∗2 (G) · logα(G) and ψ⃗(G) ≤

√
λ⃗v∗2 (G) · log

(
∆ · α(G)

)
. (5.1)

The second is that it can be related to the directed edge conductance and directed vertex
expansion such that α(G) ≤ 1/ϕ⃗(G) (Lemma 5.5.1) and α(G) ≤ ∆/ψ⃗(G) (Lemma 5.5.2).
Combining the two properties gives Theorem 5.1.8 and Theorem 5.1.4.

We highlight two new elements in the proofs of (5.1), one in dimension reduction and
one in threshold rounding. In the dimension reduction step, the Johnson-Lindenstrauss
lemma can be used to project to a 1-dimensional solution with a factor of log n loss as
in [OZ22]. For undirected vertex expansion, this was improved to a factor of log∆ loss
in two ways: one is the Gaussian projection method [LRV13, KLT22] in Chapter 4, while
the other is a better analysis of dimension reduction for maximum matching [JPV22] in
Section 3.2.3. For directed edge conductance and directed vertex expansion, the SDP is
more complicated and we do not know how to extend the Gaussian projection method
to improve on the O(log n) loss; see Section 5.6.1 for discussions. Instead, we extend
the approach in [JPV22] to prove that random projections only lose a factor of logα(G)
with high probability. When the asymmetric ratio is small, we use Hoffman’s result in
Lemma 5.5.4 about bounded-weighted circulations to prove a “large optimal property”
of the SDPs (see Lemma 5.5.5), and use it to adapt the proof in [JPV22] for maximum
weighted Eulerian subgraphs; see Section 5.6 for details.

In the threshold rounding step of the 1-dimensional solution, we consider the dual SDP
of λ⃗v∗2 (G) and λ⃗e∗2 (G) as in Proposition 4.3.1. Unlike the dual SDP for undirected vertex
expansion, these dual SDPs (see Lemma 5.7.5) has some negative terms from a vertex
potential function r : V → R. The new idea in our threshold rounding is to not just
consider the ordering defined by the vertex embedding function f : V → R as usual, but
to consider the two orderings defined by f ± r and show that threshold rounding will work
on one of these two orderings. See Section 5.7 for details.

The generalizations of Cheeger inequalities for directed graphs and all Cheeger-type
inequalities for hypergraphs are based on the same proofs of the corresponding results
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in Chapter 4 with no new ideas involved. These results show that the reweighted eigen-
value approach provides a unifying method to lift the spectral theory for undirected edge
conductance to obtain new results in more general settings in a systematic way.

Finally, we note that the maximum degree ∆ for undirected vertex expansion, the
asymmetric ratio α(G) for directed edge conductance and directed vertex expansion, and
the maximum hyperedge size r for hypergraph edge conductance all play the same role
as a measure of how close the respective problem is to the basic problem of undirected
edge conductance. The trivial reductions to undirected edge conductance lose a factor of
∆ for undirected vertex expansion, a factor of α(G) for directed edge-conductance (by just
ignoring the directions), and a factor of r for hypergraph edge conductance (by just consid-
ering the clique graph). In comparison, the reductions through the reweighted eigenvalue
approach only lose a factor of log∆ in (4.1), a factor of logα(G) in (5.1), and a factor of
log r in Theorem 5.1.10 respectively.

Remark 5.2.2 (Eulerian Reweighting in Directed Laplacian Solvers). We note that the
idea of reducing the problem for a directed graph to an Eulerian directed graph was also
used in directed Laplacian solvers [CKP+16, CKP+17]. As in [Chu05], they also use the
same reweighting by the stationary distribution to obtain an Eulerian graph from a directed
graph. (Furthermore, they introduced a notion of spectral sparsification of Eulerian directed
graphs.) We believe that the idea of reducing to Eulerian directed graphs and the concept
of asymmetric ratio will find more applications in solving problems on directed graphs.

Remark 5.2.3 (More Applications of Reweighting). Finally, as a technical remark, we
note that some careful reweighting schemes are crucially used in the construction of the
diffusion process [Lou15, CLTZ18], and also in recent exciting developments in hypergraph
spectral sparsification [CKN20, KKTY22] (called balanced weight assignments). This sug-
gests that the concept of reweighting is central to these recent developments, and it would
be very interesting to find connections between the different reweighting methods used in
this work and these previous works.

5.2.1 Chapter Plan

We begin the rest of the chapter by proving the two main results Theorem 5.1.4 and
Theorem 5.1.8. First, we prove the easy direction of the two results in Section 5.3, and
write the semidefinite programs for the reweighted eigenvalues in Section 5.4. Then, we
show some properties of the asymmetric ratio in Section 5.5, and use these properties and
the proof in [JPV22] to analyze a random projection algorithm to construct 1-dimensional
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spectral solutions to the semidefinite programs in Section 5.6. Then, we analyze a new
threshold rounding algorithm for the 1-dimensional solutions to the dual programs, and
prove the hard direction of the two results in Section 5.7. After that, we show Theorem 5.1.6
about fastest mixing time using [Fil91, Chu05] in Section 5.8, and provide details about
the relations with some previous work in Section 5.9.

Finally, we discuss generalizations of Cheeger inequalities for directed graphs in Sec-
tion 5.10 and derive Cheeger-type inequalities for hypergraphs in Section 5.11.

5.3 Easy Directions by Reductions

There are two ways to prove the easy directions in Theorem 5.1.4 and Theorem 5.1.8. A
standard way is to construct a solution to λ⃗v∗2 (G) or λ⃗e∗2 (G) with small objective value when
the directed vertex expansion or the directed edge conductance is small. Here instead, we
show how to use the reduction idea discussed in the introduction to this chapter to prove
the easy directions, as this is how we came up with the formulations and the reduction is
the main theme here.

Proposition 5.3.1 (Easy Direction for Directed Vertex Expansion). For any directed

graph G = (V,E) with weight function π : V → R≥0, it holds that λ⃗
v∗
2 (G) ≤ 2ψ⃗(G).

Proof. The idea is to reduce directed vertex expansion of G to the directed edge con-
ductance of the reweighted Eulerian subgraph defined by A in Definition 5.1.3, and then
further reduce to the underlying undirected graph defined by 1

2
(A+ AT ) and use classical

Cheeger’s inequality to lower bound its edge conductance by the second eigenvalue of its
normalized Laplacian matrix.

Let w(uv) := A(u, v) be the edge weight in the Eulerian reweighted subgraph for
uv ∈ E. For any nonempty S ⊂ V , by Definition 5.1.1 of directed vertex expansion and
Definition 5.1.2 of directed edge conductance,

ψ⃗(S) =
min

{
π(∂+(S)), π(∂+(Sc))

}
min{π(S), π(Sc)}

≥
2 ·min

{
w(δ+(S)), w(δ−(S))

}
min{volw(S), volw(Sc)}

= 2ϕ⃗(S)

where we use the degree constraints in Definition 5.1.3 to establish that w(δ+(S)) ≤
π(∂+(S)) and w(δ−(S)) ≤ π(∂+(Sc)) (note that they are not necessarily equalities be-
cause of the self-loops), and volw(S) = 2π(S) for every nonempty S ⊂ V .

As the edge-weighted directed graphG′ = (V,E,w) is Eulerian, it holds that w(δ+(S)) =
w(δ−(S)) for every nonempty S ⊂ V , and thus the directed edge conductance of G′ is equal
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to half the edge conductance of the underlying undirected graph G′′ with edge weight
w′′(uv) = 1

2

(
w(uv) + w(vu)

)
, because

2ϕ⃗(S) =
min

{
w(δ+(S)), w(δ−(S))

}
1
2
·min{volw(S), volw(Sc)}

=
w′′(δ(S))

min{volw′′(S), volw′′(Sc)}
= ϕ(S).

As the graph G′′ is undirected, we can use Cheeger’s inequality in (1.1) to lower bound
the edge conductance of G′′ by the second smallest eigenvalue of its normalized Laplacian
matrix L(A) := I − 1

2
Π−1/2(A + AT )Π−1/2. Therefore, for any nonempty S ⊂ V , ψ⃗(S) ≥

2ϕ⃗(S) = ϕ(S) ≥ λ2(L(A))/2. Since this holds for any nonempty S ⊂ V and any weighted
Eulerian subgraph defined by A satisfying the constraints in Definition 5.1.3, we conclude
that 2ψ⃗(G) ≥ maxA λ2(L(A)) = λ⃗v∗2 (G).

The proof of the easy direction of Theorem 5.1.8 is similar.

Proposition 5.3.2 (Easy Direction for Directed Edge Conductance). For any directed

graph G = (V,E) with weight function w : E → R≥0, it holds that λ⃗
e∗
2 (G) ≤ 2ϕ⃗(G).

Proof. Let w′(uv) := A(u, v) be the edge weight in the Eulerian reweighted subgraph G′ in
Definition 5.1.7. Let G′′ be the underlying undirected graph with edge weight w′′(uv) :=
1
2
(w′(uv)+w′(vu)), with an additional self-loop on each vertex so that the weighted degree

degw′(v) on each vertex v is exactly equal to the total degree degw(v) =
∑

u∈V (w(uv) +
w(vu)) of v in G. Then, by the edge capacity constraints and the Eulerian constraints in
Definition 5.1.7, for any nonempty S ⊂ V ,

ϕ⃗(S) =
min

{
w(δ+(S)), w(δ−(S))

}
min{volw(S), volw(Sc)}

≥
min

{
w′(δ+(S)), w′(δ−(S))

}
min{volw(S), volw(Sc)}

=
w′′(δ(S))

min{volw′′(S), volw′′(Sc)}
= ϕ(S).

Let D := diag(degw) be the diagonal degree matrix of G′′, and L := D−1/2(D − 1
2
(A+

AT ))D−1/2 = I − 1
2
D−1/2(A + AT )D−1/2 be the normalized Laplacian matrix of G′′. As

G′′ is undirected, it follows from Cheeger’s inequality in (1.1) that ϕ(S) ≥ λ2(L)/2. Since
this holds for any nonempty S ⊂ V and any weighted subgraph defined by A satisfying
the constraints in Definition 5.1.7, we conclude that ϕ⃗(G) ≥ ϕ(G′′) ≥ maxA λ2(L)/2 =

λ⃗e∗2 (G)/2.
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5.4 Semidefinite Programs

We show that the optimization problems of reweighted eigenvalues in these directed set-
tings can also be formulated as SDP’s, and so they can be approximated arbitrarily well
in polynomial time. The construction is similar to that of the semidefinite program for
undirected vertex expansion in Proposition 3.2.3, but presented in a min-max form.

Proposition 5.4.1 (SDP for Reweighted Second Eigenvalue with Vertex Capacity Con-
straints). Given a directed graph G = (V,E) and a weight function π : V → R≥0, the
optimization problem in Definition 5.1.3 can be written as

λ⃗v∗2 (G) = min
f :V→Rn

max
A≥0

1

2

∑
uv∈E

A(u, v) · ∥f(u)− f(v)∥2

subject to A(u, v) = 0 ∀uv ̸∈ E∑
v∈V

A(u, v) =
∑
v∈V

A(v, u) ∀u ∈ V∑
v∈V

A(v, u) = π(u) ∀u ∈ V∑
v∈V

π(v) · f(v) = 0⃗∑
v∈V

π(v) · ∥f(v)∥2 = 1.

Proof. Let L := I − 1
2
Π−1/2(A + AT )Π−1/2 be the normalized Laplacian matrix in the

objective function maxA λ2(L) in Definition 5.1.3. By (2.2) in the preliminary chapter,

λ2(L) = min
f⊥π

∑
(u,v)∈(V2)

1
2

(
A(u, v) + A(v, u)

)
· (f(u)− f(v))2∑

v π(v)f(v)
2

.

Then we write f ⊥ π as the second last constraint and normalize the denominator to
1 as the last constraint. By (2.5), the SDP relaxation where we replace f : V → R
by f : V → Rn is an exact relaxation. After the SDP relaxation, the feasible domain
becomes convex, and so we may apply von Neumann minimax theorem in Theorem 2.8.1
to switch the order of maxAminf in Definition 5.1.3 to minf maxA as in the statement of
this lemma.

The same construction is used for λ⃗e∗2 (G) in Definition 5.1.7 and the proof is omitted.
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Proposition 5.4.2 (SDP for Reweighted Second Eigenvalue with Edge Capacity Con-
straints). Given a directed graph G = (V,E,w), the optimization problem in Defini-
tion 5.1.7 can be written as

λ⃗e∗2 (G) := min
f :V→Rn

max
A≥0

1

2

∑
uv∈E

A(u, v) · ∥f(u)− f(v)∥2

subject to A(u, v) = 0 ∀uv ̸∈ E∑
v∈V

A(u, v) =
∑
v∈V

A(v, u) ∀u ∈ V

A(u, u) ≤ w(uv) ∀uv ∈ E∑
v∈V

degw(v) · f(v) = 0⃗∑
v∈V

degw(v) · ∥f(v)∥
2 = 1.

We will use these SDP’s to prove the two main results.

5.5 Asymmetric Ratio

A key parameter in our proofs is the asymmetric ratio α(G) in Definition 5.2.1. This
parameter satisfies two useful properties. One is that α(G) can be used to bound the
directed edge conductance and directed vertex expansion. Another is that directed graphs
with bounded asymmetric ratio satisfy the “large optimal property” that we will describe
in Section 5.5.2, which can be used in the proof in [JPV22] to provide a better analysis of
the random projection algorithm for dimension reduction of the SDP solutions.

5.5.1 Asymmetric Ratio and Expansion Properties

The relation between asymmetric ratio of an edge-weighted graph and directed edge con-
ductance is simple.

Lemma 5.5.1 (Asymmetric Ratio and Directed Edge Conductance). For any directed

graph G = (V,E,w), it holds that α(G) ≤ 1/ϕ⃗(G).
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Proof. Let S ⊂ V be a nonempty set. Suppose volw(S) ≤ volw(S
c); the other case is simi-

lar. Then, by the definition of directed edge conductance in Definition 5.1.2, w(δ+(S)) ≥
ϕ⃗(G)·volw(S) and w(δ−(S)) ≥ ϕ⃗(G)·volw(S). On the other hand, w(δ+(S)) ≤ volw(S) and

w(δ−(S)) ≤ volw(S). Therefore, α(S) = w(δ+(S))/w(δ−(S)) ≤ 1/ϕ⃗(G) for any nonempty

S ⊂ V , and we conclude that α(G) ≤ 1/ϕ⃗(G).

The relation between asymmetric ratio of vertex-weighted graph and directed vertex
expansion is less trivial and has a dependency on the maximum total degree ∆.

Lemma 5.5.2 (Asymmetric Ratio and Directed Vertex Expansion). For any directed graph

G = (V,E) with vertex weights π : V → R+, it holds that α(G) ≲ ∆/ψ⃗(G).

Proof. To upper bound α(G) for a vertex-weighted graph, by Definition 5.2.1, we need
to upper bound α(S) = wπ(δ

+(S))/wπ(δ
+(Sc)) and α(Sc) = wπ(δ

+(Sc))/wπ(δ
+(S)) for

any nonempty S ⊂ V , where wπ(uv) = min{π(u), π(v)} is the π-induced edge weight for
uv ∈ E. We assume without loss of generality that π(S) ≤ π(V )/2.

For the numerators, note that wπ(δ
+(S)) ≤

∑
u∈S
∑

v:uv∈E wπ(uv) ≤
∑

u∈S ∆ · π(u) =
∆·π(S), and similarly wπ(δ

+(Sc)) = wπ(δ
−(S)) ≤

∑
u∈S
∑

v:vu∈E wπ(vu) ≤
∑

u∈S ∆·π(u) =
∆ · π(S). Therefore, the numerators for α(S) and α(Sc) are at most ∆ · π(S). For the

denominators, we claim that wπ(δ
+(S)) ≥ 1

3
ψ⃗(G) · π(S) and wπ(δ+(Sc)) ≥ 1

3
ψ⃗(G) · π(S).

This claim implies that the denominators for α(S) and α(Sc) are at least 1
3
ψ⃗(G) · π(S),

and the lemma follows immediately.

To prove the claim, we first consider the lower bound on wπ(δ
+(S)). Let ε := ψ⃗(G)/3.

Suppose by contradiction that wπ(δ
+(S)) < ε · π(S). Let CS := {u ∈ S | ∃v with uv ∈

δ+(S) and π(u) ≤ π(v)} and CSc := {v ∈ Sc | ∃u with uv ∈ δ+(S) and π(v) ≤ π(u)}.
Since each u ∈ CS contributes at least π(u) weight to wπ(δ

+(S)) and these contributions
are disjoint, it follows that π(CS) ≤ wπ(δ

+(S)) < ε · π(S). By the same argument,
π(CSc) < ε · π(S). Note that, by definition of CS and CSc , each edge in δ+(S) has at least
one vertex in CS ∪ CSc . This implies that ∂+(S − CS) ⊆ CS ∪ CSc , but this leads to the
contradiction that

ψ⃗(S −CS) ≤
π(∂+(S − CS))
π(S − CS)

≤ π(CS ∪ CSc)

π(S)− π(CS)
<

2ε · π(S)
(1− ε) · π(S)

=
2ψ⃗(G)

3(1− ψ⃗(G)/3)
≤ ψ⃗(G).

The lower bound on wπ(δ
+(Sc)) is by a similar argument. Suppose by contradiction that

wπ(δ
+(Sc)) < ε · π(S). Let CSc := {u ∈ Sc | ∃v with uv ∈ δ+(Sc) and π(u) ≤ π(v)}

and CS := {v ∈ S | ∃u with uv ∈ δ+(Sc) and π(v) ≤ π(u)}. Once again, it follows that
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π(CS), π(CSc) ≤ wπ(δ
+(Sc)) < ε · π(S), and ∂+(Sc − CSc) ⊆ CS ∪ CSc . But this leads to

the contradiction that

ψ⃗(Sc − CSc) =
π(∂+(Sc − CSc))

min{π(Sc − CSc), π(S + CSc)}
≤ π(CS ∪ CSc)

min{π(Sc)− ε · π(S), π(S)}

<
2ε · π(S)

(1− ε) · π(S)
≤ ψ⃗(G),

where the second inequality uses that π(Sc) ≥ π(S). This completes the proof of the
claim.

5.5.2 Asymmetric Ratio and Large Optimal Property

Consider the semidefinite programs for λ⃗v∗2 (G) and λ⃗e∗2 (G) in Proposition 5.4.1 and Proposi-
tion 5.4.2. When the geometric embedding f : V → Rn in the outer minimization problem
is fixed, the inner maximization problem is simply to find a maximum weighted Eulerian
subgraph A with vertex capacity constraints in Proposition 5.4.1 and with edge capacity
constraints in Proposition 5.4.2. The following are trivial upper bounds on the optimal
values of the inner maximization problems.

Claim 5.5.3 (Maximum Weighted Eulerian Subgraph with Capacity Constraints). Given
a directed graph G = (V,E) and an embedding f : V → Rn, let νv∗f (G) and νe∗f (G) be the ob-
jective values of the inner maximization problem in Proposition 5.4.1 and Proposition 5.4.2
respectively. Then

νv∗f (G) ≤ 1

2

∑
uv∈E

wπ(uv) · ∥f(u)− f(v)∥2 and νe∗f (G) ≤ 1

2

∑
uv∈E

w(uv) · ∥f(u)− f(v)∥2 ,

where wπ(uv) = min{π(u), π(v)} is the π-induced edge weight function defined in Defini-
tion 5.2.1.

In the undirected vertex expansion problem [OZ22, JPV22], when π(v) = 1
n
for all

v ∈ V , the inner maximization problem is equivalent to the maximum weighted fractional
matching problem. Jain, Pham and Vuong [JPV22] used the fact that any graph with
maximum degree ∆ has an edge coloring with at most ∆ + 1 colors to show that the
inner maximization problem has a solution with weight at least 1/(∆ + 1) fraction of the
trivial upper bound. They then used this “large optimal property” to analyze a dimension
reduction algorithm for maximum weighted matching; see Section 3.2.3.
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We observe that the asymmetric ratio α(G) in Definition 5.2.1 can play the same role
as ∆ to establish the large optimal property for the maximum weighted Eulerian subgraph
problems in Claim 5.5.3. The proof uses the following characterization of asymmetric ratio
by Hoffman (see also [EMPS16, Theorem 2.3]), restated using our terminologies.

Lemma 5.5.4 (Hoffman’s Circulation Lemma). Let G = (V,E,w) be a directed graph.
Then G has asymmetric ratio at most α if and only if there exists an Eulerian reweighting
A of G such that∑

v:uv∈E

A(u, v) =
∑

v:vu∈E

A(v, u) ∀u ∈ V and w(uv) ≤ A(u, v) ≤ α · w(uv) ∀uv ∈ E.

The large optimal property in terms of asymmetric ratio is a simple consequence of
Hoffman’s circulation lemma.

Lemma 5.5.5 (Large Optimal Property). Given a directed graph G = (V,E) and an em-
bedding f : V → Rn, let νv∗f (G) and νe∗f (G) be the objective values of the inner maximization
problem in Proposition 5.4.1 and Proposition 5.4.2 respectively. Then

νv∗f (G) ≥ 1

2∆ · α(G)
∑
uv∈E

wπ(uv) · ∥f(u)− f(v)∥2

and

νe∗f (G) ≥ 1

2α(G)

∑
uv∈E

w(uv) · ∥f(u)− f(v)∥2 .

Proof. First, consider νe∗f (G) in Proposition 5.4.2 with weight function w : E → R≥0.
Let A be an Eulerian reweighting of G with weight function w given in Lemma 5.5.4.
As w(uv) ≤ A(u, v) ≤ α(G) · w(uv) for uv ∈ E, the scaled-down subgraph A/α(G)
satisfies the edge capacity constraints and is a feasible solution to the inner maximiza-
tion problem in Proposition 5.4.2, with objective value 1

2

∑
uv∈E

A(u,v)
α(G)

· ∥f(u)− f(v)∥2 ≥
1

2α(G)

∑
uv∈E w(uv) · ∥f(u)− f(v)∥

2.

Similarly, consider νv∗f (G) in Proposition 5.4.1 with weight function π : V → R≥0 and in-
duced function wπ : E → R≥0. Let A be an Eulerian reweighting of G with weight function
wπ given in Lemma 5.5.4. For each vertex u, the weighted degree is

∑
v:uv∈E A(u, v) ≤ α(G)·∑

v:uv∈E wπ(uv) ≤ α(G)·∆·π(u). Therefore, scaling down A by a factor of ∆·α(G) satisfies
the vertex capacity constraints and is a feasible solution to the inner maximization problem
of Proposition 5.4.1, with objective value 1

2∆·α(G)

∑
uv∈E wπ(uv) · ∥f(u)− f(v)∥

2.

We will use Lemma 5.5.5 in the analysis of the dimension reduction step in the next
subsection.
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5.6 Dimension Reduction

The goal of this section is to obtain a good low-dimensional solution to the semidefinite
programs in Proposition 5.4.1 and Proposition 5.4.2.

Definition 5.6.1 (Low-Dimensional Solutions to Semidefinite Programs). Define

λ⃗(k)v (G) := min
f :V→Rk

max
A≥0

1

2

∑
uv∈E

A(u, v) · ∥f(u)− f(v)∥2

to be the objective value of the SDP in Proposition 5.4.1 when restricting f to be a k-
dimensional embedding and subjecting to the same constraints.

Define λ⃗
(k)
e (G) similarly as the objective value of the SDP in Proposition 5.4.2 when

restricting f to be a k-dimensional embedding subjecting to the same constraints.

The main result that we will prove in this subsection is that there is a good 1-
dimensional solution when the asymmetric ratio of the graph is small.

Theorem 5.6.2 (One Dimensional Solutions to Semidefinite Programs). Let λ⃗
(k)
v (G) and

λ⃗
(k)
e (G) be as defined in Definition 5.6.1. Then

λ⃗(1)v (G) ≲ log
(
∆ · α(G)

)
· λ⃗v∗2 (G) and λ⃗(1)e (G) ≲ logα(G) · λ⃗e∗2 (G).

Remark 5.6.3. Using the tight example in Section 4.8 for undirected vertex expansion and
a standard reduction from undirected vertex expansion to directed edge conductance, we can
show that the second inequality in Theorem 5.6.2 is tight up to a constant factor. However,
as this example has large maximum degree, we cannot conclude that the first inequality in
Theorem 5.6.2 is also tight.

5.6.1 Previous Work

For undirected vertex expansion, there are two different proofs of an analogous dimension
reduction result with a factor of log∆ loss. One is the proof presented in Section 4.3.2,
and the other is by Jain, Pham, and Vuong [JPV22], reviewed in Section 3.2.3.

In Section 4.3.2, the approach was to first construct the dual SDP of λ∗2(G), where the
objective function is of the form minf :V→Rn

∑
v∈V π(v) · maxu:uv∈E ∥f(u)− f(v)∥2. Since

each maximum is over at most ∆ terms, one can use the analysis of the Gaussian projection
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method in [LRV13] to directly project f to a 1-dimensional solution, and prove that the
expected maximum is at most a factor of O(log∆) larger using properties of Gaussian ran-

dom variables. For the semidefinite programs for λ⃗v∗2 (G) and λ⃗e∗2 (G), however, the objective
function of the dual SDP is of the form minf :V→Rn

∑
v∈V π(v)·maxu:uv∈E

(
∥f(u)− f(v)∥2−

r(u) + r(v)
)
where r(u) is a real number (see Lemma 5.7.5 for the 1-dimensional version).

Since the contribution of −r(u) + r(v) could be negative, the same approach of projecting
f does not work anymore.4

Instead, we will follow the two-step approach of projecting the (primal) SDP solution
in [JPV22]. In the first step, the n-dimensional solution to λ∗2(G) is projected to a O(log∆)-
dimensional solution, while the objective value only increases by a constant factor. Then
the O(log∆)-dimension solution is reduced to a 1-dimension solution, by choosing the best
coordinate and losing a factor of O(log∆) as in [OZ22]. See Section 3.2.3 for details.

To analyze the first step, they proved Theorem 3.2.14 for maximum weighted matchings.
We observe that their proof only needs the large optimal property of maximum matching
as discussed in Section 5.5.2, but not any other property specific to matchings, and so it
also works for maximum weighted Eulerian subgraphs in our problems with Lemma 5.5.5
about their large optimal property in place.

5.6.2 Random Projection

The arguments in this subsection are essentially the same as in [JPV22]. We cannot directly
use their theorem as a black box and so we reproduce their arguments here. We will use the
standard Gaussian projection algorithm as defined in Definition 3.1.7 when deriving the
higher-order Cheeger inequalities. The main technical result is the following adaptation of
Theorem 3.2.14 concerning dimension reduction for maximum matchings in [JPV22].

Theorem 5.6.4 (Dimension Reduction for Maximum Weighted Eulerian Subgraphs). Let

λ⃗
(k)
v (G) and λ⃗

(k)
e (G) be as defined in Definition 5.6.1. There exists a constant C such that

λ⃗

(
C·log(∆·α(G))

)
v (G) ≲ λ⃗v∗2 (G) and λ⃗

(
C·logα(G)

)
e (G) ≲ λ⃗e∗2 (G).

Proof. The proofs of the two inequalities are essentially the same, and we explain the proof
of the second inequality here.

4We have an example showing that the random projection algorithm in Section 4.3.2 will lose a factor
of logα(G), even when the maximum degree is constant.
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Let G = (V,E) be a directed graph and f : V → Rn be an optimal embedding of

the vertices in G such that νe∗f (G) = λ⃗e∗2 (G). Let f̄ : V → Rk be obtained from f via

Gaussian projection. We would like to use f̄ as a solution to λ⃗
(k)
e (G). First, note that f̄ is

obtained by applying a (random) linear operator to f , and so the
∑

v∈V degw(v) · f(v) = 0
constraint in the SDP in Proposition 5.4.2 is also satisfied by f̄ . But the normaliza-

tion constraint
∑

v∈V degw(v) ·
∥∥f̄(v)∥∥2 = 1 may not be satisfied, and the objective value

νe∗
f̄
(G) = maxA≥0

1
2

∑
uv∈E A(u, v) ·

∥∥f̄(u)− f̄(v)∥∥2 may be bigger than νe∗f (G). Our plan
is to prove that

λ⃗(k)e (G) ≤
νe∗
f̄
(G)∑

v∈V degw(v)
∥∥f̄(v)∥∥2 ≲

νe∗f (G)∑
v∈V degw(v) ∥f(v)∥

2 = λ⃗e∗2 (G), (5.2)

when the dimension k ≥ C · logα(G) for some large enough constant C, and this would
imply that a scaled version of f̄ will satisfy the constraint with objective value at most
O
(
λ⃗e∗2 (G)

)
.

The main job is to bound νe∗
f̄
(G), for which we use the arguments in Theorem 3.2.14.

Given f̄ : V → Rk, let B = {uv ∈ E |
∥∥f̄(u)− f̄(v)∥∥2 ≥ e2ε · ∥f(u)− f(v)∥2} be the set

of “bad edges” where the projected length is considerably longer than the original length.
We can bound νe∗

f̄
(G) in terms of the edges in B as follows. For any Eulerian subgraph A

that satisfies the constraints in Proposition 5.4.2, twice its objective value is∑
uv/∈B

A(u, v)
∥∥f̄(u)− f̄(v)∥∥2 + ∑

uv∈B

A(u, v)
∥∥f̄(u)− f̄(v)∥∥2

≤ 4e2ενe∗f (G) +
∑
uv∈B

w(uv)
( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 )

by essentially the same arguments as in Theorem 3.2.14. Since the upper bound on the
last line no longer depends on A, it follows that

Ef̄ [2νe∗f̄ (G)] ≤ 4e2ενe∗f (G) + Ef̄
[ ∑
uv∈B

w(uv)
( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 )]

= 4e2ενe∗f (G) +
∑
uv∈E

w(uv) · Ef̄
[
1Eu,v

( ∥∥f̄(u)− f̄(v)∥∥2 − e2ε ∥f(u)− f(v)∥2 )]
≤ 4e2ενe∗f (G) + e−cε

2k
∑
uv∈E

w(uv) ∥f(u)− f(v)∥2

≤ 4e2ενe∗f (G) + 2e−cε
2k · α(G) · νe∗f (G),
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where the second last inequality is by the second property in Lemma 3.2.13, and the last
inequality is by the large optimal property in Lemma 5.5.5. By choosing some constant
ε ≤ 1/4 and k ≳ 1

cε2
logα(G), it follows that

Ef̄ [νe∗f̄ (G)] ≤ 4
(
e2ε + e−cε

2kα(G)
)
· νe∗f (G) ≲ νe∗f (G).

Finally, the same proof as in Theorem 3.2.14 yields the denominator lower bound that,
using the same choice of ε and k, with probability at least 9/10 we have∑
v∈V

degw(v) ·
∥∥f̄(v)∥∥2 ≥ e−2ε

(
1− 10e−cε

2k
)∑
v∈V

degw(v) ∥f(v)∥
2 ≳

∑
v∈V

degw(v) ∥f(v)∥
2 .

Therefore, (5.2) follows by combining the upper bound on the numerator and this lower
bound on the denominator.

The proof of the first inequality is the same, with degw(v) replaced by π(v), w(uv)
replaced by wπ(uv), and with α(G) in the large optimal property replaced by ∆ · α(G) as
stated in Lemma 5.5.5.

By choosing the best coordinate from a k-dimensional embedding, one can achieve the
following bound. The proof is standard and is omitted; see [OZ22, Proposition 2.9].

Lemma 5.6.5 (One Dimensional Solution from k-Dimensional Solution). Let λ⃗
(k)
v (G) and

λ⃗
(k)
e (G) be as defined in Definition 5.6.1. Then

λ⃗(1)v (G) ≤ k · λ⃗(k)v (G) and λ⃗(1)e (G) ≤ k · λ⃗(k)e (G)

Theorem 5.6.2 follows immediately from Theorem 5.6.4 and Lemma 5.6.5.

5.7 Rounding Algorithms

The main goal in this section is to show how to find a set of small directed vertex expansion
(respectively directed edge conductance) from a solution to λ⃗

(1)
v (G) (respectively λ⃗

(1)
e (G)).

Theorem 5.7.1 (Rounding One Dimensional Solution). For any vertex-weighted directed
graph G = (V,E, π),

ψ⃗(G) ≲
√
λ⃗
(1)
v (G).

For any edge-weighted directed graph G = (V,E,w),

ϕ⃗(S) ≲
√
λ⃗
(1)
e (G).
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Assuming Theorem 5.7.1, we can complete the proofs of the two main results.

Proof of Theorem 5.1.4 and Theorem 5.1.8. The easy directions are proved in Proposi-
tion 5.3.1 and Proposition 5.3.2. For the hard directions, first we solve the semidefinite
programs for λ⃗v∗2 (G) in Proposition 5.4.1 and λ⃗e∗2 (G) in Proposition 5.4.2. Then, we use
the dimension reduction result in Theorem 5.6.2 to obtain 1-dimensional solutions to the
semidefinite programs with λ⃗

(1)
v (G) ≲ log(∆·α(G))·λ⃗v∗2 (G) and λ⃗

(1)
e (G) ≲ logα(G)·λ⃗e∗2 (G).

Then, we apply the rounding result in Theorem 5.7.1 to establish that

ψ⃗(G) ≲
√
log(∆ · α(G)) · λ⃗v∗2 (G) and ϕ⃗(G) ≲

√
logα(G) · λ⃗e∗2 (G). (5.3)

Finally, we use the inequality α(G) ≲ ∆/ψ⃗(G) in Lemma 5.5.2 and α(G) ≤ 1/ϕ⃗(G) in
Lemma 5.5.1 to obtain the final forms in Theorem 5.1.4 and Theorem 5.1.8.

We remark that all the steps in the proofs of the two main results can be implemented
in polynomial time, and so these give efficient “spectral” algorithms to find a set of small
directed vertex expansion or small directed edge conductance.

5.7.1 Proof Structure and Auxiliary Programs

Again, we follow the two-step proof structure in Theorem 3.1.1. We first obtain a solution
to the following ℓ1 versions of λ⃗

(1)
v and λ⃗

(1)
e .

Definition 5.7.2 (ℓ1 Version of λ⃗
(1)
v ). Given a directed graph G = (V,E) with vertex

weights π : V → R+, let

ηv(G) := min
f :V→R

max
A≥0

1

2

∑
uv∈E

A(u, v) · |f(u)− f(v)|

subject to A(u, v) = 0 ∀uv ̸∈ E∑
u∈V

A(u, v) =
∑
u∈V

A(v, u) ∀v ∈ V∑
u∈V

A(u, v) = π(v) ∀v ∈ V∑
v∈V

π(v)f(v) = 0∑
v∈V

π(v)|f(v)| = 1.
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Definition 5.7.3 (ℓ1 Version of λ⃗
(1)
e ). Given a weighted directed graph G = (V,E,w), let

ηe(G) := min
f :V→R

max
A≥0

1

2

∑
uv∈E

A(u, v) · |f(u)− f(v)|

subject to A(u, v) = 0 ∀uv ̸∈ E∑
v∈V

A(u, v) =
∑
v∈V

A(v, u) ∀u ∈ V

A(u, u) ≤ w(uv) ∀uv ∈ E∑
v∈V

degw(v)f(v) = 0∑
v∈V

degw(v)|f(v)| = 1.

We will prove in Section 5.7.2 that there is a square root loss by going from ℓ22 to ℓ1.

Proposition 5.7.4 (Reductions from ℓ22 to ℓ1). For any vertex-weighted directed graph
G = (V,E, π),

ηv(G) ≲
√
λ⃗
(1)
v (G).

For any edge-weighted directed graph G = (V,E,w),

ηe(G) ≲
√
λ⃗
(1)
e (G).

For threshold rounding, we construct the duals of ηv(G) and ηe(G) using linear pro-
gramming duality in the inner maximization problems.

Lemma 5.7.5 (Dual Program of ηv(G)). Given a vertex-weighted directed graph G =
(V,E, π), let

ξv(G) := min
f :V→R

min
q:V→R≥0

r:V→R

∑
v∈V

π(v)q(v)

subject to q(v) ≥ |f(u)− f(v)| − r(u) + r(v) ∀uv ∈ E∑
v∈V

π(v)f(v) = 0∑
v∈V

π(v)|f(v)| = 1.

Then ξv(G) = 2ηv(G).
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Proof. To write the dual program, we consider the equivalent program of λ⃗
(1)
v (G), where we

remove the self-loops and replace the constraint
∑

v∈V A(v, u) = π(u) by
∑

v∈V A(v, u) ≤
π(u). Then we multiply the objective of ηv(G) by a factor of 2 (to avoid the factor 1/2 carry-
ing around). Then we associate a dual variable q(u) ≥ 0 to each constraint

∑
v∈V A(v, u) ≤

π(u), and a dual variable r(u) to each constraint
∑

v∈V A(u, v) =
∑

v∈V A(v, u). The result
follows from standard linear programming duality.

The dual program of ηe(G) is constructed in the same way and the proof is omitted.

Lemma 5.7.6 (Dual Program of ηe(G)). Given an edge-weighted directed graph G =
(V,E,w), let

ξe(G) := min
f :V→R

min
q:E→R≥0

r:V→R

∑
uv∈E

w(uv)q(uv)

subject to q(uv) ≥ |f(u)− f(v)| − r(u) + r(v) ∀uv ∈ E∑
v∈V

degw(v)f(v) = 0∑
v∈V

degw(v)|f(v)| = 1.

Then ξe(G) = 2ηe(G).

In Section 5.7.3, we will present a threshold rounding algorithm to return a set of small
directed vertex expansion (respectively directed edge conductance) from a solution to ξv(G)
(respectively ξe(G)), with only a constant factor loss.

Proposition 5.7.7 (Threshold Rounding). For any vertex-weighted directed graph G =
(V,E, π),

ψ⃗(G) ≲ ξv(G).

For any edge-weighted directed graph G = (V,E,w),

ϕ⃗(G) ≲ ξe(G).

Note that Theorem 5.7.1 follows immediately from Proposition 5.7.4 and Proposi-
tion 5.7.7, so it remains to prove the two propositions in Section 5.7.2 and Section 5.7.3.
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5.7.2 Step 1 (ℓ22 to ℓ1)

We first prove the first inequality in Proposition 5.7.4 about directed vertex expansion.
Let G = (V,E) be a directed graph with vertex measure π : V → R+. Let f : V → R be a

solution to λ⃗
(1)
v (G) with objective value λf , with A being an optimal solution to the inner

maximization problem (which can be computed by linear programming). Our goal is to
construct a solution to ηv(G) in Definition 5.7.2 with objective value O

(√
λf
)
.

To this end, define h : V → R by

h(u) :=

{
(f(u)− c)2 if f(u) > c

−(f(u)− c)2 otherwise ,

where c ∈ R is chosen so as to satisfy the constraint
∑

v∈V π(v)h(v) = 0 in Definition 5.7.2.
Note that such c exists and is unique.

Using
∑

v∈V π(u)f(u) = 0, it follows that∑
v∈V

π(v)|h(v)| =
∑
v∈V

π(v)(f(v)− c)2 ≥
∑
v∈V

π(v)f(v)2 = 1, (5.4)

and later we shall scale down h to satisfy the constraint
∑

v∈V π(v)|h(v)| = 1.5 Now we
bound the objective value of the ℓ1 program in Definition 5.7.2 using g as a solution. Let
B be an optimal solution to the inner maximization problem in Definition 5.7.2 after fixing
g. Note that (3.2) in Theorem 3.1.1 holds for any c ∈ R, and so in our case it gives the
inequality |h(u) − h(v)| ≤ |f(u) − f(v)|(|f(u) − c| + |f(v) − c|) for all u, v ∈ V . The

5Compared to the original proof in [LTW23], here we do not need to show that
∑

v∈V π(v)|h(v)| ≤ 2.
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objective value to the ℓ1 program is then

1

2

∑
uv∈E

B(u, v) · |h(u)− h(v)|

≤ 1

2

∑
uv∈E

B(u, v)|f(u)− f(v)|(|f(u)− c|+ |f(v)− c|)

(∗)
≤ 1

2

√∑
uv∈E

B(u, v) · (f(u)− f(v))2 · 2
∑
uv∈E

B(u, v)((f(u)− c)2 + (f(v)− c)2)

=

√∑
uv∈E

B(u, v)(f(u)− f(v))2 ·
√

1

2

∑
v∈V

(f(v)− c)2 ·
( ∑
u:uv∈E

B(u, v) +
∑

u:vu∈E

B(v, u)
)

≤
√∑

uv∈E

A(u, v)(f(u)− f(v))2 ·
√∑

u∈V

π(v)(f(v)− c)2,

where the step (∗) uses Cauchy-Schwarz inequality and (a+ b)2 ≤ 2(a2 + b2), and the last
inequality uses the optimality of A to the inner maximization problem for f . Dividing
both sides by

∑
v∈V π(v)|h(v)| and using (5.4) from above, we obtain∑

uv∈E B(u, v)|h(u)− h(v)|∑
v∈V π(v)|h(v)|

≲
√
λf ,

and so a scaled-down version of h would be a feasible solution to ηv(G) with objective value
O(
√
λf ).

The proof of the second inequality about directed edge conductance is essentially the
same (with π(v) replaced by degw(v)) and is omitted.

5.7.3 Step 2 (Threshold Rounding)

Finally, we prove Proposition 5.7.7. Again, we first prove the first inequality in Proposi-
tion 5.7.7 about directed vertex expansion. Let G = (V,E, π) be a vertex-weighted directed
graph. Let (f, q, r) be a feasible solution to ξv(G) in Lemma 5.7.5 with objective value ξf .
Our goal is to construct a nonempty set S ⊂ V with ψ(S) ≲ ξf using threshold rounding.

In previous threshold rounding algorithms for Cheeger-type inequalities, only the em-
bedding function f : V → R is used to produce the output set, so in particular only one
ordering of the vertices is considered. The new twist in our algorithm is that we would
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consider a few candidate orderings of the vertices. These orderings will all ensure that the
threshold rounding would produce a set with small expected directed vertex boundary, and
we will choose the one that gives large expected set size. To this end, define the following
four functions:

• g1(u) := max{0, f(u) + r(u)− c1}

• g2(u) := max{0, f(u)− r(u)− c2}

• g3(u) := max{0,−f(u) + r(u) + c2}

• g4(u) := max{0,−f(u)− r(u) + c1},

where c1 is a π-weighted median of f(u) + r(u), so that

max(π(supp(g1)), π(supp(g4))) ≤ π(V )/2.

Similarly, c2 is a π-weighted median of f(u)− r(u), so that

max(π(supp(g2)), π(supp(g3))) ≤ π(V )/2.

Numerator: We bound the size of the outer boundary of either St or S
c
t for uniformly

random t, depending on whether the coefficient of r(u) is −1 or +1 in the function gi.

On the one hand, if we consider g1 (similar for g3), then we would bound the expected
outer boundary size of Sct as:∫ ∞

0

π(∂+(Sct )) dt =
∑
v∈V

π(v)

∫ ∞

0

1[v ∈ ∂+(Sct )] dt

=
∑
v∈V

π(v)

∫ ∞

0

1[∃u with uv ∈ E and g1(u) ≤ t < g1(v)] dt

=
∑
v∈V

π(v) max
u:uv∈E

{g1(v)− g1(u)}

≤
∑
v∈V

π(v) max
u:uv∈E

{(f(v) + r(v))− (f(u) + r(u))}

≤
∑
v∈V

π(v) max
u:uv∈E

{|f(u)− f(v)|+ r(v)− r(u)}

≤
∑
v∈V

π(v)q(v).
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On the other hand, if we consider the function g2 (similar for g4), then we bound the
expected outer boundary size of St as∫ ∞

0

π(∂+(St)) dt =
∑
v

π(v)

∫ ∞

0

1[v ∈ ∂+(St)] dt

=
∑
v∈V

π(v)

∫ ∞

0

1[∃u with uv ∈ E and g2(v) ≤ t < g2(u)] dt

=
∑
v∈V

π(v) max
u:uv∈E

{g2(u)− g2(v)}

≤
∑
v∈V

π(v) max
u:uv∈E

{(f(u)− r(u))− (f(v)− r(v))}

≤
∑
v∈V

π(v) max
u:uv∈E

{|f(v)− f(u)|+ r(v)− r(u)}

≤
∑
v∈V

π(v) · q(v).

To summarize, when we do threshold rounding with respect to any of g1, g2, g3, g4, it holds
that ∫ ∞

0

min
{
π(∂+(St)), π(∂

+(Sct ))
}
dt ≤

∑
v∈V

π(v)q(v).

Denominator: For the function gi, the expected size of St is given by∫ ∞

0

π(St) dt =
∑
u∈V

π(u)

∫ ∞

0

1[gi(u) > t] dt =
∑
u∈V

π(u) · gi(u).

Therefore, our goal is to show that there exists 1 ≤ i ≤ 4 with
∑

u∈V π(u)gi(u) ≥ Ω(1).
To do so, we will show that

4∑
i=1

∑
u∈V

π(u) · gi(u) ≥ Ω(1).

Note that, for any u ∈ V ,

g1(u)+g4(u) = max{0, f(u)+r(u)−c1}+max{0,−f(u)−r(u)+c1} = |(f(u)+r(u))−c1|,

and

g2(u)+g3(u) = max{0, f(u)−r(u)−c2}+max{0,−f(u)+r(u)+c2} = |(f(u)−r(u))−c2|.
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Thus it suffices to show that∑
u∈V

π(u)
(∣∣(f(u) + r(u))− c1

∣∣+ ∣∣(f(u)− r(u))− c2∣∣) ≥ 1

2
.

To this end, we note that either
∑

u∈V π(u)|f(u)+r(u)| ≥ 1 or
∑

u∈V π(u)|f(u)−r(u)| ≥ 1,
because∑

u∈V

π(u) (|f(u) + r(u)|+ |f(u)− r(u)|) =
∑
u∈V

π(u) · 2max(|f(u)|, |r(u)|)

≥ 2
∑
u∈V

π(u)|f(u)| = 2.

Assume without loss that
∑

u∈V π(u)r(u) = 0 (as we can shift every r(u) by the same
amount without changing anything). Then both∑

u∈V

π(u)(f(u) + r(u)) = 0 and
∑
u∈V

π(u)(f(u)− r(u)) = 0.

Consider first the case where
∑

u∈V π(u)|f(u)+r(u)| ≥ 1; the other case is treated similarly.
Then, since

∑
u∈V π(u)(f(u) + r(u)) = 0 and

∑
u∈V π(u)|f(u) + r(u)| ≥ 1, it follows that∑

u:f(u)+r(u)≤0

π(u)|f(u)+r(u)| =
∑

u:f(u)+r(u)≥0

π(u)|f(u)+r(u)| = 1

2

∑
u

π(u)|f(u)+r(u)| ≥ 1

2
.

If c1 ≥ 0, then∑
u∈V

π(u)|(f(u) + r(u))− c1| ≥
∑

u:f(u)+r(u)≤0

π(u)|(f(u) + r(u))− c1|

≥
∑

u:f(u)+r(u)≤0

π(u)|f(u) + r(u)| ≥ 1

2
,

and similarly if c1 < 0, then∑
u∈V

π(u)|(f(u) + r(u))− c1| ≥
∑

u:f(u)+r(u)≥0

π(u)|(f(u) + r(u))− c1|

≥
∑

u:f(u)+r(u)≥0

π(u)|f(u) + r(u)| ≥ 1

2
.
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To summarize,

4∑
i=1

∑
u∈V

π(u)gi(u) =
∑
u∈V

π(u)
(∣∣(f(u) + r(u))− c1

∣∣+ ∣∣(f(u)− r(u))− c2∣∣) ≥ 1

2
.

Conclusion: There exists g = gi for some 1 ≤ i ≤ 4, such that if we use this function
for threshold rounding,

•
∫∞
0

min
{
π(∂+(St)), π(∂

+(Sct ))
}
dt ≤

∑
v∈V π(v)q(v) = ξf ;

•
∫∞
0
π(St) dt ≥ 1/8;

• π(St) ≤ π(V )/2 always.

Hence, we can return some S = St, whence 0 < π(S) ≤ π(V )/2 and

ψ⃗(S) =
min

{
π(∂+(S)), π(∂+(Sc))

}
min

{
π(S), π(Sc)

} =
min(π(∂+(S)), π(∂+(Sc)))

π(S)
≤ 8ξf .

The proof of the second inequality about directed edge conductance is the same (af-
ter replacing the numerator

∑
v∈V π(v)q(v) by

∑
uv∈E w(uv)q(uv) and the denominator∑

v∈V π(v)|f(v)| by
∑

v∈V degw(v)|f(v)|) and is omitted.

5.8 Fastest Mixing Time

The goal of this section is to prove Theorem 5.1.6 that

1

ψ⃗(G)
≲ τ ∗mix(G) ≲

1

ψ⃗(G)2
· log ∆

ψ⃗(G)
· log 1

πmin

.

There are two parts to the proof. In the first part, we upper bound the fastest mixing
time using Theorem 3.3.2 by Fill [Fil91] and Chung [Chu05]. In the second part, we lower
bound the fastest mixing time using a combinatorial argument.
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Proof of Theorem 5.1.6. Recall that in the setting of the theorem, π is not only a weight
function, but a probability distribution. We assume the graph is strongly connected and
so λ⃗v∗2 (G) > 0.

To prove the upper bound, we apply Theorem 3.3.2 to prove that

τ ∗mix(G) ≲
(
λ⃗v∗2 (G)

)−1 · log(π−1
min),

and then the result will follow from Theorem 5.1.4. Let A be an optimal reweighted Eule-
rian subgraph in Definition 5.1.3. Let P := Π−1A be the transition matrix of the ordinary
random walk corresponding to the reweighted subgraph A. Observe that P := Π−1A is a
feasible solution to Definition 5.1.5, and so is (I + P )/2. Therefore, by Theorem 3.3.2,

τ ∗mix(G) ≤ τmix

(I + P

2

)
≲

1

λ2(L̃(G))
· log

( 1

πmin

)
=

1

λ⃗v∗2 (G)
· log

( 1

πmin

)
,

where the last inequality is because L̃(G) = I − Π− 1
2 (A + AT )Π− 1

2/2 as defined in (3.8)

and λ2(L̃(G)) = λ⃗v∗2 (G) by Definition 5.1.1.

To prove the lower bound, we will prove that for any feasible solution P to Defini-
tion 5.1.5,

1

ψ⃗(G)
≲ τmix(P ),

which immediately implies the result. This argument is similar to that in [LP17, Theorem
7.4] which lower bounds mixing time using graph conductance. For the argument to work,

it is essential that the definition of ψ⃗(G) accounts for the minimum of outgoing vertex
boundary and incoming vertex boundary. For any such P , consider the graph with arc
weights A(u, v) = π(u)P (u, v). Then,∑

u∈V

π(u)P (u, v) = π(v) =
∑
u∈V

π(v)P (v, u) =⇒
∑
u∈V

A(u, v) =
∑
u∈V

A(v, u),

so that A is Eulerian. Consider a nonempty subset S ⊂ V such that ψ⃗(S) = ψ⃗(G). We
will use S to define an initial distribution p0 : V → R≥0 such that

dTV (pt, π) =
1

2

∑
v∈V

|pt(v)− π(v)| >
1

e

for any t ≤ 1/(8ψ⃗(S)), and it will follow that τmix(P ) > 1/(8ψ⃗(S)). Here, pTt = pT0 P
t is the

distribution after t steps. Without loss of generality assume that π(S) ≤ 1/2. We define

p0(u) =

{
π(u)/π(S), if u ∈ S;
0, otherwise.
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By induction, we can show that pt(v) ≤ π(v)/π(S) for all t ≥ 0; indeed, for any v ∈ V ,

pt+1(v) =
∑
u∈V

pt(u) · P (u, v) ≤
∑
u∈V

π(u)

π(S)
· P (u, v) = π(v)

π(S)
. (5.5)

There are two cases to consider.

1. π(∂+(S)) ≤ π(∂+(Sc)). In this case, we will show that pt(S) ≥ 1 − t · ψ⃗(S) for all
t ≥ 0. Indeed by (5.5), at step t + 1, the total amount of probability mass escaping
from S is at most ∑

v∈∂+(S)

pt(v) ≤
π(∂+(S))

π(S)
= ψ⃗(S).

Hence, for any t ≤ 1/(8ψ⃗(S)), we have pt(S) ≥ 7
8
and pt(S

c) ≤ 1
8
, so

dTV (pt, π) ≥
1

2

(
|pt(Sc)− π(Sc)|+ |pt(S)− π(S)|

)
≥ 3

8
>

1

e
.

2. π(∂+(S)) > π(∂+(Sc)). We will again show that pt(S) ≥ 1− t · ψ⃗(S) for all t ≥ 0. By
(5.5) and using the Eulerian property of A = ΠP , the total amount of probability
mass escaping from S is at most∑

u∈S

∑
v∈Sc

pt(u)P (u, v) ≤
1

π(S)

∑
u∈S

∑
v∈Sc

π(u)P (u, v) =
1

π(S)

∑
u∈S

∑
v∈Sc

π(v)P (v, u)

=
1

π(S)

∑
u∈∂+(Sc)

∑
v∈Sc

π(v)P (v, u) ≤ π(∂+(Sc))

π(S)
= ψ⃗(S).

By the same reasoning as in the first case, for t ≤ 1/(8ψ⃗(S)) we have

dTV (pt, π) ≥
3

8
>

1

e
.

This completes the proof of the lower bound and hence Theorem 5.1.6.

5.9 Relations with Previous Work

In this section, we show some examples where the Cheeger constant [Fil91, Chu05] is very
different from directed edge conductance and directed vertex expansion, and relate the
semidefinite program in [ACMM05] to the one for reweighted eigenvalue in Definition 5.1.7.
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5.9.1 Cheeger Constant, Edge Conductance, and Vertex Expan-
sion

We show two examples. In the first example, the Cheeger constant in (3.9) in Section 3.3.1
is large while the directed edge conductance and directed vertex expansion is small.

Example 5.9.1 (Large Cheeger Constant but Small Edge Conductance and Vertex Ex-
pansion). Consider the directed graph shown in the figure. Both L and R are cliques of
size n. There is an arc from every vertex in L to every vertex in R. There is an arc (r, l)
from a special vertex r ∈ R to a special vertex l ∈ L.

When the graph G has the same weight on each arc and the same weight on each vertex,
it is clear that ϕ⃗(G) ≤ 1/n2 and ψ⃗(G) ≤ 1/n as there is only one arc from R to L.

We claim that the Cheeger constant h(G) in (3.9) is Ω(1). The reason is that the
Cheeger constant is normalized by the probabilities in the stationary distribution π, and
this will make L to have small π-weight and so both h(L) and h(R) become big after the
normalization. More precisely, after some calculations that are omitted, we have π(v) ≈
1/n for every vertex v ∈ R, π(u) ≈ 1/n3 for every vertex u ∈ L − {l}, and π(l) ≈ 1/n2.
This implies that h(L) = h(R) = Ω(1), and indeed h(G) = Ω(1) after a case analysis which
we omit.

This example shows that the edge conductance of the reweighted subgraph with respect
to the stationary distribution does not provide a good approximation to directed edge
conductance and directed vertex expansion, while an optimal reweighted subgraph does
identify the bottlenecks in the directed graph.

In the second example, the k-way Cheeger constant is large but the k-way directed edge
conductance is small.
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Example 5.9.2 (Large k-Way Cheeger Constant but Small k-Way Edge Conductance).
Let G be a directed cycle over the vertex set [n]. For each i ∈ {2, 3, ...n−2} we add an extra
edge (i, n). The figure of the graph is shown with the stationary distribution of the ordinary

random walk on the graph where every edge has the same weight. In this example, the k-
way directed edge conductance is k/n, but the graph has Cheeger constant Ω(1) because the
vertices {2, 3, ...n− 1} have exponentially decreasing stationary weight.

Since large Cheeger constant implies large λ2(L̃) implies large λk(L̃) (L̃ is the Laplacian
defined by Chung in (3.8)), this example shows that λk(L̃) is large but the k-way directed
edge conductance is small. This rules out the possibility of having a higher-order Cheeger
inequality for directed graphs relating λk(L̃) to k-way directed edge conductance.

5.9.2 Semidefinite Program for Directed Sparsest Cut

We compare the semidefinite program for λ⃗e∗2 (G) in Proposition 5.4.2 with the semidefinite
program for the directed sparsest cut probelm in [ACMM05]. Given an unweighted directed
graph G = (V,E), the directed sparsest cut problem is defined as

φ⃗(G) := min
S⊆V

min
{
|δ+(S)|, |δ+(Sc)|

}
min{|S|, |Sc|}

.

Agarwal, Charikar, Makarychev, and Makarychev [ACMM05] gave a semidefinite program
relaxation sdp∆(G) for φ⃗(G) and proved that sdp∆(G) ≲ φ⃗(G) ≲

√
log n · sdp∆(G); see

Section 3.6.3.
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We note that sdp∆(G) in (3.20) can be modified slightly to give a similar approxima-

tion to the directed edge conductance ϕ⃗(G) in Definition 5.1.2. Consider the semidefinite
program sdp∆

ϕ⃗
(G) defined as

min
f :V ∪{0}→Rn

∑
uv∈E

(
∥f(u)− f(v)∥2 − ∥f(u)− f(0)∥2 + ∥f(v)− f(0)∥2

)
subject to ∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 ∀u, v, u′ ∈ V ∪ {0}∑

v∈V

deg(v)f(v) = 0⃗∑
v∈V

deg(v) ∥f(v)∥2 = 1,

Note that by Fact 2.10.4, the normalization constraint in (3.20) that∑
u,v∈V

∥f(u)− f(v)∥2 = n2

is equivalent to the constraints∑
u∈V

f(u) = 0⃗,
∑
u∈V

∥f(u)∥2 = n

2

since the remainder of the program is invariant under the translation f(u) 7→ f(u) + ζ for
any vector ζ ∈ Rn. After that, the only difference between sdp∆(G) and sdp∆

ϕ⃗
(G) is that the

scaling of f(v) by deg(v) (instead of 1 for sdpφ), which corresponds to the degree weights in
the denominator of the directed edge conductance in Definition 5.1.2. We note that a simple
modification of the proof in [ACMM05] shows that sdp∆

ϕ⃗
(G) ≲ ϕ⃗(G) ≲

√
log n · sdp∆

ϕ⃗
(G). 6

To our knowledge, it was not known that sdp∆
ϕ⃗
(G) can be used to certify whether a

directed graph has constant edge conductance as in Theorem 5.1.8, as the analysis using
ℓ22 triangle inequalities based on [ARV09] has a

√
log n factor loss. However, we observe

that the semidefinite program in Proposition 5.4.2 for λ⃗e∗2 (G) is a weaker program than
sdp∆

ϕ⃗
(G).

Claim 5.9.3 (λ⃗e∗2 (G) and sdp∆
ϕ⃗
(G)). For any directed graph G = (V,E), it holds that

λ⃗e∗2 (G) ≤ sdp∆
ϕ⃗
(G).

6In fact, using a weighted version of the ARV structure theorem of Theorem 3.6.2 which we shall
formulate and prove in Lemma 8.3.2, the results of [ACMM05] extend readily to π-weighted edge expansion
on weighted directed graphs G = (V,E,w) for arbitrary vertex measure π.
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Proof. Consider the following equivalent characterization of λ⃗e∗2 (G) by using LP duality in
the inner maximization problem as in Lemma 5.7.6:

λ⃗e∗2 (G) = min
f :V→Rn

min
q:E→R≥0

r:V→R

∑
uv∈E

q(uv)

subject to q(uv) ≥ ∥f(u)− f(v)∥2 − r(u) + r(v) ∀uv ∈ E∑
v∈V

deg(v)f(v) = 0⃗∑
v∈V

deg(v) ∥f(v)∥2 = 1.

We will show that for every feasible solution f : V ∪{0} → Rn to sdp∆
ϕ⃗
(G), there is a feasible

solution f ′ : V → Rn, q : E → R≥0, r : V → R to λ⃗e∗2 (G) with the same objective value.
Then the lemma would follow immediately. To this end, define f ′(v) = f(v) for v ∈ V ,
r(v) = ∥f(v)− f(0)∥2 for v ∈ V and q(uv) = ∥f(u)− f(v)∥2 − r(u) + r(v) for uv ∈ E.
Clearly, the objective values are equal. Also, we see that the constraints q(uv) ≥ 0 are
satisfied because of the ℓ22 triangle inequalities.

Therefore, Theorem 5.1.8 and Claim 5.9.3 imply that

sdp∆
ϕ⃗
(G) ≲ ϕ⃗(G) ≲

√
sdp∆

ϕ⃗
(G) · log 1

ϕ⃗(G)
,

where the “easy direction” sdp∆
ϕ⃗
(G) ≲ ϕ⃗(G) follows because sdp∆

ϕ⃗
(G) is a relaxation of

directed edge conductance ϕ⃗(G). This provides a new analysis that sdp∆
ϕ⃗
(G) can also be

used to certify constant edge conductance in directed graphs.

5.10 Generalizations of Cheeger Inequalities for Di-

rected Graphs

For undirected graphs, there are several interesting generalizations of Cheeger’s inequality:
Trevisan’s result that relates λn to bipartite edge conductance [Tre09], the higher-order
Cheeger’s inequality that relates λk to k-way edge conductance [LOT12, LRTV12], and
the improved Cheeger’s inequality that relates λ2 and λk to edge conductance [KLL+13]
(see Section 3.1). Using reweighted eigenvalues for vertex expansion, close analogs of these
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results were obtained in Chapter 4, relating λ∗n to bipartite vertex expansion, λ∗k to k-way
vertex expansion, and λ∗2 and λ∗k to vertex expansion.

In this section, we study whether there are close analogs of these results for directed
graphs, using reweighted eigenvalues for directed vertex expansion in Definition 5.1.1 and
directed edge conductance in Definition 5.1.2. Perhaps surprisingly, we show that the
natural analogs of Trevisan’s result and higher-order Cheeger’s inequality do not hold, but
we obtain analogs of the improved Cheeger’s inequality for directed vertex expansion and
directed edge conductance.

5.10.1 Higher-Order Cheeger’s Inequality for Directed Graphs

We attempt to develop a theory of higher reweighted eigenvalues for directed graphs and
obtain directed analogues of the higher-order Cheeger inequalities in Section 3.1.3 and
Section 4.5. For a directed graph G = (V,E), we can define λ⃗v∗k (G) and λ⃗e∗k (G) as in
Definition 5.1.1 and Definition 5.1.2, but with the objective function replaced by maximiz-
ing the k-th smallest eigenvalue. It is a basic fact (c.f. Proposition 2.5.6) that, given an
undirected graph G, λk(G) = 0 if and only if G has at least k connected components. The
following is a directed analogue of this basic fact.

Proposition 5.10.1 (Reweighted Eigenvalues and Strongly Connected Components).

• For any directed graph G = (V,E) with weight function w : E → R≥0, then λ⃗
e∗
k (G) =

0 if and only if G has at least k strongly connected components.

• For any directed graph G = (V,E) with weight function π : V → R≥0, then λ⃗
v∗
k (G) =

0 if and only if G has at least k strongly connected components.

Proof. In one direction, assume G has at least k strongly connected components S1, . . . , Sk.
Then, in any Eulerian reweighted subgraph A, we claim that∑

uv∈δ+(Si)

A(u, v) =
∑

uv∈δ−(Si)

A(u, v) = 0

for 1 ≤ i ≤ k. To see this, suppose to the contrary that uv ∈ δ+(Si) and A(u, v) > 0,
then as the edge set of any Eulerian graph can be decomposed into edge disjoint cycles,
there must be a directed cycle C with uv ∈ C, but then Si ∪C ⊇ Si ∪ {v} is also strongly
connected, contradicting that Si is a maximally strongly connected subset. Therefore, in
the underlying undirected graph defined by 1

2
(A+AT ), each Si is a set of conductance zero,

231



and thus λk = 0 by the basic fact. Since this holds for any Eulerian reweighted subgraph
A, it follows that λ⃗v∗k (G) = λ⃗e∗k (G) = 0.

In the other direction, assume G has less than k strongly connected components
S1, . . . , Sℓ for ℓ < k. Then, in each strongly connected component Si, there is an Eu-
lerian reweighting Ai in the induced subgraph of Si such that Si is strongly connected.
(It is not difficult to see this directly, or one can use Hoffman’s result in Lemma 5.5.4.)
So, there is an Eulerian reweighting such that the underlying undirected graph G′ has at
most ℓ < k connected components, and thus λ⃗v∗k (G), λ⃗e∗k (G) ≥ λk(G

′) > 0 by the basic
result.

One might expect that there is a robust generalization of Proposition 5.10.1 relating
λ⃗v∗k (G) and λ⃗e∗k (G) to k-way directed vertex expansion and k-way directed edge conduc-
tance, just as in the case k = 2 in Theorem 5.1.4 and Theorem 5.1.8. But in general, unlike
undirected graphs, it is not true that G has at least k strongly connected components if
and only if G has at least k disjoint subsets S1, . . . , Sk each with directed edge conductance
zero or directed vertex expansion zero. Note the subtlety that this is true for k = 2, as
there is a source component and a sink component with directed edge conductance and
directed vertex expansion zero.

Example 5.10.2 (Counterexample to Higher-Order Cheeger’s Inequality for Directed
Graphs). Consider the complete directed acyclic graph G where the vertex set is [n] and

there is an arc ij for every i < j. On the one hand, λ⃗v∗k (G) = λ⃗e∗k (G) = 0 for every k ≤ n,
as any Eulerian reweighting must have n isolated vertices (with self-loops). On the other
hand, for any k ≥ 3, at least one set has non-zero directed edge conductance. Furthermore,
it can be shown that for k ≥ 2 log2 n, any k disjoint subsets must contain at least one
subset of directed edge conductance at least 1/4. This provides a strong counterexample

that λ⃗e∗k (G) is small but the k-way directed edge conductance ϕ⃗k(G) is large. A similar
argument can be made for the case of directed vertex expansion.

We believe that there is still a robust generalization of Proposition 5.10.1, such that
λ⃗v∗k (G), λ⃗e∗k (G) is small if and only if there are k disjoint subsets where each is “close”
to a strongly connected component. But it is not clear how to formulate closeness to a
strongly connected component, as it is a “global” property that cannot be determined by
only looking at the edges incident to a subset S ⊆ V . On a technical level, we remark
that the proofs in Section 3.1.3 and Section 4.5 can be followed to construct k disjointly-
supported functions f1, . . . , fk from a solution to λ⃗v∗k (G) and λ⃗e∗k (G), such that each fi has

small objective value to λ⃗v∗2 (G) and λ⃗e∗2 (G). However, using the new threshold rounding
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algorithm for λ⃗v∗2 (G) and λ⃗e∗2 (G) based on fi±ri in Section 5.7.3, we can no longer conclude
that there is a subset Si of small directed edge conductance or directed vertex expansion
in the support of fi, as the support of fi ± ri could be very different from that of fi. This
also indirectly shows that the new idea of doing threshold rounding on f ± r is a necessary
modification.

Open Problem 5.10.3. Prove a robust generalization of Proposition 5.10.1.

5.10.2 Bipartite Cheeger Inequality for Directed Graphs

Another basic result in spectral graph theory is Proposition 2.5.7 that λn(G) = 2 if and
only if G has a bipartite component S, or equivalently G has a set S of conductance
zero with the induced subgraph G[S] being bipartite. Trevisan [Tre09] proved a robust
generalization of this basic result, by proving a Cheeger-type inequality that λn(G) is close
to 2 if and only if G has a set S of small conductance with the induced subgraph G[S]
being close to bipartite; see Section 3.1.2.

As in Section 5.10.1, we can use the n-th reweighted eigenvalue to prove an analog
of the basic result for directed graphs. We omit the proof as it is similar to that in
Proposition 5.10.1 and also because it is not used in other results.

Proposition 5.10.4 (Reweighted Eigenvalues and Bipartite Strongly Connected Compo-
nents).

• For any directed graph G = (V,E) with weight function w : E → R≥0, λ⃗
e∗
n (G) = 2 if

and only if G has a strongly connected component S such that the induced subgraph
G[S] is bipartite.

• For any directed graph G = (V,E) with weight function π : V → R≥0, λ⃗
v∗
n (G) = 2 if

and only if G has a strongly connected component S such that the induced subgraph
G[S] is bipartite.

As in Section 5.10.1, the natural analogs of Trevisan’s result for directed graphs are
not true, because the existence of a nearly strongly connected bipartite component does
not imply the existence of a set S of small directed edge conductance or directed vertex
expansion, with the induced subgraph G[S] being close to bipartite.

Example 5.10.5 (Counterexample to Bipartite Cheeger Inequality for Directed Graphs).
Consider the example shown in the figure below. In this directed graph G, |S| = |T | = n
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and |C1| = |C2| = |C3| = |C4| = n/2. Each Ci is a clique, and there is only one edge from
C1 to C2 and only one edge from C3 to C4. The induced subgraph on S ∪ T is a complete
bipartite graph Kn,n. Every vertex in S has an edge to every vertex in C1, and every vertex
in C2 has an edge to every vertex in S. Similarly, every vertex in T has an edge to every
vertex in C3, and every vertex in C4 has an edge to every vertex in T . Every edge in G
has weight one.

On the one hand, because of the bottlenecks from C1 to C2 and from C3 to C4, any
Eulerian reweighing A will have

∑
uv:u∈S,v∈C1

A(u, v) =
∑

uv:u∈C2,v∈S A(u, v) ≤ 1 and∑
uv:u∈T,v∈C3

A(u, v) =
∑

uv:u∈C4,v∈T A(u, v) ≤ 1. Therefore, S ∪ T is an induced bipar-

tite graph with small edge conductance in the underlying undirected graph 1
2
(A+AT ), and

one can use the easy direction of Trevisan’s result to show that λ⃗e∗n (G) ≥ 2−O(1/n2). On
the other hand, S∪T has large directed edge conductance, and any subset with small directed
edge conductance must be far from bipartite because of the edges induced in Ci. We could
formally define directed bipartite edge conductance ϕ⃗B(G) and show that ϕ⃗B(G) = Ω(1) is
large, but we decide to omit these details. To summarize, this gives a strong counterex-
ample where λ⃗e∗n (G) is very close to 2 but there does not exist any subset S with small
directed edge conductance and the induced subgraph G[S] being close to bipartite. A similar
argument can be made for the case of directed vertex expansion.

As in Section 5.10.1, we believe that there is a robust generalization of Proposition 5.10.4
that λ⃗e∗n (G) and λ⃗e∗n (G) are close to 2 if and only if G has a nearly bipartite strongly
connected component. We leave it as an open problem to formulate the combinatorial
condition and to prove such a Cheeger-type inequality.

Open Problem 5.10.6. Formulate and prove a Cheeger-type inequality relating λ⃗e∗n (G)

and λ⃗e∗n (G) to a combinatorial quantity of a directed graph G.
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5.10.3 Improved Cheeger Inequality for Directed Graphs

Unlike the higher-order and bipartite Cheeger inequalities, we can extend the improved
Cheeger inequality [KLL+13] to directed graphs, as this is only about 2-way partitioning
(recall the discussion above Example 5.10.2). This potentially can also be used to explain
the good empirical performance of the spectral algorithm in Theorem 5.1.8.

Theorem 5.10.7 (Improved Cheeger’s inequality for Directed Vertex Expansion). Let
G = (V,E, π) be a vertex-weighted directed graph. For any 2 ≤ k ≤ n/2,

λ⃗v∗2 (G) ≲ ψ⃗(G) ≲
k · log(∆ · α(G)) · λ⃗v∗2 (G)√

λ⃗v∗k (G)
≲
k · log(∆/ψ⃗(G)) · λ⃗v∗2 (G)√

λ⃗v∗k (G)
.

Theorem 5.10.8 (Improved Cheeger’s inequality for Directed Edge Conductance). Let
G = (V,E,w) be an edge-weighted directed graph. For any 2 ≤ k ≤ n/2,

λ⃗e∗2 (G) ≲ ϕ⃗(G) ≲
k · logα(G) · λ⃗e∗2 (G)√

λ⃗e∗k (G)
≲
k · log(1/ϕ⃗(G)) · λ⃗e∗2 (G)√

λ⃗e∗k (G)
.

The proofs of the two results are similar to that the proofs of Theorem 3.1.16 and
Theorem 4.1.11 and also similar to each other, so we just provide a sketch of the proof of
Theorem 5.10.7 in the following.

Note that λ⃗v∗k (G) not a convex optimization problem. As in Section 4.6 in the previous
chapter, we change the objective in Definition 5.1.3 to maximize the sum of the k smallest
eigenvalues

∑k
i=1 λi(L), so that we can use Proposition 2.8.3 to write this as a semidefinite

program, which we call σ⃗v∗k (G). Using the same manipulations as in Proposition 4.5.2 and
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Proposition 5.4.1, we can write

σ⃗v∗k (G) := min
f :V→Rn

max
A≥0

1

2

∑
uv∈E

A(u, v) · ∥f(u)− f(v)∥2

subject to A(u, v) = 0 ∀uv ̸∈ E∑
u∈V

A(u, v) =
∑
u∈V

A(v, u) ∀v ∈ V∑
u∈V

A(u, v) = π(v) ∀v ∈ V∑
v∈V

π(v)f(v)f(v)T ⪯ In∑
v∈V

π(v) ∥f(v)∥2 = k.

The proof will relate λ⃗v∗2 (G) and σ⃗v∗k (G) to ψ⃗(G). We follow the same two-step approach in

Section 3.1.4. The first step is to prove that if there is a 1-dimensional solution to λ⃗
(1)
v (G)

that is close to a k-step function (i.e. a function with at most k distinct values), then the
approximation guarantee of threshold rounding in Section 5.7.3 is improved.

Proposition 5.10.9 (Improved Threshold Rounding). Let G = (V,E, π) be a vertex-

weighted directed graph. Given a solution f : V → R to λ⃗
(1)
v (G) with objective value λf

and a k-step function yf : V → R approximating f , it holds that

ψ⃗(G) ≲ ηv(G) ≲ k · λf + k ∥f − yf∥π
√
λf ,

where ηv(G) is the ℓ1-version of λ⃗
(1)
v (G) in Definition 5.7.2, and ∥z∥2π :=

∑
v π(v) · z(v)2

for any z : V → R. Note the first inequality is by Proposition 5.7.7.

The second step is to prove that if σ⃗v∗k (G) is large for a small k, then there is a good

k-step approximation to a good solution to λ⃗
(1)
v (G). As in Section 5.7.3, we consider the

ℓ1 dual program ξv(G) in Lemma 5.7.5 of ηv(G).

Proposition 5.10.10 (Constructing k-Step Approximation). Let G = (V,E, π) be a
vertex-weighted directed graph. Given a solution f : V → R to ξv(G) with objective value
ξf , there exists a k-step function y : V → R with

∥f − y∥2π ≲
k · ξf
σ⃗v∗k (G)

.

236



Combining the two propositions with 2k in place of k, using λf = ξf , applying the

dimension reduction result in Theorem 5.6.2, and using the relation σ⃗v∗2k(G) ≥ k · λ⃗v∗k (G)7,
we get

ψ⃗(G) ≲ 2k · λf + 2k ∥f − yf∥π
√
λf ≲

(2k)1.5 · λf√
σ⃗v∗2k(G)

≲
k · log(∆ · α(G)) · λ⃗v∗2 (G)√

λ⃗v∗k (G)
.

The proof of Proposition 5.10.9 is by combining the arguments in Proposition 4.6.1 for
undirected vertex expansion and Proposition 5.7.4 for the rounding analysis. The proof of
Proposition 5.10.10 is essentially the same as in Proposition 4.6.2. There are no new steps
in these proofs, and so we omit them here.

5.11 Cheeger-Type Inequalities for Hypergraphs

Louis [Lou15] and Chan, Louis, Tang, Zhang [CLTZ18] developed a spectral theory for hy-
pergraphs based on a continuous time diffusion process. They used it to derive a Cheeger
inequality for hypergraph edge conductance, a higher-order Cheeger inequality for hyper-
graph k-way edge conductance, and a Cheeger inequality for hypergraph small-set conduc-
tance. Refer to Section 3.4 for details.

In this section, we will use the reweighted eigenvalue approach to derive similar results
and compare with the results in [CLTZ18]. In addition, we will prove an improved Cheeger
inequality for hypergraph edge conductance, which was not known before. Since the proofs
of these results are all essentially the same as the corresponding proofs in Chapter 4, we
only provide a proof for the improved Cheeger inequality for hypergraphs and just provide
quick sketches for the other results.

We note that vertex expansion in a hypergraph H can simply be reduced to vertex
expansion in its clique-graph G (see Remark 2.3.4), and so the results in Chapter 4 can be
directly applied with ∆(G) ≤ ∆(H) · r, where r is the maximum size of a hyperedge in H.
Therefore, we will only focus on hypergraph edge conductance in this section.

7Similar to Theorem 4.1.11 in the previous chapter, this result is an improvement of the original result
in [LTW23], and this is thanks to using the relation σ⃗v∗

2k(G) ≥ k · λ⃗v∗k (G) instead of σ⃗v∗
k (G) ≥ λ⃗v∗k (G).
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5.11.1 Cheeger Inequality for Hypergraphs

In the reweighted eigenvalue approach, we use γ∗2(H) in Definition 5.1.9 as a relaxation
to ϕ(H). We can prove the easy direction as in Proposition 5.3.2 by a reduction, but we
actually do not need to prove it as we will see soon. As in Proposition 5.4.2, we can write
γ∗2(H) as the following semidefinite program:

γ∗2(H) := min
f :V→Rn

max
A≥0

∑
e∈E

∑
{u,v}⊆e

c(u, v, e) ∥f(u)− f(v)∥2

subject to
∑

{u,v}⊆e

c(u, v, e) ≤ w(e) ∀u, v ∈ V

∑
v∈V

degw(v) · f(v) = 0⃗∑
v∈V

degw(v) · ∥f(v)∥
2 = 1.

By using LP duality in the inner maximization problem as in Lemma 5.7.5, it follows that

γ∗2(H) = min
f :V→Rn

g:V→R

∑
e∈E

w(e)g(e)

subject to g(e) ≥ ∥f(u)− f(v)∥2 ∀u, v ∈ e, ∀e ∈ E∑
v∈V

degw(v) · f(v) = 0⃗∑
v∈V

degw(v) · ∥f(v)∥
2 = 1.

It turns out that γ∗2(H) in this form is exactly the same as γ̃2 in [CLTZ18, SDP 8.3],
and γ2 in [CLTZ18] is simply this dual program restricted to one dimensional embeddings
f : V → R as stated in Lemma 5.7.6 (c.f. Definition 3.4.3). Therefore, Theorem 5.1.10
follows from their result in Theorem 3.4.2. We remark that it is also possible to derive
Theorem 5.1.10 using the same proof as for Theorem 1.1.2.

5.11.2 Higher-Order Cheeger Inequality and Small-Set Expan-
sion for Hypergraphs

We define γ∗k(H) as in Definition 5.1.9 but the objective is to maximize the k-th smallest
eigenvalue of the normalized Laplacian matrix L = I−D−1/2AD−1/2. This is, however, not
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a convex optimization problem. Following Section 4.5, we change the objective to maximize
the sum of the k smallest eigenvalues

∑k
i=1 λi(L), so that we can use Proposition 2.8.3 to

write this as a semidefinite program that we call σ∗
k(H). Using the same manipulations as

in Proposition 4.5.2, we can write

σ∗
k(H) := min

f :V→Rn
min

g:V→R≥0

∑
e∈E

g(e) · w(e)

subject to g(e) ≥ ∥f(u)− f(v)∥2 ∀{u, v} ⊆ e, ∀e ∈ E∑
v∈V

degw(v) · f(v)f(v)T ⪯ In∑
v∈V

degw(v) · ∥f(v)∥
2 = k.

Retracing the same but rather long proof in Section 4.5, we can construct functions
f1, . . . , fℓ with disjoint supports such that each is a good solution to Definition 5.1.9,
and prove the exact same statement as Theorem 4.5.12.

Theorem 5.11.1 (Higher-Order Cheeger Inequality for Hypergraphs). For any undirected
hypergraph H = (V,E,w),

1

k
σ∗
k(H) ≲ ϕk(H) ≲ k4 log k

√
log r · σ∗

k(H) and ϕ(1−ε)k(H) ≲
1

ε4
log k

√
log r · σ∗

k(H).

Compared to (3.11), the result for k-way expansion is comparable with an extra factor
of
√
k but a factor of

√
log r less, while the result for [(1− ε)k]-way expansion for constant

ε is an improvement by a factor of more than k2. As a consequence, this also implies an
improvement of (3.12) for small-set conductance by a factor of more than k.

5.11.3 Improved Cheeger Inequality for Hypergraphs

Using the reweighted eigenvalue approach, we can also prove an analog of the improved
Cheeger’s inequality as described in Section 5.10.3. This is a new result that was not
obtained in [Lou15, CLTZ18]. Combining with the higher-order Cheeger inequality for
hypergraphs in Theorem 5.11.1, this implies the following corollary that only depends on
the combinatorial structure of H: If the k-way edge conductance ϕk(H) is large for a small
k, then γ∗2(H) is a tighter approximation to ϕ(H).
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Theorem 5.11.2 (Improved Cheeger’s Inequality for Hypergraphs). Let H = (V,E) be a
hypergraph with weight function w : E → R≥0. For any 2 ≤ k ≤ n,

ϕ(H) ≲
k · log r · γ∗2(H)√

γ∗k(H)
.8

The proof of Theorem 5.11.2 follows the same two-step approach as in Section 3.1.4
and also in Section 5.10.3. Actually, the proof for hypergraphs is very similar to that for
undirected vertex expansion in Section 4.6, and is easier than that for directed graphs in
Section 5.10.3. We omit the proof for brevity.

5.12 Concluding Remarks

In this chapter, we show that the reweighted eigenvalue approach can be extended substan-
tially to derive Cheeger inequalities for directed graphs and hypergraphs. Most notably,
this develops into an interesting new spectral theory for directed graphs, which is much
closer to the spectral theory for undirected graphs than what are previously known. We
hope that this spectral theory will find more applications in practice, in clustering and
partitioning of directed graphs and hypergraphs.

Technically, the reweighted eigenvalue approach provides an intuitive and unifying
method to reduce the study of expansion properties in more general settings to the basic
setting of edge conductance in undirected graphs. We believe that this approach can be
used to lift more results in spectral graph theory for undirected graphs to more general
settings, as the ideas are consistent with recent works on directed Laplacian solvers and
hypergraph spectral sparsification that we mentioned in the end of Section 5.1.

There are some concrete open problems. The most obvious one is to prove tight bounds
for the two main results Theorem 5.1.4 and Theorem 5.1.8, to settle whether the depen-
dency on the asymmetric ratio can be completely removed or not9. Another one is to
formulate and prove higher-order Cheeger inequality and bipartite Cheeger inequality for
directed graphs as discussed in Section 5.10.

8Again, this is an improvement from k3/2 to k over the original statement in [LTW23].
9See Remark 5.6.3 that the dimension reduction result for directed edge conductance is tight, and so a

positive result removing the logα(G) factor in Theorem 5.1.8 would probably need substantial new ideas.
We incline to believe that the logα(G) factor in Theorem 5.1.8 cannot be completely removed, but we do
not have an example supporting this belief. We are less sure about what the right bound should be for
Theorem 5.1.4.
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Chapter 6

Reweighted Eigenvalues for
Submodular Transformations

In the two previous chapters, we have used reweighted eigenvalues to derive Cheeger in-
equalities for different expansion quantities in generalized graphs. Encouraged by the suc-
cess, the next questions are: how much further can reweighted eigenvalues be generalized?
What are the limitations of the theory?

Motivated by Yoshida [Yos19] and Li and Milenkovic [LM18], who studied a very general
class of cut functions called submodular transformations and proved Cheeger inequalities
for them, we define reweighted eigenvalues for submodular transformations and attempt to
build a spectral theory out of it. We obtain a Cheeger inequality and an improved Cheeger
inequality for directed hypergraph expansion, which generalizes the corresponding results
in Chapter 4 and Chapter 5. We then identify bottlenecks in our rounding algorithm for
general submodular transformations, which provide evidence that reweighted eigenvalues
may have limitations beyond the generalized graph models.

The plan for this chapter is as follows. We begin the chapter with Section 6.1, where
we define submodular transformations and their expansion, Laplacian, and eigenvalues
[LM18, Yos19]. We then review the past work by Yoshida [Yos19] and Li and Milenkovic
[LM18] in Section 6.2. Following this, we present our first reweighting approach in Sec-
tion 6.3. We first introduce the ℓ1 reweighted program in Section 6.3.1 and prove a threshold
rounding result relating it to the expansion. Then, in Section 6.3.2 we define reweighted
eigenvalues for submodular transformations, which we show to be an SDP. We derive a
Cheeger inequality for directed hypergraphs in Section 6.3.7. We also explain why difficul-
ties arise when attempting to emulate the proof for general submodular transformations.

241



After that, in Section 6.3.8 we derive an improved Cheeger inequality for directed hyper-
graphs. We briefly discuss a second approach in Section 6.4 and conclude the chapter in
Section 6.5.

6.1 Submodular Transformations

In this section, we introduce submodular transformation and its expansion, Laplacian,
eigenvalue, and related concepts as defined in [LM18, Yos19]. Another excellent general
reference is the book [Fuj05] by Fujishige.

6.1.1 Submodular Transformations and Expansion

Let V be a finite set. A function f : 2V → R is said to be submodular if

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)

for all A,B ⊆ V . We say that a submodular function f is normalized if f(∅) = f(V ) = 0
and symmetric if f(S) = f(Sc) for all S ⊆ V .

There are two main reasons for studying algorithms for finding cuts of submodular
functions. First, as proven in Proposition 6.1.1, all graph cut functions are submodular,
so the submodularity property is inherent to the problems we study.

Proposition 6.1.1 (Graph Cut Functions are Submodular). Let V be a vertex set. Then,
the following functions f : 2V → R are all submodular:

(i) Let G = (V,E) be a graph. f equals the edge cut function for an edge uv ∈ E, so
that f(S) = 1[uv ∈ δ(S)] for S ⊆ V ;

(ii) Let G = (V,E) be a graph. f equals the vertex cut function for a vertex v ∈ V , so
that f(S) = 1[v ∈ S ∧ ∂(v) ̸⊆ S] for S ⊆ V ;

(iii) Let G = (V,E) be a directed graph. f equals the directed edge cut function for an arc
uv ∈ E, so that f(S) = 1[u ∈ S ∧ v ̸∈ S] for S ⊆ V ;

(iv) Let G = (V,E) be a directed graph. f equals the directed vertex cut function for a
vertex v ∈ V , so that f(S) = 1[v ∈ S ∧ ∂+(v) ̸⊆ S] for S ⊆ V ;

242



(v) Let H = (V,E) be an undirected hypergraph. f equals the hyperedge cut function for
a hyperedge e ∈ E, so that f(S) = 1[e ∈ δ(S)] for S ⊆ V ;

(vi) Let H = (V,E) be a directed hypergraph. f equals the directed hyperedge cut function
for a hyperedge e = (e−, e+), so that f(S) = 1[e− ∩ S ̸= ∅ ∧ e+ ∩ Sc ̸= ∅] for S ⊆ V .

Furthermore, the functions (i) and (v) and symmetric, and all of them are normalized.

Proof. The submodularity of some of these functions are proved in [Yos19]. We will prove
here that the function (vi) is submodular and leave it as an exercise to check that the
functions (i) - (v) are special cases of (vi). We leave it to the reader to check that the
functions (i) and (v) are symmetric and that all of them are normalized.

Let e−, e+ ⊆ V be given and let A,B ⊆ V . We check the submodularity condition that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Observe that f can only take values 0 and 1, so there are only three cases to consider:

• If f(A) = f(B) = 1, there is nothing to prove.

• If f(A) = 1 and f(B) = 0 (the case where f(A) = 0 and f(B) = 1 is analogous), that
means A ∩ e− ̸= ∅ and Ac ∩ e+ ̸= ∅, but either e− ⊆ Bc or e+ ⊆ B. Suppose further
that f(A ∪B) = 1; if not then we are done. That means that (A ∪B)c ∩ e+ ̸= ∅, or
equivalently Ac ∩Bc ∩ e+ ̸= ∅. In particular, e+ ̸⊆ B.

Let’s show that f(A ∩ B) = 0. From the preceding summary and the fact that
f(B) = 0, it must be the case that e− ⊆ Bc, and so e− ⊆ Bc ⊆ (A ∩B)c.

• If f(A) = f(B) = 0, one can show that (a) either e− ⊆ (A ∪ B)c = Ac ∩ Bc or
e+ ⊆ A ∪ B, and (b) either e− ⊆ (A ∩ B)c = Ac ∪ Bc or e+ ⊆ A ∩ B. The proof is
similar to that in the previous case. (a) implies that f(A ∪ B) = 0 and (b) implies
that f(A ∩B) = 0.

We conclude that f is indeed a submodular function.

A second main reason for studying submodular functions is that submodularity is a
fundamental property that frequently arises in combinatorial optimization problems in do-
mains such as graph theory, machine learning, economics, and game theory. Submodularity
can be understood as capturing a diminishing return phenomenon, which is present a lot
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of these applications. The property is formalized as Proposition 6.1.2 below. A spectral
theory for submodular functions can potentially have far-reaching applications to prob-
lems in these domains. See e.g. [Fuj05] for general references to submodular functions
and also [RY22, Yos19] for a more detailed account of the significance of submodularity in
applications.

Proposition 6.1.2 (Diminishing Return [Fuj05]). Let f : 2V → R be a submodular func-
tion, and let S ⊆ T ⊆ V and u ∈ V \ T . Then,

f(T ∪ {u})− f(T ) ≤ f(S ∪ {u})− f(S).

Proof. Take A = T and B = S ∪{u} in the definition of submodularity and rearrange.

A submodular transformation is a collection F = {Fe}e∈E of functions Fe : 2
V → R each

of which is submodular [LM18, Yos19]. We say that F is a submodular transformation
on (V,E) if its constituent functions are indexed by E and have common domain 2V .
We say that a submodular transformation F is symmetric (respectively, normalized) if
all its constituent functions Fe are symmetric (respectively, normalized). Write F (S) :=∑

e∈E Fe(S).

As the sum of two submodular functions is again submodular, submodular transfor-
mation can be thought of as decomposing more complex submodular functions into the
sum of “simpler” submodular functions. For example, the cut size function F (S) := |δ(S)|
in a graph G = (V,E) can be decomposed into the sum of single-edge cut functions in
Proposition 6.1.1(i).

The expansion of a submodular transformation relative to a measure µ : V → R+ is
defined naturally as follows.

Definition 6.1.3 (Expansion of Submodular Transformations [LM18, Yos19]). Given a
submodular transformation F = {Fe}e∈E on (V,E). Suppose that a measure µ : V → R+

is given. The (µ-)expansion of a subset S ⊆ V and of F are defined as

ϕµ(S) :=
F (S)

min(µ(S), µ(Sc))
and ϕµ(F ) := min

∅≠S⊂V
ϕµ(S).

With Proposition 6.1.1 in mind, one can verify that this definition encompasses gener-
alized graph expansions defined in Section 2.3, by setting each Fe appropriately.
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6.1.2 Lovász Extension

Cheeger inequalities relate expansion quantities with the smallest nontrivial eigenvalue
of an appropriately defined Laplacian. It seems necessary to define the Laplacian of a
submodular transformation in order to be able to properly develop a spectral theory.

The Lovász extension [Lov83] is a convex extension of submodular functions from the
discrete domain 2V to the continuous domain RV . It crucially makes submodular opti-
mization amenable to continuous methods in convex optimization. See also [Fuj05, Section
6.3] for reference.

We first need the notion of the base polytope of a submodular function.

Definition 6.1.4 (Base Polytope of Submodular Functions [Lov83, Fuj05]). Given a sub-
modular function f : 2V → R, its base polytope B(f) is defined as

B(f) := {x ∈ RV : x(S) ≤ f(S) ∀S ⊆ V ∧ x(V ) = f(V )}.

Proposition 6.1.5 (Some Properties of Base Polytopes [Fuj05]). The base polytope B(f)
of a submodular function f : 2V → R satisfies the following properties:

1. For x ∈ RV , the set of extreme points of the set argmaxy∈B(f)⟨y, x⟩ of points in B(f)
are precisely the set of points w ∈ RV generated by the following procedure: order
the elements of V as u1, . . . , u|V | such that x(u1) ≥ x(u2) ≥ · · · ≥ x(u|V |). For
i = 1, 2, . . . , |V | set

y(ui) := f({u1, . . . , ui})− f({u1, . . . , ui−1}).

2. The set of all extreme points of B(f) are precisely the set of points w ∈ RV gen-
erated by the following procedure: order the elements of V as u1, . . . , u|V |. For
i = 1, 2, . . . , |V | set

y(ui) := f({u1, . . . , ui})− f({u1, . . . , ui−1}).

In particular, B(f) has at most |V |! extreme points.

3. If f is normalized with values in [0,M ], and let y ∈ B(f) be a point in the base
polytope of f . Then, ∥y∥1 ≤ 2M .

4. If f is symmetric, then B(f) is symmetric, so that y ∈ B(f)⇔ −y ∈ B(f).
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We identify below an important subclass of submodular functions. Given a submodular
function f : 2V → R, we say that f is simple if f only takes values 0 and 1. We say that
a submodular transformation F = {Fe}e∈E is simple if each Fe is simple. This definition
is useful because when f is simple, the extreme points of B(f) take a particularly simple
form. As we shall prove below, this is also equivalent to f being a directed hyperedge cut
function.

Proposition 6.1.6. Let f : 2V → R be a normalized submodular function with f(S) ∈ [0, 1]
for all S ⊆ V . The following are equivalent:

(i) f is simple;

(ii) The nonzero extreme points of B(f) are all of the form 1u − 1v for some u, v ∈ V ;

(iii) f is the directed hyperedge cut function in Proposition 6.1.1(vi).

Proof. We will prove that (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

(i) =⇒ (ii): Suppose f is simple. By the second property in Proposition 6.1.5, the
extreme points of B(f) are of the form y(vi) := f(Si) − f(Si−1) where v1, v2, . . . , vn is an
ordering of the elements in V and Si := {v1, . . . , vi}. Since f is simple, y can take only
values 0, 1,−1. We need to show that if y(vi) = −1 for some i, then y(vj) = 0 for all j > i.
Suppose otherwise that j > i is the smallest index such that y(vj) ̸= 0. If y(vj) = −1
then f(Sj) = f(Sj−1) + 1 = f(Si) + 1 = f(Si−1) + 2 which is impossible. If y(vj) = 1, let
T := Si−1 ∪ {vj}. Note that the condition y(vi) = −1 implies f(Si−1) = 1 and f(Si) = 0,
and the condition y(vj) = 1 implies f(Sj−1) = 0 and f(Sj) = 1. Then, by submodularity,

f(T ) = f(T ) + f(Sj−1) ≥ f(T ∪ Sj−1) + f(T ∩ Sj−1) = f(Sj) + f(Si−1) = 2,

which contradicts the assumption that f is simple. This proves the assertion (i) =⇒ (ii).

(ii) =⇒ (iii): given the condition on f , we construct the following directed hyperedge
e = (e−, e+). Let e− := {u ∈ V : 1u − 1v ∈ B(f) for some v ̸= u}, and let e+ := {u ∈ V :
1v − 1u ∈ B(f) for some v ̸= u}. We show that f is precisely the hyperedge cut function
for e. Let S ⊆ V . There are three cases to consider:

• Case 1: e− ∩ S = ∅. In this case, consider an ordering of the vertices v1, v2, . . . , vn
such that S = {v1, . . . , vk}. Then, the extreme point y corresponding to the vertex
ordering must have y(v1) = y(v2) = · · · = y(vk) = 0, and so f(S) = 0.
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• Case 2: e− ∩ S ̸= ∅ but e+ ⊆ S. In this case, consider an ordering of the vertices
v1, . . . , vn such that S = {v1, . . . , vk} and v1 ∈ e− ∩ S. By the diminishing return
property, we have f({v1}) ≥ 1, so equality must hold and y(v1) = 1. Since e+ ⊆ S,
we must have y(vj) = −1 for some j ≤ k and y(vℓ) = 0 for all ℓ ̸= 1, j, and so
f(S) = y(v1) + · · ·+ y(vk) = 0.

• Case 3: e− ∩ S ̸= ∅ and e+ ̸⊆ S. In this case, consider an ordering of the vertices
v1, . . . , vn such that S = {v1, . . . , vk}, v1 ∈ e− ∩ S, and vn ∈ e+ \ S. Again, we have
f({v1}) = 1, and by diminishing return and the fact that 1u−1vn is an extreme point
of B(f) for some u ∈ V , we have f(V ) − f(V \ {vn}) ≤ −1. So, the extreme point
corresponding to this vertex ordering must be 1v1 − 1vn , and f({v1, . . . , vℓ}) = 1 for
1 ≤ ℓ ≤ n− 1. In particular, we have f(S) = 1.

This completes the proof of (ii) =⇒ (iii).

Finally, (iii) =⇒ (i) is trivial, and so the proof is complete.

Example 6.1.7 (Base Polytope of Directed Hyperedge Cut Functions). Let e = (e−, e+)
be a directed hyperedge and

f(S) = 1[e− ∩ S ̸= ∅ ∧ e+ ∩ Sc ̸= ∅]

be the corresponding cut function as defined in Proposition 6.1.1. As we have shown in
Proposition 6.1.6, the set of extreme points of B(f) is precisely {1u − 1v |u ∈ e−, v ∈ e+}.

We now define Lovász extension and collect some useful and essential properties.

Definition 6.1.8 (Lovász Extension [Lov83, Fuj05]). Given a submodular function f :
2V → R, the Lovász extension f̃ : RV → R of f is defined as

f̃(x) := max
y∈B(f)

⟨y, x⟩.

Proposition 6.1.9 (Basic Properties of Lovász Extension [Lov83, Fuj05]). Given a sub-
modular function f : 2V → R, its Lovász extension f̃ : RV → R satisfies the following
properties:

1. f̃ is convex.

2. If f is normalized, then f(S) = f̃(1S) for S ⊆ V .

3. If f is normalized, then f̃(x) = f̃(x+ c · 1V ) for any c ∈ R.
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4. For any c ≥ 0, f̃(cx) = c · f̃(x).

5. If f is symmetric, then f(x) = f(−x).

6. For x ∈ RV , the value of f̃(x) may be determined as follows: order the elements of
V as u1, . . . , u|V | such that x(u1) ≥ x(u2) ≥ · · · ≥ x(u|V |). Then,

f̃(x) =
n∑
i=1

x(ui) · (f({u1, . . . , ui})− f({u1, . . . , ui−1})) .

The last property will be referred to as the “level set property” of Lovász extension, as
it expresses f̃ in terms of the value of f on the level sets

Si := {u1, . . . , ui} = {u ∈ V : x(u) ≥ x(ui)}

of the input x. It is the essential property that enables threshold rounding.

6.1.3 Laplacian Eigenvalues

As observed in [LM18, Yos19], the Laplacian of a submodular transformation can be defined
using Lovász extension.

Definition 6.1.10 (Laplacians of Submodular Transformations [LM18, Yos19]). Given a
normalized submodular transformation F = {Fe}e∈E on (V,E), its Laplacian LF is defined
as the following multi-valued function from RV to RV :

LF (x) :=

{∑
e∈E

ye⟨ye, x⟩ | ye ∈ arg max
y∈B(Fe)

⟨y, x⟩

}
⊆ RV .

While LF (x) is multi-valued, the “quadratic form” ⟨x, LF (x)⟩ is single-valued, since for
any ye ∈ argmaxy∈B(Fe)⟨y, x⟩, one has〈

x,
∑
e∈E

ye⟨ye, x⟩

〉
=
∑
e∈E

⟨ye, x⟩2 =
∑
e∈E

(
max
y∈B(Fe)

⟨y, x⟩
)2

=
∑
e∈E

F̃e(x)
2,

which is independent of the choice of ye. The “sum of energies” form

⟨x, LF (x)⟩ =
∑
e∈E

F̃e(x)
2 (6.1)
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also provides an intuitive explanation for this definition of the Laplacian [Yos19].

To further motivate the definition, we shall see in Example 6.1.11 that Definition 6.1.10
generalizes the ordinary graph Laplacians in Section 2.5, as well as the nonlinear Laplacians
by Yoshida [Yos16] (see Section 3.3.2) and Louis [Lou15] and Chan, Louis, Teng, and Zhang
[CLTZ18] (see Section 3.4.1).

Example 6.1.11 (Comparison with Graph Laplacians). We demonstrate that Defini-
tion 6.1.10 captures several definitions of graph Laplacians that we have seen.

• Let G = (V,E) be a graph. The unnormalized graph Laplacian has the quadratic form∑
uv∈E

(x(u)− x(v))2.

Let Fe be the edge cut function in Proposition 6.1.1(i). By specializing the base poly-
tope characterization in Example 6.1.7 to ordinary graphs, we know that the extreme
points of B(Fe) are 1u − 1v and 1v − 1u where e = uv ∈ E. Therefore,

F̃e(x) = max
y∈B(Fe)⟩y,x

= max(x(u)− x(v), x(v)− x(u)) = |x(u)− x(v)|,

and the sum of energies form in (6.1) yields

⟨x, LF (x)⟩ =
∑
uv∈E

(x(u)− x(v))2.

• Let G = (V,E) be a directed graph. Yoshida [Yos16] defined a nonlinear Laplacian
to study directed graph conductance; see Section 3.3.2 for review. The unnormalized
Laplacian has the quadratic form

⟨x, L′x⟩ =
∑
uv∈E

[
(x(u)− x(v))+

]2
.

For each hyperedge e ∈ E, the base polytope of the directed edge cut function Fe in
Proposition 6.1.1(iii) has extreme points 1u−1v and 0⃗ where e = uv ∈ E, and again
the Laplacian defined in Definition 6.1.10 coincides with the one above.

• Let H = (V,E) be a hypergraph. Louis [Lou15] and Chan, Louis, Tang, and Zhang
[CLTZ18] defined a nonlinear Laplacian to build a spectral theory for hypergraphs;
see Section 3.4.1 for review. The unnormalized Laplacian has the quadratic form∑

e∈E

max
u,v∈e

(x(u)− x(v))2.
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For each hyperedge e ∈ E, the base polytope of the hyperedge cut function Fe in Propo-
sition 6.1.1(v) has extreme points {1u− 1v}u,v∈e, and again the Laplacian defined in
Definition 6.1.10 coincides with the one above.

We can then define eigenvalues of the Laplacian LF using the Courant-Fischer formu-
lation in Proposition 2.4.4. Since F is assumed to be normalized, Fe(V ) = 0 for any e ∈ E.
Hence, for any c ∈ R, using

max
y∈B(Fe)

⟨y, c · 1V ⟩ = max
y∈B(Fe)

c · y(V ) = c · Fe(V ) = 0.

This implies that LF (c·1V ) = {⃗0}. Moreover, ⟨x, LF (x)⟩ ≥ 0 for all x ∈ RV , due to the sum
of energies form (6.1). Therefore, it makes sense to consider 0 as the trivial eigenvalue of
LF , with corresponding eigenvector 1V . The hope is that the smallest nontrivial eigenvalue
carries more information about the expansion of a submodular transformation.

Definition 6.1.12 (Nontrivial Eigenvalue [LM18, Yos19]). Given a normalized submodular
transformation F = Fe on (V,E) and a vertex measure µ : V → R+. The nontrivial (µ-
normalized) eigenvalue of F is defined as

λµ(F ) := min
x∈RV

x⊥µ

⟨x, LF (x)⟩∑
u∈V µ(u)x(u)

2
.

Continuing Example 6.1.11, we leave it to the reader to verify that Definition 6.1.12
captures the definitions of the second smallest eigenvalue of (i) the unnormalized and
normalized graph Laplacians in (by taking µ = 1 and µ = deg respectively), (ii) the
nonlinear Laplacian defined by [Yos16] (by taking µ = deg), and (iii) the hypergraph
Laplacian defined by Louis [Lou15] and Chan, Louis, Tang, and Zhang [CLTZ18] (by
taking µ = deg). Note that here we deliberately leave the choice of vertex measure µ open.

We review past work on spectral theory for submodular transformations before describ-
ing our reweighted eigenvalue approach. As we shall see, the past work may be described
as proving a Cheeger inequality relating the nontrivial eigenvalue (which is an ℓ22 quantity)
to the expansion (which is an ℓ1 quantity), then design a relaxation (that is also ℓ22) that
is efficiently computable and whose solution can be rounded to a solution to the Laplacian
eigenvalue problem. On the contrary, the reweighted eigenvalue approach represents a dif-
ferent philosophy of designing the relaxation at the ℓ1 level, then lifting the ℓ1 program to
the ℓ22 program.
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6.2 Review of Past Work

In this section, we review the Cheeger inequality relating the nontrivial eigenvalue and
the expansion of a submodular transformation, as proven by Li and Milenkovic [LM18]
in the symmetric case and Yoshida [Yos19] in the general case. Then, we review convex
relaxations of the nontrivial eigenvalue λµ(F ), by Yoshida [Yos19].

6.2.1 Cheeger Inequality for Submodular Transformations

Yoshida [Yos19] proved a Cheeger inequality for general submodular transformations. He
considered the setting where the vertex measure µ(u) is be the number of functions Fe
influenced by u, i.e.

µ(u) := |{e ∈ E : Fe(S ∪ {u}) ̸= Fe(S) for some S ⊆ V }| . (6.2)

This vertex measure is equal to the degree measure in unweighted generalized graphs.

Theorem 6.2.1 (Cheeger Inequality for Submodular Transformations [Yos19, Theorem
1.3]). Let F = {Fe} be a normalized submodular transformation on (V,E), such that each
constituent function Fe has range ⊆ [0, 1]. Define the measure µ : V → R+ as in (6.2).
Then,

λµ(F )

2
≤ ϕµ(F ) ≤

√
2λµ(F ).

Proof. First we prove the easy direction. Let S ⊆ V be such that

ϕµ(S) =
F (S)

min(µ(S), µ(Sc))

is minimized. Define the following solution x : V → R to λµ(F ) as

x(u) =

{
1

µ(S)
, if u ∈ S,

−1
µ(Sc)

, otherwise.

Then,
∑

u∈V µ(u)x(u) = 0, and by the first property of base polytopes in Proposition 6.1.5
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and telescoping sum we have

λµ(F ) ≤
⟨x, LF (x)⟩∑
u∈V µ(u)x(u)

2

=

(
1

µ(S)
+

1

µ(Sc)

)−1

·
∑
e∈E

[
Fe(S)− Fe(∅)

µ(S)
− Fe(V )− Fe(S)

µ(Sc)

]2
=

(
1

µ(S)
+

1

µ(Sc)

)−1

·
∑
e∈E

Fe(S)
2 ·
(

1

µ(S)
+

1

µ(Sc)

)2

≤
(

1

µ(S)
+

1

µ(Sc)

)
·
∑
e∈E

Fe(S) (∵ Fe(S) ∈ [0, 1])

≤ 2ϕµ(S).

For the hard direction we break the proof into two steps per Theorem 3.1.1.

Step 1 (ℓ22 to ℓ1). Given x : V → R, our goal is to construct h : V → R such that∑
e∈E F̃e(h)∑

v∈V µ(v)|h(v)|
≤

√
2 ·

∑
uv∈E F̃e(x)

2∑
v∈V µ(v)x(v)

2
.

Let c ∈ R be a µ-weighted median of x; that is, µ({v ∈ V : x(v) > c}) ≤ µ(V )/2 and
µ({v ∈ V : x(v) < c}) ≤ µ(V )/2. Define h : V → R so that

h(u) :=

{
(x(u)− c)2, if f(u) ≥ c;

−(x(u)− c)2, if f(u) < c.

Check that 0 is a µ-weighted median of h. In the denominator,∑
v∈V

µ(v)|h(v)| =
∑
v∈V

µ(v)(x(v)− c)2 ≥
∑
v∈V

µ(v)x(v)2.

where the inequality is due to
∑

v∈V µ(v)x(v) = 0 and using Fact 2.10.3. In the numerator,
we use crucially the fact that h preserves the order in x: if u1, . . . , un is an ordering of the
elements in V such that x(u1) ≥ x(u2) ≥ · · · ≥ x(un), then h(u1) ≥ h(u2) ≥ · · · ≥ h(un) as
well. For each e ∈ E, let ie1, . . . , iene

be the subsequence of indices such that uiej influences
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Fe. Using Proposition 6.1.5,

∑
e∈E

F̃e(h) =
∑
e∈E

n∑
i=1

h(ui) · (Fe(Si)− Fe(Si−1))

=
∑
e∈E

ne−1∑
j=1

Fe(Siej )(h(uiej )− h(uiej+1
))

≤
∑
e∈E

ne−1∑
j=1

Fe(Siej )(x(uiej )− x(uiej+1
)) · (|x(uiej )− c|+ |x(uiej+1

)− c|) (by (3.2))

≤

√√√√∑
e∈E

ne−1∑
j=1

Fe(Siej )(x(uiej )− x(uiej+1
))2 · 2

∑
e∈E

∥Fe∥∞ ·
ne∑
j=1

|x(uiej )− c|2

≤

√√√√∑
e∈E

ne−1∑
j=1

[
Fe(Siej )(x(uiej )− x(uiej+1

))
]2
· 2 ∥x− c∥2µ

=

√∑
e∈E

F̃e(x)2 · 2
∑
v∈V

µ(v)|h(v)|,

where the last inequality uses the definition of µ in (6.2). In conclusion,∑
uv∈E F̃e(h)∑

v∈V µ(v)|h(v)|
≤

√
2 ·

∑
uv∈E F̃e(x)

2∑
v∈V µ(v)|h(v)|

≤

√
2 ·

∑
uv∈E F̃e(x)

2∑
v∈V µ(v)x(v)

2
,

as claimed.

Step 2 (threshold rounding). We will exhibit a subset S ⊆ V such that 0 < µ(S) ≤
µ(V )/2 and

min(ϕµ(S), ϕµ(S
c)) =

min(F (S), F (Sc))

µ(S)
≤

∑
e∈E F̃e(h)∑

v∈V µ(v)|h(v)|
.

Let t ∈ R be a parameter, and define St ⊆ V as follows:

St :=

{
{v ∈ V : h(v) > t} if t ≥ 0

{v ∈ V : h(v) < t} if t < 0.
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Note that, since 0 is a µ-weighted median of h, vol(St) is at most vol(V )/2 for any t ∈ R.
The “average” denominator is∫ ∞

−∞
µ(St) dt =

∑
v∈V

µ(v)

∫ ∞

−∞
1[v ∈ St] dt =

∑
v∈V

µ(v)|h(v)|,

and letting h(u1) ≥ h(u2) ≥ · · · ≥ h(un) the “average” numerator is∫ ∞

−∞
min(F (St), F (S

c
t )) dt ≤

∑
e∈E

∫ 0

−∞
Fe(S

c
t ) dt+

∑
e∈E

∫ ∞

0

Fe(St) dt

=

∫ ∞

−∞
Fe ({u ∈ V : h(u) > t}) dt

=
∑
e∈E

n−1∑
i=1

(h(ui)− h(ui+1))Fe({u1, . . . , ui})

=
∑
e∈E

F̃e(h),

where the last equality is again by the level set property of F̃e in Proposition 6.1.9.

By the averaging argument, the proof is complete.

Note that the nonnegativity of the submodular functions Fe is essential, but it is possible
to derive a weighted version of Theorem 6.2.1 where the functions Fe are assumed to be in
range [0,We] instead of [0, 1] uniformly.

Formally, Theorem 6.2.1 matches the classical Cheeger inequality (Theorem 3.1.1), even
up to constant factors. One crucial difference between them, however, is that while there
is a fast algorithm to compute a cut with conductance at most

√
2ϕ(G) Theorem 6.2.1

does not come with a polynomial-time algorithm that finds low-expansion subsets. Indeed,
λµ(F ) is NP-hard to compute under the small-set expansion hypothesis [Yos19].

6.2.2 SDP Relaxations for Submodular Transformations

To deal with the computational hardness issue, Yoshida [Yos19] designed an SDP relaxation
of the λµ(F ) program in Definition 6.1.12. Guarantees on both the running time and the
approximation factor, depending on the “complexity” of the submodular functions Fe, are
proven. Below we describe the SDP relaxation and state the main results from [Yos19].
For proofs and further details, we refer the reader to their paper.
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Suppose first that the submodular transformation F is symmetric, i.e. Fe(S) = Fe(S
c)

for all S ⊆ V . In this case, the base polytope B(Fe) is symmetric by Proposition 6.1.5,
and the energy of a submodular function Fe has a particularly simple form:

F̃e(x)
2 =

[
max
y∈B(Fe)

⟨y, x⟩
]2

= max
y∈B(Fe)

[
⟨y, x⟩2

]
. (6.3)

Using this, the λµ(F ) program in Definition 6.1.12 can be rewritten as the following:

min
x:V→R
ηe∈R

∑
e∈E

ηe

subject to ⟨y, x⟩2 ≤ ηe ∀e ∈ E, ∀y ∈ B(Fe)∑
u∈V

µ(u)x(u)2 = 1∑
u∈V

µ(u)x(u) = 0.

This admits a natural SDP relaxation as below.

Definition 6.2.2 (SDP Relaxation, Symmetric Case [Yos19, LM18]). Let F = {Fe}e∈E be
a normalized submodular transformation on (V,E). Suppose further that F is symmetric.
Define the sdpµ(F ) program as follows:

min
X:V→RN

ηe∈RN

∑
e∈E

∥ηe∥2

subject to
∥∥yTX∥∥2 ≤ ∥ηe∥2 ∀e ∈ E, ∀y ∈ B(Fe)∑
u∈V

µ(u) ∥X(u)∥2 = 1∑
u∈V

µ(u)X(u) = 0⃗.

It is easy to see that sdpµ(F ) is a relaxation of λµ(F ), and Yoshida upper bounds the
objective value of the SDP relaxation in terms of λµ(F ) via random projection. Note that
as presented, the SDP has uncountably many constraints, one for each point in one of the
base polytopes. Yoshida proposed two ways to remedy this. One is to consider y to be an
extreme point of B(Fe) only. This decreases the number of constraints to at most |V |! · |E|
(by Proposition 6.1.5) and even down to poly(|V |, |E|) in many cases. Another is to find
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an ε-cover for the base polytopes, decreasing the number of constraints to the number of
ε-balls in the cover, but incurring an additive error. See [Yos19] for more details. We state
the main approximation results in Theorem 6.2.5 after introducing the SDP relaxation in
the general case.

If the additional assumption that F is symmetric is dropped, then the energy of its
constituent function may no longer enjoy the simple form (6.3). Yoshida wrote the energy
in the form

F̃e(x)
2 =

[
max
y∈B(Fe)

⟨y, x⟩
]2

=
1

2
· max
y∈B(Fe)

[
⟨y, x⟩2 + ⟨y, x⟩ · |⟨y, x⟩|

]
, (6.4)

and his idea for designing an SDP relaxation in the general case was to introduce additional
vector variables to represent the signed quantity ⟨y, x⟩.

Definition 6.2.3 (SDP Relaxation, General Case [Yos19]). Let F = {Fe}e∈E be a normal-
ized submodular transformation on (V,E). Define the sdpµ(F ) program as follows:

min
X:V→RN

ηe,ξy∈RN

1

2

∑
e∈E

∥ηe∥2

subject to
∥∥yTX∥∥2 + ⟨yTX, ξy⟩ ≤ ∥ηe∥2 ∀e ∈ E, ∀y ∈ B(Fe)
⟨ξy, ξ1⟩ ≥ ∥ξy∥2 ∀e ∈ E, ∀y ∈ B(Fe)
∥ξy∥2 =

∥∥yTX∥∥2 ∀e ∈ E, ∀y ∈ B(Fe)∑
u∈V

µ(u) ∥X(u)∥2 = 1∑
u∈V

µ(u)X(u) = 0⃗.

Compared to the SDP relaxation in the symmetric case, additional vector variables ξy
for y ∈ ∪e∈EB(Fe) and ξ1 indicating the “positive” direction are introduced. The term
⟨yTX, ξy⟩ in the first constraint is supposed to represent the term ⟨y, x⟩ · |⟨y, x⟩| in (6.4),
the second set of constraints asserts that ξy aligns with the “positive” direction indicated

by ξ1, and the third set of constraints ensures that the vector energy
∥∥yTX∥∥2 + ⟨yTX, ξy⟩

is between 0 and 2
∥∥yTX∥∥2. Similarly to the symmetric case, some manipulations are

needed to decrease the number of constraints. In particular, here there is one variable ξy
for each constraint, and so the ambient dimension N for the vector variables, and hence
the efficiency of solving the SDP, depends heavily on the number of constraints.
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Theorem 6.2.4 (SDP Relaxation Guarantees, Symmetric Case [Yos19]). Let F = {Fe}e∈E
be a nonnegative, normalized submodular transformation on (V,E), with n := |V | and
m := |E|. Let µ : V → R+ be the measure given in (6.2). Suppose that F is symmetric.

• For any ε > 0,

sdpµ(F ) ≤ λµ(F ) ≤ O

(
log n

ε2
sdpµ(F ) + εB2

)
,

where B is the maximum ℓ2 norm of a point in any of the B(Fe). Furthermore, there
is a randomized algorithm that computes a solution x to λµ(F ) in Definition 6.1.12,
so that x ⊥ µ and

⟨x, LF (x)⟩∑
u∈V µ(u)x(u)

2
≤ O

(
log n

ε2
sdpµ(F ) + εB2

)
,

and the runtime of the algorithm is O(poly(nm)poly(1/ε)).

• Suppose that the number of extreme points of each B(Fe) is upper bounded by N .
Then, the above upper bound on λµ(F ) can be replaced by O(logN ·sdpµ(F )) and there
is a randomized algorithm computing a solution x to λµ(F ) with runtime O(poly(nmN)).

Theorem 6.2.5 (SDP Relaxation Guarantees, General Case [Yos19]). Let F = {Fe}e∈E
be a nonnegative, normalized submodular transformation on (V,E), with n := |V | and
m := |E|. Let µ : V → R+ be the measure given in (6.2).

• For any ε > 0,

sdpµ(F ) ≤ λµ(F ) ≤ O

((
log n

ε4
+

log n logm

ε2

)
sdpµ(F ) + εB2

)
,

where B is the maximum ℓ2 norm of a point in any of the B(Fe). Furthermore, there
is a randomized algorithm that computes a solution x to λµ(F ) in Definition 6.1.12,
so that x ⊥ µ and

⟨x, LF (x)⟩∑
u∈V µ(u)x(u)

2
≤ O

((
log n

ε4
+

log n logm

ε2

)
sdpµ(F ) + εB2

)
,

and the runtime of the algorithm is O(poly(nm)poly(1/ε)).

• Suppose that the number of extreme points of each B(Fe) is upper bounded by N .
Then, the above upper bound on λµ(F ) can be replaced by O((log2N + logm logN) ·
sdpµ(F )) and there is a randomized algorithm computing a solution x to λµ(F ) with
runtime O(poly(nmN)).
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6.3 First Approach: Distribution on Extreme Points

In this section, we describe our first approach for defining reweighted eigenvalues on sub-
modular transformations. It is based on the idea that every point y ∈ B(f) can be written
as a convex combination of the extreme points of B(f).

6.3.1 ℓ1 Program and Reweighting

Let F = {Fe}e∈E be a nonnegative, normalized submodular transformation on (V,E), so
that Fe(S) ≥ 0 for all S ⊆ V and e ∈ E. Given µ : V → R+, the µ-expansion of F in
Definition 6.1.3 can be written as the following integer program:

ϕµ(F ) = min
x∈{0,1}V

∑
e∈E F̃e(x)

min(
∑

u∈V µ(u)x(u),
∑

u∈V µ(u)(1− x(u)))
.

Replacing the denominator with the normalization constraints∑
u∈V

µ(u)x(u) = 0 and
∑
u∈V

µ(u)|x(u)| = 1,

and relaxing the codomain of x from {0, 1} to R, we obtaining the following fractional
program:

Definition 6.3.1 (ℓ1 Program). Let F = {Fe}e∈E be a nonnegative, normalized submodular
transformation on (V,E) and µ be a measure on V . Define the ηµ(F ) program as

ηµ(F ) := min
x∈RV

∑
e∈E

F̃e(x)

subject to
∑
u∈V

µ(u)x(u) = 0∑
u∈V

µ(u)|x(u)| = 1.

The following lemma asserts that ηµ(F ) are ϕµ(F ) are up to constants the same.

Lemma 6.3.2. Let F = {Fe}e∈E be a nonnegative, normalized submodular transformation
on (V,E) and let µ be a measure on V . Then,

ϕµ(F )

2
≤ ηµ(F ) ≤ ϕµ(F ).
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Proof. We first prove the “easy direction” that ηµ(F ) ≤ ϕµ(F ). Let S ⊆ V such that
ϕµ(S) = ϕµ(F ); that is, ∑

e∈E Fe(S)

min(µ(S), µ(Sc))
= ϕµ(F ).

Implicit is the assumption that µ(S) > 0 and µ(Sc) > 0. Define x ∈ RV such that

x(u) :=

{
1

2µ(S)
, if u ∈ S;

−1
2µ(Sc)

, otherwise.

Check that x is feasible for the ηµ(F ) program, and that

F̃e(x) = F̃e

(
x+

1

2µ(Sc)
1

)
=

[
1

2µ(S)
+

1

2µ(Sc)

]
Fe(S) ≤

Fe(S)

min(µ(S), µ(Sc))
.

Here, we used the third and fourth properties in Proposition 6.1.9. So, ηµ(F ) ≤ ϕµ(F ).

Next, let’s prove the “hard” direction that ϕµ(F )/2 ≤ ηµ(F ). A direct proof is not
difficult, but we simply do a reduction to the threshold rounding step in the proof of
Theorem 6.2.1. To this end, given a feasible x : V → R to ηµ(F ), we just need to show
that h(u) := x(u)− c, where c is a µ-weighted median of x, satisfies∑

u∈V

µ(u)|h(u)| ≥ 1

2
.

(Note that F̃e(h) = F̃e(x) by Proposition 6.1.9.) But this is because

S+
x :=

∑
u:x(u)>0

µ(u)|x(u)| = 1

2
=

∑
u:x(u)<0

µ(u)|x(u)| =: S−
x

by the constraints on x, and either S+
h ≥ S+

x or S−
h ≥ S−

x depending on the sign of c, so∑
u∈V

µ(u)|h(u)| = S+
h + S−

h ≥ min(S+
x , S

−
x ) =

1

2
.

Therefore, the hard direction follows from step 2 in the proof of Theorem 6.2.1.

Now we introduce the reweighted ℓ1 program. The Lovász extension takes the form

F̃e(x) = max
y∈B(Fe)

⟨y, x⟩,
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which we replace by
F̃e(x) = max

{λe,i}
λe,i⟨ye,i, x⟩

where {ye,i : i ∈ Ie} is the set of extreme points of B(Fe), and λe,i is the weight assigned
to the extreme point ye,i, so that λe,i ≥ 0 and

∑
i∈Ie λe,i ≤ 1.

To make it possible to lift to ℓ22 later, we should have |⟨ye,i, x⟩| instead of the non-
symmetric ⟨ye,i, x⟩ (in the sense that replacing x by −x changes the result). Adding
absolute value blows up the objective value, however. Our solution is to add a global
“balance” constraint that ∑

(e,i)∈I

λe,iye,i = 0⃗,

where I := {(e, i) | e ∈ E, i ∈ Ie}. Thus we arrive at the following reweighted program.

Definition 6.3.3 (Reweighted ℓ1 Program). Let F = {Fe}e∈E be a nonnegative, normal-
ized submodular transformation on (V,E) and µ be a measure on V . Let {ye,i}i∈Ie be an
enumeration of the extreme points of B(Fe), and write I := {(e, i) | e ∈ E, i ∈ Ie}. Define
the η∗µ(F ) program as

min
x∈RV

max
{λe,i}

∑
(e,i)∈I

λe,i |⟨ye,i, x⟩|

subject to
∑
u∈V

µ(u)x(u) = 0∑
u∈V

µ(u)|x(u)| = 1.

λe,i ≥ 0 ∀(e, i) ∈ I∑
i∈Ie

λe,i ≤ 1 ∀e ∈ E∑
(e,i)∈I

λe,iye,i = 0⃗.

In other words, {λe,i} is a distribution over the extreme points ye,i ∈ E(Be) for all e ∈ E.
Example 6.3.4 (Balance Constraints for Directed Graphs). Let G = (V,E) be a directed
graph, and let Fe be the directed edge cut function in Proposition 6.1.1(iii) for e ∈ E.
We have established in Example 6.1.7 that the extreme points of B(Fe) are 1u − 1v and 0⃗.
Verify that the balance constraints ∑

(e,i)∈I

λe,iye,i = 0⃗
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is equivalent to assigning weights in [0, 1] to each edge, so that in the reweighted graph, the
total incoming weight is the same as the total outgoing weight at each vertex, i.e. that the
reweighted graph is Eulerian.

We now show that η∗µ(F ) and ϕµ(F ) are equivalent up to a constant factor.

Proposition 6.3.5 (Easy direction for η∗µ(F )). Let F = {Fe}e∈E be a nonnegative, nor-
malized submodular transformation on (V,E) and µ be a measure on V . Then,

η∗µ(F ) ≤ 2ϕµ(F ).

Proof. We will prove the stronger assertion that η∗µ(F ) ≤ 2ηµ(F ), and then the proposition
follows from Lemma 6.3.2. This amounts to showing that

1

2
max
{λe,i}

∑
(e,i)∈I

λe,i|⟨ye,i, x⟩| ≤ max
{λ′e,i}

∑
(e,i)∈I

λ′e,i⟨ye,i, x⟩

for any feasible x, where {λe,i} are subject to the constraints of the η∗µ(F ) program and
{λ′e,i} are subject to the constraints of the ηµ(F ) program, i.e. without the balance con-
straints.

Let {λe,i} be optimal for LHS for a particular feasible x. Our goal is to find a feasible
{λ′e,i} for RHS with a comparable objective value. Writing

H+
x := {y ∈ RV : ⟨y, x⟩ > 0} and H−

x := {y ∈ RV : ⟨y, x⟩ ≤ 0},

we simply take λ′e,i = λe,i if ye,i ∈ H+
x and λ′e,i = 0 otherwise. Such choice of λ′e,i is easily

seen to be feasible. we can bound the objective value on LHS as follows:

1

2

∑
(e,i)∈I

λe,i|⟨ye,i, x⟩| =
1

2

 ∑
ye,i∈H+

x

λe,i⟨ye,i, x⟩+
∑

ye,i∈H−
x

λe,i⟨ye,i,−x⟩


(∗)
=

∑
ye,i∈H+

x

λ′e,i⟨ye,i, x⟩

=
∑

(e,i)∈I

λ′e,i⟨ye,i, x⟩ (∵ λ′e,i = 0 for ye,i ̸∈ H+
x )

where (∗) holds because the balance constraint implies that〈 ∑
ye,i∈H+

x

λe,iye,i, x

〉
=

〈 ∑
ye,i∈H−

x

λe,iye,i,−x

〉
.

Combining this and Lemma 6.3.2, we are done.
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To prove the “hard direction”, we construct the dual program of η∗µ(F ) and utilize the
extra information from the dual variables for rounding. The same approach was used in
Section 5.7 for rounding ℓ1 programs for directed expansions.

Given a feasible x : V → R to the η∗µ(F ) program, the inner maximization program is

η∗µ(x) := max
{λe,i}

∑
(e,i)∈I

λe,i |⟨ye,i, x⟩|

subject to λe,i ≥ 0 ∀(e, i) ∈ I∑
i∈Ie

λe,i ≤ 1 ∀e ∈ E∑
(e,i)∈I

λe,iye,i = 0⃗.

By taking the LP dual of the above, we obtain the following dual program.

Proposition 6.3.6 (Dual Program). Let F = {Fe}e∈E and µ : V → R+ be as before, and
let x : V → R be a feasible solution to the η∗µ(F ) program. The following program has
objective η∗µ(x):

ξ∗µ(x) := minq∈RE
≥0,r∈RV

∑
e

q(e)

subject to |⟨ye,i, x⟩| ≤ q(e) + ⟨r, ye,i⟩ ∀e ∈ E, ye,i ∈ E(Be).

Proof. This is by standard LP duality, where q(e) is the dual variable for the constraint
that

∑
i∈Ie λe,i ≤ 1, and r(u) for u ∈ V is the dual variable for the constraint that the

u-coordinate of
∑

e,i λe,iye,i equals zero.

Remark 6.3.7. By appropriately defining F , the dual program here recovers the inner
minimization programs in Lemma 5.7.5 and Lemma 5.7.6.

Proposition 6.3.8 (Hard direction for η∗µ(F )). Let F = {Fe}e∈E and µ : V → R+ be as
before. Then,

ϕµ(F )

8
≤ η∗µ(F ).

Proof. Let x∗ ∈ RV be an optimal solution to the η∗µ(F ) program in Definition 6.3.3 that
η∗µ(x

∗) = η∗µ(F ). Then, by Proposition 6.3.6 the objective value of the following dual
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program is η∗µ(F ):

minq∈RE
≥0,r∈RV

∑
e

q(e)

subject to |⟨ye,i, x∗⟩| ≤ q(e) + ⟨ye,i, r⟩ ∀e ∈ E, ye,i ∈ E(Be).

Note that regardless of r, the optimal value for q(e) would be

q(e) = max

(
0,max

i∈Ie
(|⟨ye,i, x∗⟩| − ⟨ye,i, r⟩)

)
.

Let (q∗, r∗) be the optimal solution to the dual program above. Following the proof in
Section 5.7.3 for directed graphs, define

• g1(u) := max{0, x∗(u) + r∗(u)− c1}

• g2(u) := max{0, x∗(u)− r∗(u)− c2}

• g3(u) := max{0,−x∗(u) + r∗(u) + c2}

• g4(u) := max{0,−x∗(u)− r∗(u) + c1},

where c1 is a µ-weighted median of x∗ + r∗ and c2 is a µ-weighted median of x∗ − r∗, so
the support of each gi has µ-measure at most µ(V )/2. For t ∈ R define the threshold sets

St(z) := {u ∈ V : z(u) > t}.

To bound the numerator, first consider g1. Order the elements in V such that

(−x∗ − r∗)(u1) ≥ (−x∗ − r∗)(u2) ≥ · · · ≥ (−x∗ − r∗)(u|V |).

Writing ye,i∗ for the extreme point in B(Fe) so that ⟨ye,i,−x∗ − r∗⟩ is maximized, we have∫ ∞

0

Fe(St(g1)) dt =
∑
i<|V |

Fe({u1, . . . , ui})(g1(ui)− g1(ui+1))

≤
∑
i<|V |

Fe({u1, . . . , ui})(r∗(ui+1)− r∗(ui) + x∗(ui+1)− x∗(ui))

= ⟨ye,i∗ ,−x∗⟩ − ⟨ye,i∗ , r∗⟩ (by Proposition 6.1.5)

≤ |⟨ye,i∗ , x∗⟩| − ⟨ye,i∗ , r∗⟩ ≤ q∗(e).
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As for g4, we have∫ ∞

0

Fe(S
c
t (g4)) dt =

∑
i<|V |

Fe({ui+1, . . . , u|V |}c)(g4(ui+1)− g4(ui))

≤
∑
i<|V |

Fe({u1, . . . , ui})(r∗(ui+1)− r∗(ui) + x∗(ui+1)− x∗(ui))

≤ q∗(e).

Similar for g2 and g3 with the vertex ordering satisfying

(x∗ − r∗)(u1) ≥ (x∗ − r∗)(u2) ≥ · · · ≥ (x∗ − r∗)(u|V |).

The denominator bound is proven the same way as in Section 5.7.3. As 1 ⊥ ye,i for all
ye,i ∈ E(Be), we may shift r∗ by an appropriate multiple of 1 so that the dual solution
is still feasible with the same objective value, and

∑
u∈V µ(u)r(u) = 0. Following the

argument in Section 5.7.3, we conclude that

4∑
i=1

∑
u∈V

µ(u)gi(u) ≥
1

2
.

Therefore, there exists g = gi for some 1 ≤ i ≤ 4, such that if we use this function for
threshold rounding,

•
∫∞
0

min
{
F (St), F (S

c
t )
}
dt ≤

∑
e∈E q

∗(e) = η∗µ(F );

•
∫∞
0
µ(St) dt ≥ 1/8;

• µ(St) ≤ µ(V )/2 always.

By the averaging argument, we can return some S = St or S
c
t , where

min (ϕµ(S), ϕµ(S
c)) =

min
{
F (S), F (Sc)

}
min

{
µ(S), µ(Sc)

} ≤ 8η∗µ(F ).

This finishes the proof of the hard direction.

Combining Lemma 6.3.2, Proposition 6.3.5, and Proposition 6.3.8, we are able to draw
a neat conclusion about the three main ℓ1 quantities in this section.
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Theorem 6.3.9 (All ℓ1 quantities are equivalent). Let F and µ be as before. Then,

ϕµ(F ) ≍ ηµ(F ) ≍ η∗µ(F )

Question 6.3.10. Is there a direct proof showing that ηµ(F ) ≍ η∗µ(F )?

In view of Theorem 6.3.9, if we can find either ηµ(F ) or η∗µ(F ) in polynomial time,
we would be able to obtain a constant-factor approximation to ϕµ(F ) in polynomial time.
However, this is NP-hard assuming the small-set expansion hypothesis, for example because
of the hardness result in the special case of vertex expansion [LRV13], which the current
setting captures.

This wraps up our discussion about the ℓ1 programs. To summarize, we wrote a natural
fractional relaxation ηµ(F ) of the combinatorial quantity ϕµ(F ) that we are interested in.
The Lovász extension F̃e(x) is interpreted as choosing a vector in B(Fe) that maximizes
inner product with x. To derive the reweighted program η∗µ(F ), we impose the constraint

that the vectors chosen from each B(Fe) sum to 0⃗, among other modifications. We were
able to show that the three quantities are within a constant factor of each other; see
Theorem 6.3.9. Unfortunately, it does not really improve our situation, as we do not know
how to solve these programs efficiently. Nevertheless, we will show that a morally identical
procedure when applied to “ℓ22 programs” will allow us to obtain SDP’s and in particular
recover the λ∗2 programs in the previous chapters.

6.3.2 ℓ22 Program and Reweighting

We now design a reweighted ℓ22 program by lifting the reweighted ℓ1 program to ℓ22.

Definition 6.3.11 (Reweighted ℓ2 program). Let F = {Fe}e∈E be a nonnegative, normal-
ized submodular transformation on (V,E) and µ be a measure on V . Let {ye,i}i∈Ie be an
enumeration of the extreme points of B(Fe), and write I := {(e, i) | e ∈ E, i ∈ Ie}. Define
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the λ∗µ(F ) program as

λ∗µ(F ) := min
X⪰0

max
{λe,i}

∑
(e,i)∈I

λe,i⟨X, ye,iyTe,i⟩

subject to ⟨X,µµT ⟩ = 0

⟨X, diag(µ)⟩ = 1

λe,i ≥ 0 ∀(e, i) ∈ I∑
i∈Ie

λe,i ≤ 1 ∀e ∈ E∑
(e,i)∈I

λe,iye,i = 0⃗.

Here is how to lift the ℓ1 reweighted program in Definition 6.3.3 to ℓ22:

1. Keep all linear constraints as-is and replace the terms inside absolute values by their
squares, i.e. |⟨ye,i, x⟩| becomes ⟨ye,i, x⟩2 and |x(u)| becomes x(u)2.

2. Express everything about x ∈ RV in terms of X = xxT ∈ RV×V . Concretely, ⟨ye,i, x⟩2
becomes ⟨X, ye,iyTe,i⟩, and the constraints about x becomes the constraints about X,
both of which are linear in X.

3. The current domain of X is the set of rank-1 PSD matrices, which is not convex. To
remedy this, relax it to the set of all PSD matrices.

According to Proposition 6.1.1, submodular transformations capture all the cut func-
tions in generalized graphs. We shall see that the reweighted ℓ22 program in the preceding
definition captures the reweighted eigenvalues for these cut functions as special cases, for
an appropriately defined volume measure.

Example 6.3.12 (Reweighted Eigenvalue for Undirected Vertex Expansion). Let G =
(V,E) be an undirected graph. Let F = {Fv}v∈V be the submodular transformation so that
each Fv is the vertex cut function in Proposition 6.1.1(ii). Let µ(u) ≡ 1. We shall show
that λ∗µ(G) is equivalent to the reweighted second eigenvalue for vertex expansion of G in
Definition 1.1.1.

As a special case of Example 6.1.7, it can be seen that the extreme points of Fv are
yu,u := 0⃗ and yv,u := 1u − 1v for u ∈ ∂v, and so the Lovász extension is

F̃v(x) = max
u∈{v}∪∂v

(x(u)− x(v)).
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Since the objective of λ∗µ(F ) is linear in both X and {λe,i}, and the domains are convex and
compact, we can swap the min and the max thanks to von Neumann’s minimax theorem
Theorem 2.8.1. Regarding X as the Gram matrix of f : V → Rn (see Section 2.4), so that
X(u, v) = ⟨f(u), f(v)⟩, we have

min
X⪰0

max
{λv,u}

∑
(v,u)∈I

λv,u⟨X, yv,uyTv,u⟩ = max
{λv,u}

min
X⪰0

∑
(v,u)∈I

λv,u⟨X, yv,uyTv,u⟩

= max
{λv,u}

min
f :V→Rn

∑
(v,u)∈I

λv,u ∥f(u)− f(v)∥22 .

The first two constraints of λ∗µ(F ) are equivalent to∑
u∈V

f(u) = 0⃗ and
∑
u∈V

∥f(u)∥22 = 1, (∗)

and the remaining constraints of λ∗µ(F ) on λv,u are equivalent to the degree constraints that

1 =
∑

u:uv∈E

λv,u =
∑

u:uv∈E

λu,v ∀v ∈ V.

(We can assume without loss that
∑

u:uv∈E λv,u = 1 since 0⃗ is one of the extreme points of
B(Fv). This is akin to adding self loops to the graph as was done in Chapter 4.) Then, the
program in Definition 1.1.1 is obtained by setting P (u, v) = (λu,v + λv,u)/2 and rewriting
the maximum spectral gap objective using

max
P

1− α2(P ) = max
P

min
f :V→Rn

∑
u,v∈V

P (u, v) ∥f(u)− f(v)∥2 ,

with f subject to the constraints in (∗) and P is subject to the degree constraints that∑
u:uv∈E

P (u, v) = 1

and the reversibility constraints that P (u, v) = P (v, u). That P (u, v) = 0 if uv ̸∈ E is
implied, because there is no λu,v for uv ̸∈ E. Therefore, the objectives and the constraints
of the two programs are equivalent.

Example 6.3.13 (Reweighted Eigenvalue for Directed Edge Conductance). Suppose that
a directed graph G = (V,E) is given. Consider the submodular transformation {Fe}e∈E
where each Fe is the directed edge cut function in Proposition 6.1.1(iii), and µ(u) equals
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the total degree of u in G. We shall show that λ∗µ(F ) is equivalent to the reweighted second
eigenvalue for directed edge conductance of G in Definition 5.1.7. Again, by Example 6.1.7
the extreme points of B(Fe) are 0⃗ and yu,v := 1u−1v for e = uv, and the Lovász extension
of Fe is

F̃e(x) = max
y∈B(Fe)

⟨y, x⟩ = max(0, x(u)− x(v)).

The first two constraints of λ∗µ(F ) are equivalent to∑
u∈V

µ(u)f(u) = 0⃗ and
∑
u∈V

µ(u) ∥f(u)∥22 = 1, (∗)

and the balance constraint that ∑
uv∈E

λu,vyu,v = 0⃗

is equivalent to the Eulerian constraints on the λu,v-reweighted graph that∑
u:uv∈E

λu,v =
∑

u:vu∈E

λv,u ∀v ∈ V.

Then, the program in Definition 5.1.7 is obtained via the equivalent formulation in Propo-
sition 5.4.2 by setting A(u, v) = λu,v.

Analogous results hold for ordinary graph conductance, vertex expansion in directed
graphs, and conductance in undirected hypergraphs Proposition 6.1.1 that we have seen
in previous chapters, with appropriately defined measures µ. We omit the derivations for
brevity. We also remark that, by appropriately modifying the definitions of the expansion
ϕµ(F ) and the reweighted eigenvalue λ∗µ(F ), we can deal with weighted graphs as well, but
we choose not to do so here for simplicity.

Unlike in [Yos19] where the SDP is indeed a relaxation of λµ(F ), for which a Cheeger
inequality is known, we do not know of any general relation between the reweighted eigen-
value λ∗µ(F ) and the nontrivial eigenvalue λµ(F ). This is because λ∗µ(F ) is constructed
from the reweighted ℓ1 program instead of from λµ(F ). Even in the special case where F
is symmetric, λ∗µ(F ) and λµ(F ) are not the same.

Remark 6.3.14 (Reweighting in Symmetric Case). Consider the reweighted ℓ22 program
λ∗µ(F ) where F is symmetric. By Proposition 6.1.5 the base polytopes B(Fe) are symmetric
as well. Write ye,−i for −ye,i, which is also an extreme point in B(Fe). We can mandate
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that the weights λe,i satisfy the stronger constraints that λe,i = λe,−i for all (e, i) ∈ I, so
that the balance constraints ∑

(e,i)∈I

λe,iye,i = 0⃗

are satisfied. Then, we are free from the global balance constraints in the reweighted pro-
gram, and we can directly maximize the energy of each submodular function by choosing
λe,i∗ = λe,−i∗ = 1/2 where ye,i∗ is the maximizer for ⟨ye,i, x⟩. We establish that

λ∗µ(F ) = min
f :V→Rn

max
{λe,i}

∑
(e,i)∈I

λe,i

∥∥∥∥∥∑
u∈V

ye,i(u)f(u)

∥∥∥∥∥
2

= max
{λe,i}

min
f :V→Rn

∑
(e,i)∈I

λe,i

∥∥∥∥∥∑
u∈V

ye,i(u)f(u)

∥∥∥∥∥
2

= max
{λe,i}

min
x:V→R

∑
(e,i)∈I

λe,i
∑
j∈[n]

⟨ye,i, x⟩2,

where λe,i are subject to the balance constraints of λ∗µ(F ), and f and x are subject to their
usual normalization constraints. The first equality is by definition, the second equality is by
von Neumann’s minimax theorem (Theorem 2.8.1), and the third equality is by observing
that the inner minimization problem is independent for each coordinate of f : V → R.

If we could swap the max and the min one more time and apply the above argument
about the choice of λe,i, then λ

∗
µ(F ) and λµ(F ) would be equal. However, the domain for x

corresponds to an additional constraint on the Gram matrix X(u, v) := x(u)x(v) that it be
of rank one, which makes the domain non-convex. Therefore, even in the case where F is
symmetric, the difference between the max-min program and the min-max program explains
the difference between the reweighted eigenvalue λ∗µ(F ) and the nontrivial eigenvalue λµ(F ).

In the next few subsections, we attempt to derive a Cheeger inequality relating the
expansion ϕµ(F ) and the reweighted eigenvalue λ∗µ(F ) of a submodular transformation F .
The easy direction consists of showing that λ∗µ(F ) is still a relaxation of the expansion
ϕµ(F ), and the hard direction amounts to exhibiting and analyzing a rounding algorithm
from a solution to λ∗µ(F ) to a small-expansion subset.

6.3.3 Easy Direction

We first prove the following easy direction that the expansion of a submodular transfor-
mation upper bounds its reweighted eigenvalue.
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Proposition 6.3.15. Let F = {Fe} be a nonnegative, normalized submodular transforma-
tion on (V,E) so that each Fe has range ⊆ [0, 1]. Let µ : V → R+ be a measure on V .
Then,

λ∗µ(F ) ≤ 2ϕµ(F ).

Proof. Let S ⊆ V be such that

ϕµ(S) =
F (S)

min(µ(S), µ(Sc))
= ϕµ(F ).

Consider the following vector solution to λ∗µ(F ) where X(u, v) = ⟨f(u), f(v)⟩:

f(v) :=

{
1

µ(S)
, if v ∈ S

−1
µ(Sc)

, otherwise.

Note that f(v) are one-dimensional and X is of rank one. Moreover,

⟨ye,i, f⟩2 ≤ |⟨ye,i, f⟩| · ∥ye,i∥1 · ∥f∥∞ ≤ |⟨ye,i, f⟩| ·
2

min(µ(S), µ(Sc))
,

where the last inequality uses the definition of f and the maximum 1-norm bound on the
base polytope in Proposition 6.1.5. Now we may use the balance constraint to infer that

1

2

∑
(e,i)∈I

λe,i|⟨ye,i, f⟩| =
1

2

∑
(e,i)∈I

⟨ye,i,f⟩>0

λe,i⟨ye,i, f⟩+
1

2

∑
(e,i)∈I

⟨ye,i,f⟩≤0

λe,i⟨−ye,i, f⟩

=
∑

(e,i)∈I
⟨ye,i,f⟩>0

λe,i⟨ye,i, f⟩

≤
∑
e∈E

F̃e(f) =

(
1

µ(S)
+

1

µ(Sc)

)
· F (S) ≤ 2F (S)

min(µ(S), µ(Sc))
.

This completes the proof.

6.3.4 Hard Direction: Overview

Let X(u, v) = ⟨f(u), f(v)⟩ be a solution to the λ∗µ(F ) program, where f : V → Rn.
Following previous proofs in Chapter 4 and Chapter 5, the first step is to project the n-
dimensional solution to a one-dimensional solution, and the second step is to round the
one-dimensional ℓ22 solution to an ℓ1 solution. After that, we obtain a solution to the ℓ1
reweighted program η∗µ(F ), to which a threshold rounding procedure per Proposition 6.3.8
yields a set with small expansion.
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6.3.5 Projection to One-Dimensional Program

As before, given an n-dimensional solution f : V → Rn to the λ∗µ(F ) program, we project
to a one-dimensional solution using random Gaussian projection by setting x(v) = ⟨f(v), z⟩
where z ∼ N(0, 1)n is a random Gaussian vector. We do not have a simple condition that

bounds the projection loss in the general case. Define the one-dimensional program λ
(1)
µ (F )

as the n-dimensional program in Definition 6.3.11, but where X is required to be of rank
one. In terms of embedding, λ

(1)
µ (F ) may be formulated as

λ∗µ(F ) := min
x:V→R

max
{λe,i}

∑
(e,i)∈I

λe,i⟨x, ye,i⟩2

subject to
∑
u∈V

µ(u)x(u) = 0∑
u∈V

µ(u)x(u)2 = 1,

and where λe,i are subject to the same constraints as in Definition 6.3.11.

Proposition 6.3.16 (Projection Loss). Let F = {Fe}e∈E be a nonnegative, normalized
submodular transformation on (V,E). Suppose there is a number M(F ) such that

Ex

max
{λe,i}

∑
(e,i)∈I

λe,i(x
Tye,i)

2

 ≤M(F ) · max
{λe,i}

∑
(e,i)∈I

λe,i

∥∥∥∥∥∑
u∈V

ye,i(u)f(u)

∥∥∥∥∥
2

for any X = (⟨f(u), f(v)⟩)u,v∈V satisfying ⟨X,µµT ⟩ = 0 and ⟨X, diag(µ)⟩ = 1, and where
x(v) = ⟨f(v), z⟩ is the one-dimensional projected solution with z ∼ N(0, 1)n. Then,

λ(1)µ (F ) ≲M(F ) · λ∗µ(F ).

Proof. Let f : V → Rn be the n-dimensional solution and X is its Gram matrix. By
Fact 2.10.7 and Markov’s inequality, with probability at least 1− 1/24− 11/12 ≥ 1/24 the
projected solution x : V → R satisfies

max
{λe,i}

∑
(e,i)∈I

λe,i(x
Tye,i)

2 ≤ 24 ·M(F ) · max
{λe,i}

∑
(e,i)∈I

λe,i

∥∥∥∥∥∑
u∈V

ye,i(u)f(u)

∥∥∥∥∥
2

and
∑

u∈V µ(u)x(u)
2 ≥ 1/2. The constraint

∑
u∈V µ(u)x(u) = 0 remains true since Π is a

linear operator.

271



Perhaps the most powerful tool that one might apply to bound the expected maximum
of subgaussian random variables is generic chaining à la Talagrand [Tal05], but it is not so
easy to use. In some settings, we can again use the Large Optimal Property in Lemma 5.5.5
to find an admissible value for M(F ). Using the same proof as in Theorem 5.6.4, one can
show that, if F is such that

max
{λe,i}

∑
(e,i)∈I

λe,i⟨f, ye,i⟩2 ≥
1

K(F )
·
∑

(e,i)∈I

⟨f, ye,i⟩2 (6.5)

for any f : V → R satisfying f ⊥ µ and
∑

v∈v µ(v)f(v)
2 = 1, then Gaussian projection to

d = O(logK(F )) dimensions increases the objective value by at most a constant factor,
after which we can select the best coordinate for an additional factor d loss. This shows
that we can take M(F ) = O(logK(F )).

Example 6.3.17 (Some Symmetric Cases). In the case where F is symmetric, then by
Proposition 6.1.5, if ye,i is an extreme point of B(Fe) then so is ye,−i := −ye,i. Therefore,
by taking λe,i = 1/maxe |Ie|, the balance constraints are satisfied, and we obtain a feasible
reweighting. Therefore, we can take K(F ) = maxe |Ie| and M(F ) = O(logmaxe |Ie|). This
captures the O(log r) loss for edge conductance in hypergraphs and also, trivially, the O(1)
projection loss for the classical setting of edge conductance in undirected graphs.

Note that, however, the number of extreme points can be exponential in |V |. As an
example, let f be the function f(S) := min(|S|, |Sc|) for S ⊆ V , which can be verified to be
submodular. Suppose |V | is even. The extreme points of B(f) are then all the vectors in
{±1}V whose entries sum to zero. There are

( |V |
|V |/2

)
≍ 2|V |/|V | many of them, and so the

projection loss upper bound using the number of extreme points is only O(|V |).

Below we demonstrate using one more example from Chapter 5.

Example 6.3.18 (Directed Edge Conductance). Let G = (V,E) be a directed graph.
Consider the submodular transformation F = {Fe}e∈E on (V,E) where Fe is the directed
edge cut function as in Proposition 6.1.1(iii) for e ∈ E. From Example 6.1.11 we know that
the extreme points for B(Fe) where e = uv are ye,1 := 1u− 1v and ye,0 := 0⃗. By Hoffman’s
circulation lemma in Lemma 5.5.4, there exist αe ∈ [1, α(G)] such that the reweighted
graph with arc weights w′(e) = αe is Eulerian. Here, α(G) is the asymmetric ratio of G as
defined in Definition 5.2.1. That means by taking λe,1 = αe/α(G) and λe,0 = 0 we have∑

i∈Ie

λe,i ≤ 1 ∀e ∈ E and
∑

(e,i)∈I

λe,iye,i = 0⃗,
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so that {λe,i} is a feasible solution to the λ∗F program, and∑
(e,i)∈I

λe,i⟨f, ye,i⟩2 ≥
1

α(G)
·
∑

(e,i)∈I

⟨f, ye,i⟩2.

Therefore, we can take K(F ) = α(G) and the projection loss is thus O(logα(G)).

We prove in the following a new projection result for directed hypergraphs. The small
projection loss corroborates with the earlier remark that directed hypergraph cut functions
are “simple”.

Proposition 6.3.19 (Projection Loss for Directed Hypergraphs). Let H = (V,E) be a
directed hypergraph of rank r, and let {Fe}e∈E be a submodular transformation on (V,E),
so that each Fe is the hyperedge cut function defined in Proposition 6.1.1(vi). Then,

λ(1)µ (F ) ≲ log(r · α(GH)) · λ∗µ(F ),

where α(GH) is the asymmetric ratio of the weighted directed graph GH = (V,EH , wH)
defined as EH = V × V and wH(uv) = |{e ∈ E : u ∈ e−, v ∈ e+}|.

Proof. Referring to (6.5), it suffices to prove that K(F ) ≤ poly(r) · α(GH). Consider the
graph GH . By Hoffman’s circulation lemma in Lemma 5.5.4, there exists an assignment
αuv ∈ [1, α(GH)] of arc weights, such that the reweighted graph with arc weights w′(uv) =
αuv · wH(uv) is Eulerian. By Example 6.1.11, each nonzero extreme point of B(Fe) can
be written as ye,(u,v) := 1u − 1v where u ∈ e− and v ∈ e+. Therefore, there are at most
1+|e−|·|e+| ≤ 1+r2 extreme points for each B(Fe). Setting λe,(u,v) = αuv/((1+r

2)·α(GH)),
we have that {λe,(u,v)} is a feasible solution to the λ∗µ(F ) program, and∑

(e,(u,v))∈I

λe,(u,v)⟨f, ye,(u,v)⟩2 ≥
1

(1 + r2) · α(GH)
·
∑

(e,(u,v))∈I

⟨f, ye,(u,v)⟩2.

So, K(F ) ≤ poly(r) · α(GH), and this finishes the proof.

Open Problem 6.3.20. In a similar spirit to Lemma 5.5.2 relating vertex expansion
and asymmetric ratio of directed graphs, provide an upper bound to the projection loss for
directed hypergraphs using a more fundamental quantity than the asymmetric ratio of GH .
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6.3.6 The ℓ22 to ℓ1 Step

After projecting to a one-dimensional vector solution, the next step is the ℓ22 to ℓ1 step. It
turns out that the ℓ22 to ℓ1 step only goes through when F is simple (defined in the paragraph
before Proposition 6.1.6), and the proof faces a major obstacle in the general case. The
most general non-trivial setting that the current proof can hope to capture is directed
hypergraph expansion, which does correspond to a simple submodular transformation by
Proposition 6.1.6). We first state and prove the positive result, then discuss the difficulties
in more general settings.

Lemma 6.3.21 (ℓ22 to ℓ1 Step for Simple Submodular Transformations). Let F = {Fe}e∈E
be a simple, normalized submodular transformation on V . Let µ : V → R+ be a measure
on V , and let x : V → R be such that

∑
v∈V µ(v)x(v) = 0. Suppose that µ satisfies that

µ(v) is at least the number of Fe’s influenced by v. Then, there exists h : V → R such that∑
v∈V µ(v)h(v) = 0 and

max{λe,i}
∑

(e,i) λe,i|⟨h, ye,i⟩|∑
v∈V µ(v)|h(v)|

≲

√
max{λe,i}

∑
(e,i) λe,i⟨f, ye,i⟩2∑

v∈V µ(v)f(v)
2

,

where λe,i on both sides are subject to the constraints that λe,i ≥ 0,
∑

i∈Ie λe,i ≤ 1, and∑
(e,i) λe,iye,i = 0⃗.

Proof. The proof basically follows previous ℓ22 to ℓ1 proofs. Given f : V → R such that∑
v∈V µ(v)f(v) = 0, let c ∈ R be a µ-weighted median of f and set h in the same way as

in (3.1). Then, 0 is again a µ-weighted median of h, and the familiar denominator bound∑
v∈V

µ(v)|h(v)| =
∑
v∈V

µ(v)(f(v)− c)2 ≥
∑
v∈V

µ(v)f(v)2

holds. For the numerator, for any ye,i, we know by Example 6.1.7 that it is either the
zero vector or of the form 1u − 1v. If it is the zero vector, then |⟨h, ye,i⟩| = 0. Otherwise,
assuming without loss of generality that f(u) ≤ f(v) we have

|⟨h, ye,i⟩| = |h(u)− h(v)|
≤ (f(u)− f(v))2 + 2|f(u)− f(v)| · min

f(u)≤t≤f(v)
|t− c|

= |⟨f, ye,i⟩|2 + 2|⟨f, ye,i⟩| · min
f(u)≤t≤f(v)

|t− c|, (6.6)
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where the inequality is a strengthening of (3.2) and can again be verified by checking the
cases where h(u) and h(v) have the same signs and where they have different signs. Let

M := max
{λe,i}

∑
(e,i)∈I

λe,i⟨f, ye,i⟩2

and write ue,i and ve,i for u and v for a specific extreme point ye,i. For any feasible
reweighting {λe,i}, we have∑

(e,i)∈I

λe,i|⟨h, ye,i⟩|

≤
∑

(e,i)∈I

λe,i⟨f, ye,i⟩2 + 2
∑

(e,i)∈I

λe,i|⟨f, ye,i⟩| · min
f(ue,i)≤t≤f(ve,i)

|t− c|

(∗)
≤

∑
(e,i)∈I

λe,i⟨f, ye,i⟩2 + 2

√√√√ ∑
(e,i)∈I

λe,i⟨f, ye,i⟩2 ·
∑

(e,i)∈I

λe,i

(
min

f(ue,i)≤t≤f(ve,i)
|t− c|

)2

≤ M + 2

√
M ·

∑
(e,i)∈I

λe,i(f(ue,i)− c)2

≤ M + 2

√
M ·

∑
u∈V

µ(u)(f(u)− c)2,

where we used the Cauchy-Schwarz inequality in (∗) and the definition of µ in the final
inequality.

Since F is simple and normalized, by the definition of µ we have

F (∅) = µ(∅) = 0 and F (S)− F (S \ {u}) ≤ µ(u)

for all S ⊆ V and u ∈ V \ S. This shows that ϕµ(F ) ≤ 1 and by the easy direction in
Proposition 6.3.15 we have

M∑
u∈V µ(u)f(u)

2
=

max{λe,i}
∑

(e,i) λe,i⟨f, ye,i⟩2∑
u∈V µ(u)f(u)

2
≤ O(1).
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Combining these inequalities,

max{λe,i}
∑

(e,i) λe,i|⟨h, ye,i⟩|∑
v∈V µ(v)|h(v)|

≤ M∑
v∈V µ(v)|h(v)|

+ 2

√
M∑

v∈V µ(v)|h(v)|

≤ M∑
v∈V µ(v)f(v)

2
+ 2

√
M∑

v∈V µ(v)f(v)
2

≲

√
M∑

v∈V µ(v)f(v)
2
,

from which the result follows.

Remark 6.3.22 (ℓ22 to ℓ1 Argument in General Case). In general, we do not know of a
way to construct the ℓ1 solution h from f , so there there is a relation like (6.6) between
|⟨h, ye,i⟩| and |⟨f, ye,i⟩|, where ye,i is an extreme point of B(Fe). The high-level explanation
is that ye,i may no longer be the extreme point that maximizes ⟨f, ye,i⟩, and so cancellations
may occur when evaluating the inner product, which do not easily carry from ℓ22 to ℓ1.

To give a concrete example, let y = (1, 1, 1,−1,−1,−1) and f = (3,−1,−2, 1, 1,−2).
Then

∑
u∈V f(u) = 0 and ⟨f, y⟩ = 0. Using the mapping in (3.1) to construct h, we have

h = (9,−1,−4, 1, 1,−4), and clearly |⟨h, y⟩| > 0.

Therefore, it seems that for the ℓ22 to ℓ1 step to go through, we cannot hope to control
each individual extreme point, and a more global argument is needed.

6.3.7 Cheeger Inequality for Directed Hypergraph Expansion

We are now ready to prove the first main result of the chapter, which is a Cheeger inequality
for directed hypergraphs.

Theorem 6.3.23 (Cheeger Inequality for Directed Hypergraphs). Let H = (V,E) be a
directed hypergraph. Consider its edge conductance which is defined in Section 2.3.3 as

ϕ⃗µ(S) :=
min(|δ+(S)|, |δ+(Sc)|)
min

{
µ(S), µ(Sc)

} and ϕ⃗µ(H) := min
∅≠S⊂V

ϕ⃗µ(S),

where µ is the total degree measure. Let Fe be the submodular cut function defined in
Proposition 6.1.1(vi) for each directed hyperedge e ∈ E, and let FH = {Fe}e∈E. Then,

ϕ⃗µ(H)2

log(r · α(GH))
≲ λ∗µ(FH) ≲ ϕ⃗µ(H),
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where α(GH) is the asymmetric ratio of the weighted directed graph GH = (V,EH , wH)
defined as EH = V × V and wH(uv) = |{e ∈ E : u ∈ e−, v ∈ e+}|. Moreover, a cut S ⊆ V
with this expansion guarantee can be produced in polynomial time.

Proof. First, we reformulate the conductance problem as the µ-expansion of FH . Indeed,
for

Fe(S) := 1[e− ∩ S ̸= ∅ ∧ e+ ∩ Sc ̸= ∅]

as defined in Proposition 6.1.1(vi), we have FH(S) = |δ+(S)|, ϕ⃗µ(S) = min(ϕµ(S), ϕµ(S
c)),

and consequently,
ϕµ(FH) = ϕ⃗µ(H).

Therefore, we need to prove that

ϕµ(FH)
2

log(r · α(GH))
≲ λ∗µ(FH) ≲ ϕµ(FH).

It is easy to verify that FH is nonnegative and normalized, and so the easy direction is just
Proposition 6.3.15. For the hard direction, given an optimal solutionX(u, v) = ⟨f(u), f(v)⟩
to λ∗µ(FH), we project to a one-dimensional ℓ22 solution x : V → R using Proposition 6.3.19
and construct a one-dimensional ℓ1 solution h : V → R from x using Lemma 6.3.21. h
satisfies the guarantees that

∑
u∈V µ(u)h(u) = 0 and

max{λe,i}
∑

(e,i) λe,i|⟨h, ye,i⟩|∑
v∈V µ(v)|h(v)|

≲
√
log(r · α(GH)) · λ∗µ(FH).

Therefore, an appropriately scaled version of h is a feasible solution to the ℓ1 reweighted

program η∗µ(FH) in Definition 6.3.3, with objective value O
(√

log(r · α(GH)) · λ∗µ(FH)
)
.

Then, the rounding algorithm in Proposition 6.3.8 produces a set S ⊆ V such that

ϕµ(S) ≲
√
log(r · α(GH)) · λ∗µ(FH).

Squaring and rearranging, we obtain the hard direction.

Since λ∗µ(FH) is an SDP with polynomially many constraints, hence solvable in polyno-
mial time, and that the projection step, the ℓ22 to ℓ1 step, and the threshold rounding step all
take polynomial time, the proof of the hard direction informs a polynomial-time algorithm
to produce a cut S ⊆ V with expansion guaranteed by our Cheeger inequality.
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6.3.8 Generalizations of Cheeger Inequality for Directed Hyper-
graph Expansion

In this section, we discuss generalizations of Cheeger inequality for directed hypergraphs.
Since edge conductance in directed graphs is a special case, we do not expect an analogue
of bipartite Cheeger inequality nor higher order Cheeger inequality. However, it is indeed
possible to prove an analogue of the improved Cheeger inequality with an appropriate
definition of higher eigenvalues.

First, we define the k-th reweighted eigenvalue of a submodular transformation, which
is defined by replacing the normalization constraints on X with spreading constraints.
This is a generalization of the definitions of k-th reweighted eigenvalues in Chapter 4 and
Chapter 5.

Definition 6.3.24 (k-th Reweighted Eigenvalue for Submodular Transformations). Let
F = {Fe}e∈E be a nonnegative, normalized submodular transformation on (V,E) and µ be
a measure on V . Let {ye,i}i∈Ie be an enumeration of the extreme points of B(Fe), and write
I := {(e, i) | e ∈ E, i ∈ Ie}. Define the (λ∗µ)k(F ) program as

max
{λe,i}

λk

 ∑
(e,i)∈I

λe,iye,iy
T
e,i


subject to λe,i ≥ 0 ∀(e, i) ∈ I∑

i∈Ie

λe,i ≤ 1 ∀e ∈ E∑
(e,i)∈I

λe,iye,i = 0⃗,

We leave it as an exercise to verify that (λ∗µ)2(F ) is equivalent to λ∗µ(F ) defined in
Definition 6.3.11.

Below, we prove an improved Cheeger inequality for simple submodular transforma-
tions/directed hypergraphs.

Theorem 6.3.25 (Improved Cheeger Inequality for Directed Hypergraphs). Let H =
(V,E) be a directed hypergraph. Let µ be the total degree measure on V . Let Fe be the
submodular cut function defined in Proposition 6.1.1(vi) for each directed hyperedge e ∈ E,
and FH = {Fe}e∈E. Then, for any 2 ≤ k ≤ n/2,

λ∗µ(FH) ≲ ϕ⃗µ(H) ≲
k · log(r · α(GH)) · λ∗µ(FH)√

(λ∗µ)k(FH)
,
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where α(GH) is the asymmetric ratio of the weighted directed graph GH = (V,EH , wH)
defined as EH = V × V and wH(uv) = |{e ∈ E : u ∈ e−, v ∈ e+}|. Moreover, a cut S ⊆ V
with this expansion guarantee can be produced in polynomial time.

Proof. As before, ϕ⃗µ(H) = ϕµ(FH). The easy direction is directly from Theorem 6.3.23.
For the hard direction, following Section 4.6, we first define a convex relaxation of (λ∗µ)k(FH),
which we call (σ∗

µ)k(FH) and may be interpreted as the sum of the k-smallest reweighted
eigenvalues:

min
X⪰0

max
{λe,i}

∑
(e,i)∈I

λe,i⟨X, ye,iyTe,i⟩

subject to diag(µ)
1
2X diag(µ)

1
2 ⪯ In

tr
(
diag(µ)

1
2X diag(µ)

1
2

)
= k

λe,i ≥ 0 ∀(e, i) ∈ I∑
i∈Ie

λe,i ≤ 1 ∀e ∈ E∑
(e,i)∈I

λe,iye,i = 0⃗,

We shall then show an improved threshold rounding guarantee as in the proof of Proposi-
tion 4.6.1 that:

Proposition 6.3.26. For any given one-dimensional solution X(u, v) = ⟨x(u), x(v)⟩ to
the (σ∗

µ)k(FH) program with inner maximization objective M(X), where x : V → R, and
a k-step function yx : V → R approximating x (see Definition 3.1.17), we can construct
from it a one-dimensional ℓ1 solution h : V → R, such that

max{λe,i}
∑

(e,i) λe,i|⟨h, ye,i⟩|∑
v∈V µ(v)|h(v)|

≲ k ·M(X) + k · ∥x− yx∥µ ·
√
M(X)

and
∑

u∈V µ(u)h(u) = 0.

The proof of Proposition 6.3.26 is deferred to Appendix B. Next, as in Proposition 4.6.2
we control the quality of the k-step approximation using (σ∗

µ)k(F ):

Proposition 6.3.27. For any one-dimensional feasible solution X to the (σ∗
µ)k(FH) pro-

gram with inner maximization objective M(X), where X(u, v) = ⟨x(u), x(v)⟩ for x : V →
R, there exists a k-step function y approximating x, with

∥x− y∥2µ ≲
k ·M(X)

(σ∗
µ)k(FH)

.
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The proof of Proposition 6.3.27 is also deferred to Appendix B.

Assuming these two propositions, we may prove the hard direction as follows. Let
X be an optimal solution to the (σ∗

µ)2k(F ) program, where X(u, v) = ⟨f(u), f(v)⟩ with
f : V → Rn. Project f to a one-dimensional solution x : V → R using Proposition 6.3.19.
Construct the (2k)-step approximation yx to x using Proposition 6.3.27 and round to an
ℓ1 solution h : V → R using Proposition 6.3.26, which satisfies

max{λe,i}
∑

(e,i) λe,i|⟨h, ye,i⟩|∑
v∈V µ(v)|h(v)|

≲ (2k) ·M(X) + (2k) · ∥x− yx∥µ ·
√
M(X) (by Proposition 6.3.26)

≲
k

3
2 ·M(X)√
(σ∗

µ)2k(FH)
(by Proposition 6.3.27)

≲
k

3
2 · log(r · α(GH)) · λ∗µ(FH)√

(σ∗
µ)2k(FH)

, (by Proposition 6.3.19)

and the proof of the hard direction is complete using the simple fact that the sum of the
smallest 2k eigenvalues of the reweighting is at least k times the k-th smallest eigenvalue
of the reweighting, i.e.

(σ∗
µ)2k(FH) ≥ k · (λ∗µ)k(FH);

see Section 4.6 for reference.

Finally, it is straightforward to verify that all of the steps can be implemented in
polynomial time.

6.4 Second Approach: Energy using Flows

In this section, we introduce informally a potential second approach for defining reweighted
eigenvalues on submodular transformations. The motivation is to overcome the obstacle
of the ℓ22 to ℓ1 step that bad cancellations might occur when evaluating the inner product
⟨y, x⟩ for extreme points y of the base polytopes B(Fe).

As we have seen in Lemma 6.3.21 that the ℓ22 to ℓ1 step works when F is simple, i.e. the
extreme points y only take the form yu,v := 1u − 1v. For more complex points y ∈ B(Fe),
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since y ⊥ 1V , we may try to express y as a convex combination of the simple extreme
points 1u − 1v, so that

⟨y, x⟩ =
∑
u,v∈V

ρu,v⟨yu,v, x⟩ =
∑
u,v∈V

ρu,v(x(u)− x(v)),

where ρu,v are subject to constraints induced by the constraints governing y. The opti-
mization problem from the Lovász extension

max
y∈B(Fe)

⟨y, x⟩

can then be regarded as a kind of multicommodity flow problem, where the goal is to find
a flow ρ, so that the induced demand y respects submodular constraints, and that the total
ℓ1 “energy” is maximized.

The goal of the reweighting is to replace x(u)−x(v) by |x(u)−x(v)|, so that the program
can be lifted to ℓ22. One issue arises: while the original flow problem is conservative, in the
sense that the energy incurred by a flow path only depends on the start and end points,
the same can no longer be said when the edge energy becomes |x(u)− x(v)|. For example,
if x = (1, 0, 1− ε) where ε ∈ (0, 1), then in the original setting, the unit flow paths 1→ 3
and 1→ 2→ 3 have the same energy ε, but in the reweighted setting, 1→ 3 has energy ε
whereas 1→ 2→ 3 has energy 2− ε. Therefore, additional constraints on ρu,v are needed
to ensure that the energy does not blow up.

We say that a submodular transformation F = {Fe}e∈E is positively edge decomposable
if there exists a polyhedral constraint set

F(e) :=

{
ρ(e)u,v ∈ RV×V

≥0 :
∑
u,v

c(e)u,vρ
(e)
u,v ≤ b(e)

}

for each e ∈ E where c
(e)
u,v are vectors with nonnegative entries, such that

max
ye∈B(Fe)

∑
e∈E

⟨ye, x⟩ = max
ρ
(e)
u,v∈F(e)

ρu,v “Eulerian”

∑
e∈E

∑
u,v∈V

ρ(e)u,v|x(u)− x(v)| (6.7)

for all x ∈ RV , and where ρ
(e)
u,v is subject to an additional Eulerian balance constraint that

∑
e∈E

[∑
v∈V

ρ(e)u,v −
∑
v∈V

ρ(e)v,u

]
= 0
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for all u ∈ V . A submodular transformation F = {Fe}e∈E is approximately positively edge
decomposable if, instead of both sides being equal in (6.7), they are within a constant factor
of one another.

This definition is motivated by reweighted eigenvalues for directed hypergraphs. In
that case, our constraints here are that ρ

(e)
u,v ≤ 0 for u ̸∈ e− or v ̸∈ e+, and that∑

u∈e−,v∈e+
ρ(e)u,v ≤ 1,

and that the ρ-reweighted graph is Eulerian. The corresponding reweighting in Defini-
tion 6.3.3 is simply by taking λe,(u,v) = ρ

(e)
u,v for the extreme point ye,(u,v) := 1u−1v ∈ B(Fe).

Example 6.4.1 (Cardinality-Based Submodular Function). Another example is the fol-
lowing cardinality-based submodular function f(S) := min(|S|, |V \S|). Assuming that |V |
is even, the extreme points are all vectors in {±1}V whose entries sum to zero. Therefore,
f̃(x) is equal to the sum of the largest |V |/2 entries in x minus the sum of the smallest
|V |/2 entries in x.

One can check that this is equivalent to finding the maximum fractional matching on
the graph (V, V ×V ) where the edge weight w(uv) = |x(u)−x(v)| and the fractional degree
of each u ∈ V is at most one. This can be translated into the constraints that ρu,v ≥ 0 and∑

v∈V ρu,v +
∑

v∈V ρv,u ≤ 1 for all u ∈ v, and so f is positively edge decomposable.

Geneally, we define the reweighted ℓ1 program as follows:

min
x:V→R

max
ρ
(e)
u,v∈F(e)

∑
e∈E

∑
u,v∈V

ρ(e)u,v|x(u)− x(v)|

subject to
∑
u∈V

µ(u)x(u) = 0∑
u∈V

µ(u)|x(u)| = 1

∑
e∈E

[∑
v∈V

ρ(e)u,v −
∑
v∈V

ρ(e)v,u

]
= 0 ∀u ∈ V.

By (6.7), this is equivalent to the fractional ℓ1 program ηµ(F ) defined in Definition 6.3.1. By
Theorem 6.3.9, the latter is in turn equal, up to multiplicative constant, to the expansion
ϕµ(F ).

We can then define a reweighted eigenvalue by lifting this reweighted ℓ1 program to
ℓ22, replacing |x(u) − x(v)| with ∥f(u)− f(v)∥

2 and the ℓ1 normalization constraints on x

282



with ℓ22 normalization constraints on f . The easy direction that the reweighted eigenvalue
is upper bounded by ϕµ(F ) still holds. As for the hard direction, the projection step loss
again can be analyzed using large optimal property, the ℓ22 to ℓ1 step goes through assuming
an appropriate choice of vertex measure µ, and the threshold rounding step follows from
the ℓ1 result. We omit the details here.

One important question here is the applicability of this approach. While it works for
directed hypergraph expansion and the counting-based cut function, it would be useful
to identify a subclass of interesting submodular transformations that are approximately
positively edge decomposable and for which a spectral theory via this approach is possible.

6.5 Concluding Remarks

In this chapter, we lifted the framework of reweighted eigenvalues to submodular transfor-
mations. We proposed a definition of reweighted eigenvalue for submodular transforma-
tions and explored the possibility of a Cheeger inequality relating reweighted eigenvalue
and expansion. We observe that the definition of reweighted eigenvalue deviates from past
approaches: instead of designing an SDP relaxation for the natural nontrivial eigenvalue
program λµ(F ), reweighted eigenvalue is lifted from a reweighted ℓ1 program, which is
formed by “symmetrizing” the Lovász extension and imposing a global balance constraint
to control the objective value.

Our investigation identifies the ℓ22 to ℓ1 step as the bottleneck towards this goal. This
step only goes through for simple submodular transformations, which correspond exactly
to edge conductance in directed hypergraphs. Therefore, while reweighted eigenvalue yields
a comprehensive spectral theory for generalized graphs, it does not appear to be a viable
route towards a spectral theory for more complex settings.

In terms of positive results, we proved a Cheeger inequality for edge conductance in
directed hypergraphs. With an appropriate definition of k-th reweighted eigenvalue, we
proved an improved Cheeger inequality for directed hypergraphs. We remark that these
results hold for weighted directed hypergraphs as well, with suitable modifications to the
definitions and the proofs.

There are some concrete open problems. The first is to either find an alternative proof
for the ℓ22 to ℓ1 step or exhibit a counterexample. The second is to give a more explicit
analysis of the projection loss in Section 6.3.5, especially for directed hypergraphs. The
third is to identify an interesting subclass of submodular transformations for which the
second approach in Section 6.4 works.
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Chapter 7

Reweighted Eigenvalues for Special
Graphs

In this chapter, we investigate reweighted eigenvalues for special classes of undirected
graphs. First, we prove that classes of graphs such as planar graphs, bounded genus graphs,
and H-minor free graphs have small reweighted second eigenvalue. Using the Cheeger
inequality established in Chapter 4 relating the second reweighted eigenvalue λ∗2(G) and
vertex expansion ψ(G) of a graph G, our result implies that the spectral rounding algorithm
using reweighted eigenvalue finds small balanced separators in these special graphs, with a
better upper bound on separator size than obtained in previous work [ST96, Kel06, BLR10].

We then prove that the same classes of graphs have small k-th reweighted eigenvalue
λ∗k(G), which completes the picture and provides a performance guarantee for the spectral
algorithm in Chapter 4 for finding k-way vertex cuts in these special graphs.

7.1 Our Results

Let G = (V,E) be an undirected graph. Before stating the results, let us recall the formal
definition of reweighted eigenvalues.

Definition 7.1.1 (Reweighted Eigenvalues (restatement of Definition 4.1.9)). Let G =
(V,E) be a graph and let π : V → R+ be a distribution on V . The maximum reweighted
k-th smallest eigenvalue of the normalized Laplacian matrix of G is defined as λ∗k(G) :=
maxP≥0 λk(I − P ), where P is subject to the following constraints: P (u, v) = 0 if uv ̸∈ E,∑

v∈V P (u, v) = 1 for all u ∈ V , and π(u)P (u, v) = π(v)P (v, u) for all u, v ∈ V .
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7.1.1 Spectral Algorithm for Balanced Separators in Planar Graphs

Our first result is an upper bound on the second reweighted eigenvalue λ∗2(G) when G is a
planar graph.

Theorem 7.1.2 (Reweighted Eigenvalue Upper Bound for Planar Graphs). Let G = (V,E)
be a planar graph, and π be the uniform distribution on V . Then, λ∗2(G) ≤ O(1/n).

Note that the eigenvalue upper bound has no dependence on the maximum degree ∆.
A recursive application of the vertex cut-finding algorithm using reweighted eigenvalues
(see Section 4.3 and Section 3.5.2) yields a balanced separator1 of size O(

√
(log∆) · n).

This is already an improvement over the spectral algorithm by Spielman and Teng [ST96]
(see Section 3.5.3) which produced balanced separators of size O(

√
∆ · n).

To match the Lipton-Tarjan optimal separator size of O(
√
n) [LT79], we instead start

with an appropriate vector solution to a low-dimensional dual program γ(d)(G) (which is
defined the same as γ(G) in Proposition 3.2.3 but with f : V → Rd instead of Rn) and
bypass the projection step. The result is summarized below.

Theorem 7.1.3 (Objective Value of Low-Dimensional Dual Program). Let G = (V,E) be
a planar graph, and π be the uniform distribution. Define the d-dimensional dual program
as

γ(d)(G) := min
f :V→Rd, g:V→R≥0

1

n

∑
v∈V

g(v)

subject to
1

n

∑
v∈V

∥f(v)∥2 = 1∑
v∈V

f(v) = 0⃗

g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E.

Then, there is a polynomial-time algorithm that computes a solution (f, g) to γ(3)(G) with
objective value O(1/n).

As a result, by selecting the best coordinate to be the one-dimensional solution and
following the algorithmic proof of Theorem 4.3.7 that ψ(G)2 ≲ γ(1)(G), we obtain a vertex

1Recall from Section 3.5.2 that a balanced separator is defined as a set of vertices, whose removal will
break the graph into connected components of size at most 2n/3.
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subset S ⊆ V such that 0 < |S| ≤ n/2 and

ψ(S) ≲
√
γ(1)(G) ≤

√
3 · γ(3)(G) ≲ 1√

n
,

and recursive application of this algorithm (again, see Section 3.5.2) yields a balanced
separator of size O(

√
n), which is optimal up to constants. We give a precise runtime

guarantee for the resulting spectral partitioning algorithm below.

Corollary 7.1.4 (Spectral Partitioning using Low-Dimensional Embedding). Let G =
(V,E) be a planar graph and π be the uniform distribution. Then, there is a polynomial-
time algorithm that extracts a balanced separator of size O(

√
n) using γ(3)(G) defined in

Theorem 7.1.3. Furthermore, the runtime of the algorithm is Õ(n2).

We shall prove Theorem 7.1.2, Theorem 7.1.3, and Corollary 7.1.4 in Section 7.2.

7.1.2 Second Eigenvalue Bounds for Other Special Graphs

Our second result is an adaptation of the work by Biswal, Lee, and Rao [BLR10] to upper
bound the second smallest reweighted eigenvalue λ∗2(G) of two special classes of graphs:
graphs of bounded genus g, and graphs that are Kh-minor free. A simple modification of
their proof yields the following analogous result for reweighted eigenvalues under uniform
vertex distribution.

Theorem 7.1.5 (λ∗2(G) Upper Bound for Special Graphs). Let G = (V,E) be a graph,
and let π = 1/n be the uniform distribution on V . Then the following upper bounds on
λ∗2(G) hold:

• If G is of genus g, then λ∗2(G) ≤ O(g log2 g/n).

• If G is Kh minor-free, then λ∗2(G) ≤ O(h6 log h/n).

As a result of this theorem and the vertex Cheeger inequality (Theorem 4.1.3), the
spectral partitioning algorithm using reweighted eigenvalues yields a balanced separator

of size O(
√
g log2 g · log∆ · n) if G is of genus g, and size O(

√
h6 log h · log∆ · n) if G is

Kh-minor free. To the best of our knowledge, Theorem 3.5.5 by [BLR10] was the previous
best-known spectral algorithm for balanced separators in these special classes of graphs,
and our results improve the dependence of the separator size on the maximum degree ∆
from

√
∆ to

√
log∆.

Furthermore, a careful adaptation of their proof yields the following generalization for
reweighted eigenvalues under arbitrary distribution on V .
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Theorem 7.1.6 (λ∗2(G) Upper Bound for Special Graphs, Arbitrary Distribution). Let
G = (V,E) be a graph, and let π : V → R+ be any distribution on V that satisfies
πmax := maxv∈V π(v) ≤ 1/2. Then the following upper bounds on λ∗2(G) hold:

• If G is of genus g, then λ∗2(G) ≤ O(πmax · g log2 g).

• If G is Kh minor-free, then λ∗2(G) ≤ O(πmax · h6 log h).

We shall prove Theorem 7.1.5 and Theorem 7.1.6 in Section 7.3.

7.1.3 Higher Eigenvalue Bounds for Special Graphs

Our third result is an adaptation of the work by Kelner, Lee, Price, and Teng [KLPT11]
to upper bound the k-th smallest reweighted eigenvalue λ∗k(G) of special classes of graphs.

Theorem 7.1.7 (λ∗k(G) Upper Bound for Special Graphs). Let G = (V,E) be a graph,
and let π = 1/n be the uniform distribution on V . Let 2 ≤ k ≤ n. Then the following
upper bounds on λ∗k(G) hold:

• If G is planar, then λ∗k(G) ≤ O( k
n
).

• If G is of genus g, then λ∗k(G) ≤ O( k
n
· g log2 g).

• If G is Kh minor-free, then λ∗k(G) ≤ O( k
n
· h6 log h).

As a result of Theorem 7.1.7, the spectral partitioning algorithm from the higher-order
Cheeger inequality for reweighted eigenvalues (see Theorem 4.1.10) using λ∗2k(G) yields k
disjoint subsets S1, . . . , Sk, such that each Si has vertex expansion at most:

• O(k
3
2 log k

√
(log∆)/n) for planar graphs,

• O(k
3
2 log k

√
g log2 g · (log∆)/n) for genus g graphs, and

• O(k
3
2 log k

√
h6 log h · (log∆)/n) for Kh-minor free graphs.

Furthermore, a careful adaptation of their proof yields the following generalization for
reweighted eigenvalues under arbitrary distribution on V .
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Theorem 7.1.8 (λ∗k(G) Upper Bound for Special Graphs, Arbitrary Distribution). Let
G = (V,E) be a graph, and let 2 ≤ k ≤ n. Let π : V → R+ be any distribution on V that
satisfies πmax := maxv∈V π(v) ≤ 1/k. Then the following upper bounds on λ∗k(G) hold:

• If G is planar, then λ∗k(G) ≤ O(kπmax).

• If G is of genus g, then λ∗k(G) ≤ O(kπmax · g log2 g).

• If G is Kh minor-free, then λ∗k(G) ≤ O(kπmax · h6 log h).

We shall prove Theorem 7.1.8 and Theorem 7.1.7 in Section 7.4.

7.2 Recovering the Planar Separator Theorem

In this section, we prove Theorem 7.1.3 that, for any planar graph G = (V,E), a solution
(f, g) to the three-dimensional program γ(3)(G) with objective value O(1/n) exists and
can be computed in polynomial time. This immediately implies Theorem 7.1.2. We then
analyze the runtime of the algorithm in finding O(

√
n)-sized balanced separators to obtain

Corollary 7.1.4.

Following Spielman and Teng [ST96], we start with the Koebe-Andreev-Thurston “kiss-
ing disks” embedding on the sphere S2; see Section 3.5.3 for a review. Spielman and Teng
considered a family of circle-preserving maps on S2 and used the Brouwer fixed point the-
orem to establish the existence of a map that make the average position of the disk centers
equal to the origin, thus giving a feasible solution to the minimization problem for λ′2(G).
The objective value of the solution is upper bounded using a geometric argument.

To provide an upper bound for γ(3)(G), we show how to construct a feasible solution
(f, g) to the program from the “kissing disks” embedding. To make the proof algorithmic,
we must construct the solution explicitly, instead of applying Brouwer fixed point theorem
which merely establishes existence. The key observation is that it suffices, as an interme-
diary step, to ensure that the centers are not too concentrated in a small area. This is a
significantly easier task, and there is a simple procedure that does so whilst preserving the
“kissing disks” configuration. This is the content of Section 7.2.1. Then, we upper bound
the objective value of the obtained solution using a similar geometric argument to [ST96].
This is the content of Section 7.2.2.
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7.2.1 Balancing the Centers of Kissing Disks

Suppose that the following “kissing disks” embedding v 7→ Dv is computed, where Dv is a
spherical cap with center z(v) and geodesic radius r(v) > 0. The goal of this subsection is
to construct explicitly a circle-preserving map like the Φw,ρ map defined in Section 3.5.3,
so that if z̄(v) is the center of the mapped disk D̄v, then the average position

z̄avg :=
1

n

∑
v∈V

z̄(v)

has ℓ2 distance at most 1 − c from the origin for some absolute constant c > 0. This is
enough for the construction of a feasible solution to γ(3)(G) with objective value O(1/n)
in the next subsection.

Lemma 7.2.1 (Balancing Kissing Disks). Let G = (V,E) be a graph and suppose that a
“kissing disks” embedding v 7→ Dv is given; more precisely, Dv ⊆ S2 are geodesic disks in
S2 := {(x, y, w) ∈ R3 : x2 + y2 + w2 = 1} given in center-radius form, with centers z(v)
and radii r(v), such that their interiors are pairwise disjoint, and Du and Dv touch if and
only if uv ∈ E. Then, for some universal constant 0 < c < 1, we can compute in linear
time another “kissing disks” embedding v 7→ D̄v, such that if z̄(v) ∈ S2 is the center of the
mapped disk D̄v, then ∥∥∥∥∥ 1n∑

v∈V

z̄(v)

∥∥∥∥∥ ≤ 1− c. (7.1)

Our strategy is to apply a series of disk-preserving mappings to the original embedding,
informally described below.

1. Take w ∈ S2 to be any point so that w is not in the closure of any disk, and
stereographically project S2 to the plane tangent to S2 at −w.

2. Translate the disks on the plane so that (0, 0) is the “median” of their centers.

3. Scale the disks to control the distances from the disks to (0, 0).

4. Apply inverse stereographic projection back to S2.

Intuitively, the second and third steps ensure that, after the inverse stereographic pro-
jection in the last step, the centers of the disks will be reasonably “well-spread” in both
longitudinal and latitudinal directions.
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Proof. First, since stereographic projection and its inverse, as well as translation and dila-
tion on the plane are all disk-preserving transformations that preserve the “kissing disks”
property, the outcome of the transformation is a “kissing disks” embedding on S2.

Then, we shall prove (7.1) for the centers z̄(v) of the mapped disks. It is easier to prove
the equivalent “balanced” condition holds for z̄(v) that∑

u,v∈V

∥z̄(u)− z̄(v)∥2 ≥ Ω(n2). (7.2)

Note that ∥z̄(u)∥ = 1 since z̄(u) is on the unit sphere, and since

∑
u,v∈V

∥z̄(u)− z̄(v)∥2 = 2n
∑
v∈V

∥z̄(u)∥2 − 2
∑
u,v∈V

⟨z̄(u), z̄(v)⟩ = 2n2

1−

∥∥∥∥∥ 1n∑
v∈V

z̄(v)

∥∥∥∥∥
2
 ,

the above condition implies the desired condition that∥∥∥∥∥ 1n∑
v∈V

z̄(v)

∥∥∥∥∥ ≤ 1− c

for some universal constant c ∈ (0, 1).

We now describe our transformation in full detail.

1. First, take w ∈ S2 to be any point so that w is not in the closure of any disk, and
stereographically project2 S2 to the plane tangent to S2 at −w. To find such w, one
way is to choose an arbitrary disk and choose a point close to its boundary that is
not in the closure of any other disks.

After the stereographic projection step, identify the plane with the standard Eu-
clidean plane R2 and assign (x, y) coordinates to points, and call the normal direction
the w-axis. Refer to Figure 7.1 for a visualization of the coordinate system. Write
DΠ
v as the image of the disk Dv under this projection, and zΠ(v) = (xΠ(v), yΠ(v))

as the center of DΠ
v . Note that in general, this is not the image of the original disk

center z(v) under the projection.

2. The translation step follows. We translate the disks so that the median of xΠ(v) is
zero and the median of yΠ(v) is zero. While this does not give precise control of the

2See Figure 3.3 for an illustration.
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location of the disk centers after lifting back to the sphere, it ensures that the “left”
and right” half (Q3∪Q4 and Q1∪Q2 respectively, in Figure 7.1) each contains at most
n/2 centers, and the “top” and “bottom” half (Q2 ∪Q3 and Q1 ∪Q4 respectively, in
Figure 7.1) each contains at most n/2 centers.

3. Then comes the scaling step. We dilate the disks about the plane origin by the
smallest possible factor so that, after the inverse stereographic projection in the final
step, at least 1/10 of the disk centers z̄(v)3 lie in the southern hemisphere, i.e. the
lower half of S2 in the w-direction. This is possible since, for every disk DΠ

v except
at most one disk containing the plane origin, the distance from the center z̄(v) of the
lifted disk to the south pole increases monotonically from 0 to π (distance between
south pole and north pole) as the scaling factor increases from 0 to ∞. We may find
the desired scaling factor by computing, for each disk, the threshold scaling factor
that makes the distance from z̄(v) to the south pole equal to π/2, and sorting the
scaling factors.

4. At last, we apply inverse stereographic projection to obtain disks D̄v on the sphere
with centers z̄(v).

We verify (7.2) for the mapped centers z̄(v). There are two cases to consider.

In the first case, at least 1/10 of the centers z̄(v) have distance at least 5π/6 from the
south pole. Let’s call this set of points N , and the set of points in the southern hemisphere
S. The geodesic distance between any point in N and any point in S is Ω(1), and so the
Euclidean distance is at least a universal constant δ1 > 0, from which it follows that∑

u,v∈V

∥z̄(u)− z̄(v)∥2 ≥
∑
u∈N

∑
v∈S

∥z̄(u)− z̄(v)∥2 ≥ δ1 · |N | · |S| ≥
δ1n

2

100
,

so (7.2) is true in this case.

In the second case, at most 1/10 of the centers z̄(v) have distance at least 5π/6 from
the south pole. Then, there are at least n(1 − 1/10 − 1/10) = 4n/5 centers in the strip
region denoted R, which is the set of points in the sphere whose geodesic distance to the
south pole is between π/2 and 5π/6. Let Ri := Q̂i ∩ R where Q̂i := Qi × R and Qi are
the quadrants in Figure 7.1. Take the region Ri∗ containing the fewest centers, which will
contain at most n/4 centers. For now, assume that the following claim is true:

3Again, we caution that this is in general not the image of zΠ(v) (after translation and scaling) under
the inverse stereographic projection.
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Figure 7.1: The quadrants Qi of the plane. Boundaries are not included. For example, Q1

is the set of points on the plane whose x-coordinates are positive and y-coordinates are
negative. We use Q̂i to denote Qi × R, which is the set of points in the xyw-space whose
projection to the plane lies in Qi. In this xyw-coordinate system, the south pole and the
north pole of S2 are the points (0, 0, 0) and (0, 0, 2) respectively.

Claim 7.2.2. Any two adjacent regions Ri and Rj contain at least 3n/10 centers in total
in the closure.

Then, the two regions Rj and Rk adjacent to Ri∗ each contain at least 3n/10− n/4 =
n/20 centers. As Rj and Rk are not adjacent, the geodesic distance between any point
in Rj and any point in Rk is Ω(1), and so the Euclidean distance is at least a universal
constant δ2 > 0. By the same argument as the first case, we have∑

u,v∈V

∥z̄(u)− z̄(v)∥2 ≥ δ2n
2

400
,

again verifying (7.2).

So, conditioned on Claim 7.2.2, (7.2) holds for the centers z̄(v) of the mapped disks.
Proving Claim 7.2.2 amounts to verifying that, if the center of the disk is in the quadrant
Qi after the translation step and that the disk does not contain (0, 0), then the center
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z̄(v) of the final mapped disk D̄v is in Q̂i ∩ S2. This is because both dilation and inverse
stereographic projection preserve the longitude of the disk center. Thus, for any two
adjacent regions Ri and Rj, the other two regions contain at most n/2 points in total by
the translation step, and so Ri and Rj must together contain at least 4n/5−n/2 = 3n/10
points in total in the closure.

Finally, to see that this transformation can be computed in linear time, note that:

• Both stereographic projection and inverse stereographic projection can be computed
in linear time, or constant time per disk. By choosing three points on the disk bound-
ary and computing their images. The center of the mapped disk can be computed
from the images of these three points.

• The translation step can be computed in linear time, as it amounts to finding the
median of n numbers.

• The scaling step can also be computed in linear time, or constant time per disk. For
each disk that does not contain (0, 0), take the two intersection points of its boundary
with the ray from (0, 0) through its center. By a rotation about the w-axis, suppose
that the ray is the positive x-axis and the two intersection points are (x1, 0) and
(x2, 0), where 0 < x1 < x2. Then, the required threshold scaling factor for the disk
is 2/
√
x1x2, per the elementary geometric argument in Figure 7.2.

Figure 7.2: The y = 0 section of Figure 7.1. In xw-coordinates, O = (0, 0), P = (0, 2),
A = (βx1, 0) and B = (βx2, 0) where β > 0 is the scaling factor. The inverse stereographic
projection maps A to C and B to D. Let θ1 := ∠CPO and θ2 := ∠DPO. The threshold
scaling factor β should make θ1 + θ2 = π/2, which is equivalent to tan(θ1) = cot(θ2), or
OP 2 = AO ·BO. But this is just 22 = (βx1) · (βx2), which rearranges to β = 2/

√
x1x2.
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7.2.2 Dual Solution from Balanced Kissing Disks

In this subsection, we explain how to extract from the “kissing disks” embedding of
Lemma 7.2.1 a feasible solution to the dual program γ(3)(G) with small objective value.
We prove Theorem 7.1.3 and, as a corollary, Theorem 7.1.2.

Proof of Theorem 7.1.3. Given a planar graph G = (V,E) we start with a “kissing disk”
embedding v 7→ Dv, which can be computed in polynomial time due to Mohar [Moh93].
From this, we apply Lemma 7.2.1 to compute a good “kissing disk” embedding v 7→ D̄v,
whose average position of the centers z̄(v) satisfy

∥z̄avg∥ =

∥∥∥∥∥ 1n∑
v∈V

z̄(v)

∥∥∥∥∥ ≤ 1− c

for some universal constant c ∈ (0, 1). Define the following solution (f, g) to the γ(3)(G)
program:

f(v) := β · (z̄(v)− z̄avg) and g(v) := 2β2r̄(v)2

for v ∈ V , where r̄(v) > 0 is the radius of the disk D̄v and β > 0 is the unique scaling
factor so that

1

n

∑
v∈V

∥f(v)∥2 = 1.

Computing (f, g) can be done in polynomial time. Immediately by the definition of z̄avg,
we have

∑
v∈V f(v) = 0⃗. It remains to check that

g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀uv ∈ E

so that (f, g) is feasible, and to upper bound the objective.

For the first part, note that for uv ∈ E, the two disks D̄u and D̄v are tangent to one
another. So, the geodesic distance between z̄(u) and z̄(v) is exactly r̄(u) + r̄(v). Since
Euclidean distance is upper bounded by geodesic distance on the sphere, we have

∥z̄(u)− z̄(v)∥2 ≤ (r̄(u) + r̄(v))2 ≤ 2(r̄(u)2 + r̄(v)2),

and using this we can infer that g(u) + g(v) ≥ ∥f(u)− f(v)∥2, and so (f, g) is feasible.

To upper bound the objective value of this solution, note that

1

n

∑
v∈V

g(v) =
1

n

∑
v∈V

2β2r̄(v)2 ≲
β2

n
,
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which is O(1/n) if we can show that β = O(1). In the last inequality, we used the same
observation as in Section 3.5.3 that

∑
v∈V r̄(v)

2 is upper bounded by a constant times the
area of S2, which is O(1). Indeed, for each v ∈ V , since ∥z̄(v)∥ = 1 and ∥z̄avg∥ ≤ 1− c for
some positive universal constant c, we have

1

n

∑
v∈V

∥z̄(v)− z̄avg∥2 ≥
1

n

∑
v∈V

(1− (1− c))2 ≥ c2.

Therefore, the scaling factor β satisfies β ≤ 1/c ≤ O(1). We have shown that the solution
is feasible and has objective value at most O(1/n).

Proof of Theorem 7.1.2. Note that γ(d)(G) for any d ≤ n is a restriction of the γ(G)
program which is strongly dual to λ∗2(G). Therefore, we have

λ∗2(G) = γ(G) ≤ γ(3)(G) ≲
1

n

where the last inequality is by Theorem 7.1.3.

7.2.3 Efficient “Optimal” Spectral Partitioning for Planar Graphs

We design a spectral algorithm, Algorithm 3 for finding balanced separators in planar
graphs based on Theorem 7.1.3 and the Cheeger rounding algorithm in Chapter 4 for vertex
expansion. We demonstrate Corollary 7.1.4 that the runtime of Algorithm 3 is Õ(n2). The
runtime bottleneck is the computation of an initial “kissing circles” embedding in the first
step, and the remaining steps of the algorithm runs in time Õ(n1.5).

Proof of Corollary 7.1.4. First, we prove the correctness of Algorithm 3 by demonstrating
that it outputs a balanced separator of size O(

√
n). As shown in the proof of Theorem 7.1.3,

the objective value of the solution (f, g) computed in line 5 is O(1/|V ′|) = O(1/n). The
objective value of the one-dimensional coordinate solution is at most three times that which
is also O(1/n). So, using the Cheeger rounding algorithm in Theorem 4.3.7, line 6 produces
a cut A whose vertex expansion is O(1/

√
n).

Let U be the union of the cuts A found in the while loop. Then, ∂U = S, so removing S
disconnects U from V ′. Moreover, since each iteration we remove at most (1/2 + o(1))|V ′|
vertices from V ′, at the end of the algorithm V ′ has size at least n/3 − o(n) and at most
2n/3, and we can conclude the same about U . So, S is a balanced separator, and its size
is at most O(1/

√
n) · |U | which is O(

√
n).

295



Algorithm 3 Spectral Partitioning Algorithm for Planar Graphs

Input: Planar graph G = (V,E)
Output: A vertex separator S ⊆ V

1: Compute a “kissing circles” embedding v 7→ Dv of the graph G per [DLQ20]
2: Let V ′ := V be the set of remaining vertices, and S := ∅
3: while |V ′| ≥ 2n/3 do
4: Balance the embedding v 7→ Dv for G[V

′] per Lemma 7.2.1 to obtain v 7→ D̄v

5: Compute feasible solution (f, g) to γ(3)(G[V ′]) as described in Section 7.2.2
6: Choose the best coordinate and apply Theorem 4.3.7 to round the one-dimensional

solution, obtaining a cut A ⊆ V with |A| ≤ |V ′|/2 and ψ(A) small
7: S ← S ∪ ∂A, V ′ ← V ′ \ (A ∪ ∂A)
8: end while
9: return S

Next, we prove that the runtime of the algorithm is Õ(n2). Line 1 takes time Õ(n2) by
[DLQ20]. The while loop only repeats O(

√
n) times, since ψ(A) ≤ O(1/

√
n) implies that

at least |A| ≥ Ω(
√
n) vertices are removed from V ′ every iteration. Inside the while loop,

line 4 takes O(|V ′|) = O(n) time by Lemma 7.2.1, and lines 5-7 can be implemented to run
in O((|V ′| log |V ′|+ |E(G[V ′])|)) = Õ(n) time. Therefore, the overall runtime is dominated
by the first step and is Õ(n2).

7.3 Bounding Reweighted Second Eigenvalue

In this section, we prove Theorem 7.1.5 and Theorem 7.1.6 which upper bounds λ∗2(G) for
graphs G that are either of bounded genus g, or Kh-minor free. First, we show that a small
tweak of the main proof in Biswal, Lee, and Rao [BLR10] suffices to prove the reweighted
eigenvalue bound for the uniform distribution case. Then, we detail the adaptations needed
to generalize the result to arbitrary distributions. The reader is referred to Section 3.5.5
for a review of [BLR10].

7.3.1 The Uniform Distribution Case

In order to prove the reweighted eigenvalue upper bounds in Theorem 7.1.5 for the uniform
distribution, it suffices to derive a result analogous to Lemma 3.5.8 that upper bounds
λ∗2(G) using distortion and metric parameters. This is the content of the following lemma.
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Lemma 7.3.1. Let G = (V,E) be a graph and π = 1/n. Then,

λ∗2(G) ≲ n3 · α(G)2 ·

[
max

s:V→R≥0

∑
u,v∈V ds(u, v)√∑

v∈V s(v)
2

]−2

,

where α(G) is the average distortion parameter in Lemma 3.5.7 and ds(u, v) is the shortest
path metric defined in (3.15).

Proof. By Definition 7.1.1, to upper bound λ∗2(G), it suffices to prove an upper bound on

λ2(I − P ) = min
f :V→R
f⊥1

∑
uv∈E P (u, v)(f(u)− f(v))2∑

v∈V f(v)
2

for every reweighting P that satisfies the constraints of λ∗2(G) under uniform distribution:
namely, that P ≥ 0, P (u, v) = 0 for uv ̸∈ E,

∑
v∈V P (u, v) = 1 for all u ∈ V , and

P (u, v) = P (v, u) for all u, v ∈ V .

Using (3.14) and Lemma 3.5.7, we can rewrite the denominator of the minimization
problem, and then relate ℓ22 quasimetrics induced by f to shortest path metrics ds induced
by s : V → R≥0:

min
f :V→R
f⊥1

∑
uv∈E P (u, v)(f(u)− f(v))2∑

v∈V f(v)
2

= 2n min
f :V→R

∑
uv∈E P (u, v)(f(u)− f(v))2∑

u,v∈V (f(u)− f(v))2

≲ 2n · α(G)2 · min
s:V→R≥0

∑
uv∈E P (u, v)ds(u, v)

2∑
u,v∈V ds(u, v)

2

≤ 4n · α(G)2 · min
s:V→R≥0

∑
uv∈E P (u, v)(s(u)

2 + s(v)2)∑
u,v∈V ds(u, v)

2

= 4n · α(G)2 · min
s:V→R≥0

∑
v∈V s(v)

2∑
u,v∈V ds(u, v)

2
,

where the last equality uses the constraints that P (u, v) = P (v, u) and
∑

v∈V P (u, v) = 1
for all u ∈ V . From here, proceeding as in the proof of Lemma 3.5.8, we arrive at the
desired result.

As in Section 3.5.5, combining Lemma 7.3.1 with Lemma 3.5.9, Lemma 3.5.7 and
Lemma 3.5.10 yields Theorem 7.1.5. Compared to Lemma 3.5.8, there is no dependence
on ∆ in the upper bound, which explains the factor ∆ improvement in Theorem 7.1.5.
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7.3.2 The General Case

To generalize Theorem 7.1.5 to arbitrary distributions on V , our strategy is again to
introduce π-weighted variants for certain quantities considered in [BLR10]. Below, we use
the proof of Theorem 3.5.5 as a blueprint, and explain the modifications needed for proving
Theorem 7.1.6.

Rayleigh Quotient to Shortest Path Metric

We prove the following generalization of Lemma 7.3.1.

Lemma 7.3.2. Let G = (V,E) be a graph and π be any distribution on V . Then,

λ∗2(G) ≲ α(G)2 ·

[
max

s:V→R≥0

∑
u,v∈V π(u)π(v)ds(u, v)√∑

v∈V π(v)s(v)
2

]−2

,

where α(G) is the average distortion parameter in Lemma 3.5.7 and ds(u, v) is the shortest
path metric defined in (3.15).

Note that the disappearance of n3 is of no concern: by introducing the π-weights, in the
uniform distribution case where π = 1/n, the maximization program incurs an additional
factor of (

√
n/n2)−2 = n3 compared to Lemma 7.3.1.

Proof. Again, it suffices to prove an upper bound on

λ2(I − P ) = min
f :V→R
f⊥π

∑
uv∈E π(u)P (u, v)(f(u)− f(v))2∑

v∈V π(v)f(v)
2

(7.3)

for every reweighting P that satisfies that constraints of λ∗2(G): namely, that P ≥ 0,
P (u, v) = 0 for uv ̸∈ E,

∑
v∈V P (u, v) = 1 for all u ∈ V , and π(u)P (u, v) = π(v)P (v, u) for

all u, v ∈ V . We follow the proof of Lemma 3.5.8, introducing the necessary modifications
along the way.

To handle the denominator as before, we use Fact 2.10.4 to infer (note that π(V ) = 1)∑
v∈V

π(v)f(v)2 =
1

2

∑
u,v∈V

π(u)π(v)(f(u)− f(v))2 (7.4)
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for any f ⊥ π. After substituting (7.4) in the denominator of (7.3), the objective of the
minimization becomes invariant to translation (by c · 1). As any f : V → R can be
translated so that f ⊥ π, the constraint f ⊥ π can be dropped without loss. We are thus
left with the task of upper bounding the objective of the minimization problem

min
f :V→R

∑
uv∈E π(u)P (u, v)(f(u)− f(v))2∑
u,v∈V π(u)π(v)(f(u)− f(v))2

.

Next, to go from ℓ22 quasimetric to the shortest path metric, a straightfoward π-weighted
generalization of Lemma 3.5.7 is needed. We include it in Appendix C for completeness.

Lemma 7.3.3 (Average Distortion [BLR10]). For any graph G = (V,E) and any distri-
bution π on V , there exists α(G) > 0 such that the following holds: for any shortest path
metric ds, there is a function f : V → R such that if we write df (u, v) := |f(u) − f(v)|
then df (u, v) ≤ ds(u, v) for all u, v ∈ V and∑

u,v∈V

π(u)π(v)ds(u, v)
2 ≲ α(G)2 ·

∑
u,v∈V

π(u)π(v)df (u, v)
2.

Furthermore, the same upper bounds on α(G) in Lemma 3.5.7 hold here as well.

With this, we can lower bound the denominator and upper bound the numerator of the
minimization objective, giving

min
f :V→R

∑
uv∈E π(u)P (u, v)(f(u)− f(v))2∑
u,v∈V π(u)π(v)(f(u)− f(v))2

≤ α(G)2 min
s:V→R≥0

∑
uv∈E π(u)P (u, v)ds(u, v)

2∑
u,v∈V π(u)π(v)ds(u, v)

2
.

Now, for any s : V → R+ with induced shortest path metric ds, we have∑
uv∈E π(u)P (u, v)ds(u, v)

2∑
u,v∈V π(u)π(v)ds(u, v)

2
≤

2
∑

uv∈E π(u)P (u, v)(s(u)
2 + s(v)2)∑

u,v∈V π(u)π(v)ds(u, v)
2

=
2
∑

v∈V π(v)s(v)
2∑

u,v∈V π(u)π(v)ds(u, v)
2
,

where the inequality is from ds(u, v)
2 = (s(u) + s(v))2 ≤ 2(s(u)2 + s(v)2) and the equality

follows from the reweighted eigenvalue constraints that π(u)P (u, v) = π(v)P (v, u) and∑
v∈V P (u, v) = 1 for all u ∈ V .
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Finally, we use Cauchy-Schwarz inequality to get to the desired form in the statement:

min
s:V→R≥0

∑
v∈V π(v)s(v)

2∑
u,v∈V π(u)π(v)ds(u, v)

2
≤ min

s:V→R≥0

(∑
u,v∈V π(u)π(v)

)
·
∑

v∈V π(v)s(v)
2

(
∑

u,v∈V π(u)π(v)ds(u, v))
2

=

[
max

s:V→R≥0

∑
u,v∈V π(u)π(v)ds(u, v)√∑

v∈V π(v)s(v)
2

]−2

,

and the proof is complete.

Metric Spread and Flow Congestion

The next step is to relate the objective of the maximization program

max
s:V→R≥0

∑
u,v∈V π(u)π(v)ds(u, v)√∑

v∈V π(v)s(v)
2

=: max
s:V→R≥0

Λs(G)

to a multicommodity flow problem, where the goal is to minimize flow congestion. We
incorporate π-weights in the definition of flow congestion, defining

conπ(F ) :=

(∑
v∈V

cF (v)
2

π(v)

)1/2

.

The intuition is that the congestion at a vertex should be measured relative to the
amount of flow it is required to send, which in this case it is π(v). Practically the same proof
as for Lemma 3.5.9 yields the following duality result, which is deferred to Appendix C.

Lemma 7.3.4 (Flow/Metric Duality, π-Weighted Version). For any graph G = (V,E) and
distribution π : V → R+,

min
F∈Fπ(G)

conπ(F ) = max
s:V→R≥0

Λs(G),

where the minimum is taken over Fπ(G), the set of all solutions for the multicommodity
flow problem with product demand D(u, v) = π(u)π(v) for all u ̸= v ∈ V .
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Flow Congestion Lower Bound

In this step, we derive lower bounds on flow congestion in special graphs. The current
setting differs from the unweighted setting in two ways. First, the demand graph is no
longer uniform demand, but product demand with D(u, v) = π(u)π(v) for u ̸= v. Second,
the definition of congestion has changed.

We first use a trivial relation to bridge the second difference. Recall that the unweighted
congestion is defined as

con(F ) :=

(∑
v∈V

cF (v)
2

)1/2

.

Then, letting πmax := maxu∈V π(u) we have conπ(F ) ≥ π
−1/2
max con(F ).

Now we can focus on lower bounding con(F ). The strategy is to construct an auxiliary
graph G′, so that G′ is itself a special graph — either bounded genus or Kh-minor free —
and product-demand flow congestion on G correspond to uniform-demand flow congestion
on G′, so that we can lower bound the former using known lower bounds on the latter from
Lemma 3.5.10.

On a high level, we want to represent vertex v with a cluster of nv ∝ π(v) vertices,
so that the uniform-demand multicommodity flow has nunv ∝ π(u)π(v) demand between
cluster u and cluster v.

Now we describe our construction. In the first step, given a distribution π : V → R+,
turn it into an integral weight function by finding positive integers M, {nv}v∈V such that

nv
M
≤ π(v) ≤ 2

nv
M

for all v ∈ V . That it is possible is proven below.

Proposition 7.3.5. Given n positive real numbers a1, . . . , an such that maxi ai ≤ (
∑

i ai)/2,
there exists positive integers M, b1, . . . , bn such that bi/M ≤ ai ≤ 2bi/M for all i ∈ [n], and
moreover that maxi bi ≤ 3(

∑
i bi)/4.

Proof. First chooseM ∈ N to be such thatMai ≥ 2 for all i ∈ [n]. Then, take bi := ⌊Mai⌋.
This satisfies the first condition since bi ≤Mai and 2bi ≥ bi +1 ≥Mai. This also satisfies
the second condition because

bj ≤Maj ≤
1

2

∑
i

(Mai) ≤
3

4

∑
i

⌊Mai⌋ =
3

4

∑
i

bi

for any bj.
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For any solution F to the multicommodity flow problem with product demandD(u, v) =
π(u)π(v), there is a solution to the multicommodity flow problem with product demand
D∗(u, v) = nunv that is upper bounded by 4M2 ·F , and so a lower bound on the congestion
of the latter implies a lower on the congestion of the former.

The reason we pass to integral product demand is so that discrete constructions are
possible. Given G = (V,E) and nu from above, construct the following auxiliary graph:

Definition 7.3.6 (Constellation Graph). Let G = (V,E) be a graph and let {nu}u∈V
be given positive integers. The constellation graph4 of G with respect to nu is the graph
G′ = (V ′, E ′) with

• For each u ∈ V , there are nu copies of u in V ′: u0, u1, . . . , unu−1. u0 can be considered
the original/central vertex;

• For each (u, v) ∈ E, there is an edge (u0, v0) ∈ E ′;

• For each u ∈ V and 1 ≤ i < nu, there is an edge (u0, ui) ∈ E ′.

Refer to Figure 7.3 for an example.

Figure 7.3: On the left is a graph G = (V,E) equipped with an integral weight function
nv on V , where na = 1, nb = 4, nc = 3. On the right is the constellation graph G′.

The goal now is to relate (i) the multicommodity flow problem on G′ with uniform
demand and (ii) the multicommodity flow problem on G with product demand D∗(u, v) =
nunv, and then to show that special properties of G are inherited by G′. This is the content
of the following two lemmata.

4The graph is an interconnected collection of star graphs, hence the name.
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Lemma 7.3.7 (Constellation Graph Congestion). Let G = (V,E) be a graph with dis-
tribution π on V , {nu}u∈V be positive integers satisfying maxu nu ≤ 2(

∑
u nu)/3, and G

′

be the constellation graph constructed from G and {nu}u∈V . Then, there exists universal
constants A,B > 0 such that

A ·min
F ′

con(F ′) ≤ min
F ∗

con(F ∗) ≤ B ·min
F ′

con(F ′),

where the minimum of F ∗ is taken over all solutions F ∗ of the multicommodity flow problem
on G with product demand D∗(u, v) = nunv, and the minimum of F ′ is taken over all flow
solutions F ′ of the multicommodity flow problem on G′ with uniform demand.

Lemma 7.3.8 (Constellation Graph Topology). Under the same setting as Lemma 7.3.7,
if G has genus g then G′ has genus g, and if G is Kh-minor free where h ≥ 3 then G′ is
Kh-minor free.

We first prove the two lemmata, then finish the proof of Theorem 7.1.6.

Proof of Lemma 7.3.7. First, we prove that there exists B > 0 such that

min
F ∗

con(F ∗) ≤ Bmin
F ′

con(F ′).

We take B = 2. For any solution F ′ to the multicommodity flow problem on G′ with
uniform demand, construct a solution F ∗ to the multicommodity flow problem on G with
product demand D∗(u, v) = nunv, by “trimming” F ′: for any flow path p from ui to vj in
F ′ carrying a positive amount of flow, if p is a degenerate flow path from ui to ui, we add
that amount of flow to the degenerate flow path from u to u; otherwise, we take the flow
path p′ by removing ui → u0 (whenever i ̸= 0) and v0 → vj (whenever j ̸= 0) from p, so
that p′ uses only edges from G and has a natural image in G. We add that amount of flow
to the flow path p′ in G. Add these flow paths up to form F ∗.

For every unit of flow in F ′ sent from ui to vj, there is a unit of flow in F ∗ sent from
u to v. Therefore, the total amount of flow from u to v is nunv, and F

∗ is feasible. Other
than the handling of the degenerate flows, F ∗ is formed from F ′ by deleting and shortening
existing flow paths. The degenerate flows contribute at most nu to the congestion of F ∗ at
u, where the original congestion of F ′ at u0 is at least nu due to flows of the form u0 → ui.
Therefore, the congestion at every vertex at most doubles after the procedure, and so

min
F ∗

con(F ∗) ≤ 2min
F ′

con(F ′)

as required.
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Next, we prove that there exists A > 0 such that

Amin
F ′

con(F ′) ≤ min
F ∗

con(F ∗).

We take A = 1/3. For any solution F ∗ to the multicommodity flow problem on G with
product demand D∗(u, v) = nunv, we reverse the trimming procedure to form a solution F ′

to the multicommodity flow problem on G′ with uniform demand, by “branching” the flow
paths. For any flow path p from u to v carrying a positive amount of flow in F ∗, subdivide
that into nunv equal parts, and add that amount of flow to the flow path ui → p→ vj for
all 0 ≤ i < nu, 0 ≤ j < nv. Add up these flows to form F ′.

F ′ is feasible because the total amount of flow from u to v in F ∗ is nunv, and so there
is one unit of flow from ui to vj in F

′ for each (ui, vj). Let cF ′(ui) denote the congestion
of vertex ui in G

′ with respect to flow solution F ′. First, we show that the congestion at
u0 dominates the total congestion at the other vertices ui for i ̸= 0:∑

i ̸=0

cF ′(ui) ≤ 2cF ′(u0).

This is because any flow path p from ui to vj for some v ̸= u includes ui once but must also
include u0 once, and the total amount of flow through u0 due to the flow paths ui → uj is
n2
u − (nu − 1), whereas the amount of flow through each ui for i > 0 due to the same flow

paths is at most 2nu, netting a total of at most 2(n2
u − nu).

Next, we show that the flow branching procedure does not increase the congestion at
u0 significantly. In fact, the congestion at u0 only decreases due to some degenerate u→ u
paths in F ∗ becoming ui → ui paths in F

′, and is unaffected by other changes. Therefore,

con(F ∗)2 =
∑
u∈V

cF ∗(u)2 ≥
∑
u∈V

cF ′(u0)
2 ≥

∑
u∈V

(
1

3

∑
0≤i<nu

cF ′(ui)

)2

≥
(
con(F ′)

3

)2

,

so that
1

3
min
F ′

con(F ′) ≤ min
F ∗

con(F ∗).

The proof is complete.

Proof of Lemma 7.3.8. For the first part, given a genus g graph G = (V,E), we can embed
G in a genus g surface. We can then embed the spike graph G′ in the same surface by
attaching degree-one vertices to G.
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For the second part, we use a contrapositive argument. Suppose the constellation
graph G′ contains Kh as a minor for some h ≥ 3. Then, we can obtain Kh from G′

by some sequence of edge deletion, vertex deletion, and edge contraction. The claim is
that all vertices ui, i ≥ 1, eventually gets deleted. This is because contraction of edge
(u0, ui) is the same as deleting ui, deletion of edge (u0, ui) must be followed by deleting ui
(otherwise it becomes an isolated vertex), and Kh cannot contain any degree-one vertex
as h ≥ 3. Furthermore, deletion of vertices ui, i ̸= 0, can be done in the very beginning
of the sequence of operations. Therefore, applying the same sequence of operations on G′

with the deletion of ui, i ̸= 0 moved to the beginning, at some point we obtain G, then we
end up with Kh. This implies that G contains Kh as a minor.

Proof of Theorem 7.1.6. Recall from Lemma 7.3.2 and Lemma 7.3.4 that

λ∗2(G) ≲ α(G)2 ·
[

max
s:V→R≥0

Λs(G)

]−2

= α(G)2 ·
[

min
F∈Fπ(G)

conπ(F )

]−2

. (7.5)

Now, choose positive integers M, {nu}u∈V using Proposition 7.3.5 so that nu/M ≤ π(u) ≤
2nu/M for all u ∈ V and maxu nu ≤ 3(

∑
u nu)/4. By the trivial bound relating conπ(F )

and con(F ) as well as the explanation following Proposition 7.3.5, we have

min
F∈Fπ(G)

conπ(F ) ≥ π−1/2
max min

F∈Fπ(G)
con(F ) ≥ π−1/2

max ·
1

4M2
min
F ∗

con(F ∗).

where the minimum of F ∗ is taken overall multicommodity flows onG with product demand
D∗(u, v) = nunv. Now by Lemma 7.3.7, RHS is further lower bounded by a constant factor
times

π−1/2
max ·

1

4M2
min
F ′

con(F ′)

where the minimum of F ′ is taken over all multicommodity flows on the constellation graph
G′ with uniform demand.

We can now apply the congestion lower bounds in Lemma 3.5.10 to flows on G′ to finish
the proof. Let n′ be the number of vertices in G′. Clearly, n′ ≥ n. We also have

n′ =
∑
u∈V

nu ≥
∑
u∈V

(Mπ(u)− 1) =M − n ≥M/2.

• If G is of genus g ≥ 1, we first consider the case where n ≳
√
g. Then, G′ is of genus

g ≥ 1 by Lemma 7.3.8 with n′ ≳
√
g, so that con(F ′) ≳ (n′)2/

√
g for any F ′. By

305



Lemma 7.3.3, α(G) ≲ log g, and so

λ∗2(G) ≲ α(G)2 ·
[
min
F

conπ(F )
]−2

≲ α(G)2πmax ·M4
[
min
F ′

con(F ′)
]−2

≲ α(G)2πmax ·M4 · (g/(n′)4)

≲ g log2 g · πmax.

In the remaining case where n < o(
√
g), we use the trivial upper bound that λ∗2(G) ≤

O(1)5 to deduce
λ∗2(G) ≲ 1 ≲

√
g/n ≲ g log2 g · πmax,

since πmax ≥ 1/n.

• If G is Kh-minor free for some h ≥ 3 , we first consider the case when n ≳ h
√
log h.

Then, G′ is Kh-minor free by Lemma 7.3.8 with n′ ≳ h
√
log h, so that con(F ′) ≳

(n′)2/(h
√
log h) for any F ′. By Lemma 7.3.3, α(G) ≲ h2, and so

λ∗2(G) ≲ α(G)2 ·
[
min
F

conπ(F )
]−2

≲ α(G)2πmax ·M4
[
min
F ′

con(F ′)
]−2

≲ α(G)2πmax ·M4 · (h2 log h/(n′)4)

≲ h6 log h · πmax.

In the remaining case where n < o(h
√
log h), we again use λ∗2(G) ≤ O(1) and πmax ≥

1/n to deduce that

λ∗2(G) ≲ 1 ≲ h
√
log h/n ≲ h6 log h · πmax.

This completes the proof of Theorem 7.1.6.

Remark 7.3.9 (Vertex Expansion Bounds). In the uniform distribution case, Theorem 7.1.6

combined with the vertex Cheeger inequality implies that ψ(G) ≤ O(
√
g log2 g · log∆/n) if

G is of genus g, and ψ(G) ≤ O(
√
h6 log h · log∆/n) if G is Kh-minor free. As remarked

in the end of Section 3.5.5, Biswal, Lee, and Rao [BLR10] obtained a better vertex ex-
pansion bound with one less

√
log∆ factor. However, their result does not come with a

polynomial-time algorithm to obtain cuts S ⊆ V that satisfy the same vertex expansion up-
per bound, while our bound is attainable via the Cheeger rounding algorithm for reweighted
eigenvalues.

5This follows, for example, from the easy direction of Theorem 4.1.3 and that ψ(G) ≤ 1.
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7.4 Bounding Higher Eigenvalues

In this section, we prove Theorem 7.1.7 and Theorem 7.1.8 which upper bound λ∗k(G) for
special classes of graphs G. Similar to the λ∗2(G), in the uniform distribution case a small
tweak of the proof in [KLPT11] suffices, whereas in the general distribution case more work
is needed. We make frequent references to the review of [KLPT11] in Section 3.5.6 and
the reader is advised to read that subsection before proceeding.

7.4.1 The Uniform Distribution Case

We modify the proof of Lemma 3.5.15 to upper bound λ∗k(G) using two metric parame-
ters: metric padding and metric spreading. The two parameters are controlled respectively
using Lemma 3.5.16 and Lemma 3.5.18, and Theorem 7.1.7 follows after combining every-
thing. The definitions of the metric parameters are due to [KLPT11] and we copy here for
convenience.

Definition 7.4.1 (Metric Padding Parameter (restatement of Definition 3.5.13)). Let
(X, dX) be a finite metric space. For any partitioning P of X, using P (x) to denote
the partition that contains x ∈ X, define the padding parameter β(P, γ) to be the infimal
value of β ≥ 1 such that

|{x ∈ X : B(x, γ/β) ⊆ P (x)}| ≥ |X|
2
.

In other words, at least half of the points in X satisfy that all points (γ/β)-close to it are
in the same partition.

Further, let
βγ(X, dX) := inf

P
β(P, γ),

where the infimum is taken over all parititoning P of (X, dX) where each partition has
diameter at most γ.

Definition 7.4.2 (Metric Spreading Parameter (restatement of Definition 3.5.14)). Let
G = (V,E) be a graph. Let s : V → R≥0 be a weight function on the vertices, and ds be
the vertex-weighted shortest path metric on V (c.f. (3.15)). For ε > 0 and a collection Ψ
of nonempty subsets of V , say that s is (Ψ, ε)-spreading if, for every S ∈ Ψ one has

1

|S|2
∑
u,v∈S

ds(u, v) ≥ ε ·
√∑

u∈V

s(u)2.
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Write εΨ(G, s) to be the maximal value of ε such that s is (Ψ, ε)-spreading.

Lemma 7.4.3. Let G = (V,E) be a graph and let π = 1/n be the uniform distribution
on V . For any 2 ≤ k ≤ n, the following holds. For any weight function s : V → R≥0

satisfying ∑
u∈V

s(u)2 = 1,

we have

λ∗k(G) ≲
1

ε2n

(
βε/2(V, ds)

)2
,

where ε = ε⌊n/4k⌋(G, s).

Proof. Let Q ∈ RV×V
≥0 be a feasible reweighting for the λ∗k(G) program in Definition 7.1.1.

That means Q is supported on E,
∑

v∈V Q(u, v) = 1 for all u ∈ V , and Q(u, v) = Q(v, u)
for all u, v ∈ V . We would like to prove that

λk(I −Q) ≲
1

ε2n

(
βε/2(V, ds)

)2
.

Write β = βε/2(V, ds). By Definition 7.4.1, there exists a partitioning P of V such that:

• Each partition P (v) has diameter ≤ ε/2;

• At least half of the vertices v ∈ V satisfy B(v, ε/(2β)) ⊆ P (v).

As in Lemma 3.5.15, from P we can extract q ≥ 2k disjoint subsets T1, . . . , Tq and their
“cores” T ′

1, . . . , T
′
q, so that B(u, ε/(2β)) ⊆ Ti for each u ∈ T ′

i , and that each T ′
i has size

between r/2 and r, where r = ⌊n/4k⌋.
Now we use these sets to define disjointly supported vectors with small Rayleigh quo-

tient (energy divided by mass) with respect to I − Q. Consider the following “smooth
localization” f1, . . . , fq of the subsets:

fi(u) := max

(
0,

ε

2β
− ds(u, T ′

i )

)
.

First, note the following about the mass of each fi:

∥fi∥2 =
∑
u∈V

fi(u)
2 ≥

(
ε

2β

)2

· |T ′
i | ≥

ε2n

32β2k
.
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Next, observing that each fi is supported on Ti, the total energy with respect to I −Q is∑
i∈[q]

E(fi) =
∑
i∈[q]

fTi (I −Q)fi

=
∑
i∈[q]

∑
uv∈E

Q(u, v)(fi(u)− fi(v))2

≤
∑
i∈[p]

∑
u∈Ti

∑
v:uv∈E

Q(u, v)(fi(u)− fi(v))2

≤
∑
i∈[p]

∑
u∈Ti

∑
v:uv∈E

Q(u, v)ds(u, v)
2

≤ 2
∑
i∈[p]

∑
u∈Ti

∑
v:uv∈E

Q(u, v)(s(u)2 + s(v)2)

≤ 4
∑
u∈V

s(u)2 = 4.

The last inequality is because the coefficient of s(u)2 is at most

2

( ∑
v:uv∈E

Q(u, v) +
∑

v:vu∈E

Q(v, u)

)
≤ 4,

and the other inequalities proceed as in Lemma 3.5.15. Since the number of functions is at
least 2k, there exists k such fi’s with disjoint support, such that E(fi) ≤ 4/k. Therefore,

E(fi)
∥fi∥2

≤ 128

ε2n
β2

for the chosen fi’s, and applying Proposition 2.5.4 to the Q-weighted graph we obtain the
desired upper bound on λk(I −Q).

As in Section 3.5.6, combining Lemma 7.4.3 with Lemma 3.5.16, Lemma 3.5.17, and
Lemma 3.5.18 yields Theorem 7.1.7. Compared to Lemma 3.5.15, there is no dependence
on ∆ in the upper bound, which explains the factor ∆ improvement in Theorem 7.1.7.

7.4.2 The General Case

To generalize Theorem 7.1.7 to arbitrary distributions on V , we introduce π-weighted
variants of metric padding and metric spreading parameters, and use them to control λ∗k(G).
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We show that the π-weighted metric padding parameter satisfies essentially the same upper
bound as the unweighted counterpart. As for the π-weighted metric spreading parameter,
we reduce to the unweighted case using, again, the constellation graph in Definition 7.3.6.
Below, we use the proof of Theorem 3.5.12 as a blueprint, and explain the modifications
needed for proving Theorem 7.1.8.

Rayleigh Quotient to Metric Parameters

The first component of the proof is to relate λ∗k(G) to the π-weighted version of metric
padding parameter in Definition 7.4.1 and metric spreading parameter in Definition 7.4.2.
We overload the unweighted notations as the π-weight will be clear from context.

Definition 7.4.4 (Metric Padding Parameter, π-Weighted Version). Let (X, dX) be a finite
metric space, and let π : X → R+ be a distribution on X. For any partitioning P of X,
using P (x) to denote the partition that contains x ∈ X, define the π-weighted padding
parameter β(P, γ) to be the infimal value of β ≥ 1 such that

π ({x ∈ X : B(x, γ/β) ⊆ P (x)}) ≥ 1

2
− o(1).

In other words, by π-weight at least almost half of the points in X satisfy that its (γ/β)-
neighborhood is in the same partition. Further, let

βγ(X, dX) := inf
P
β(P, γ),

where the infimum is taken over all parititoning P of (X, dX) where each partition has
diameter at most γ.

For metric spreading, we overload the old notation, as the π-weight will be clear from
context.

Definition 7.4.5 (Metric Spreading Parameter, π-Weighted Version). Let G = (V,E) be
a graph, and let π : V → R+ be a distribution on the vertices. Let s : V → R≥0 be a
weight function on the vertices, and ds be the vertex-weighted shortest path metric on V .
For ε > 0 and a collection Ψ of nonempty subsets of V , say that s is (Ψ, ε)-spreading if,
for every S ∈ Ψ one has

1

π(S)2

∑
u,v∈S

π(u)π(v)ds(u, v) ≥ ε ·
√∑

u∈V

π(u)s(u)2.

Write εΨ(G, s) to be the maximal value of ε such that s is (Ψ, ε)-spreading.
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We are now ready to state and prove an upper bound on λ∗k(G) for general π weights.
We impose a mild condition on π to make the proof go through.

Lemma 7.4.6. Let G = (V,E) be a graph. For any 2 ≤ k ≤ n, the following holds. For
any distribution π on V such that πmax := maxu∈V π(u) ≤ 1/k, and for any weight function
s : V → R≥0 satisfying ∑

u∈V

π(u)s(u)2 = 1,

we have

λ∗k(G) ≲
1

ε2
(
βε/2(V, ds)

)2
,

where ε = εΨr,5r(G, s), r = 1/(4k), and Ψa,b := {S ⊆ V : π(S) ∈ [a, b]} is the collection of
subsets of V whose π-weight is between a and b.

Proof. Let Q be a feasible reweighting for the λ∗k(G) program in Definition 7.1.1. That
means Q is supported on E,

∑
u∈V π(u)Q(u, v) = π(v) for all v ∈ V , and π(u)Q(u, v) =

π(v)Q(v, u) for all u, v ∈ V . The last constraint can be written as ΠQ = QTΠ where
Π := diag(π). This means that ΠQ is symmetric, and so is Π1/2QΠ−1/2. As I − Q and
I − Π1/2QΠ−1/2 are similar, by Fact 2.4.1 our task becomes proving that

λk(I − Π1/2QΠ−1/2) ≲
1

ε2n

(
βε/2(V, ds)

)2
.

Write β = βε/2(V, ds). By Definition 7.4.4, there exists a partitioning P of V such that:

• Each partition has diameter ≤ ε/2;

• Vertices v ∈ V carrying at least half π-weight satisfy B(v, ε/(2β)) ⊆ P (v), with P (v)
denoting the partition containing v.

Let S1, . . . , Sℓ be the partitions in P . We use the definition of ε to show that the π-weight
of each Si is at most r = 1/(4k). For if not, then since each vertex has π-weight at most
1/k = 4r, by possibly removing some vertices from Si we obtain a subset S∗ of V whose
π-weight is between r and r + 4r = 5r, and since its diameter is ≤ ε/2 we have

1

π(S∗)2

∑
u,v∈S∗

π(u)π(v)ds(u, v) ≤
ε

2
=
ε

2
·
√∑

u∈V

π(u)s(u)2,

which contradicts the definition of ε, as S∗ ∈ Ψr,5r.
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Therefore, the π-weight of each Si is at most r. As in Lemma 3.5.15, we can then extract
q ≥ 2k disjoint subsets T1, . . . , Tq and their “cores” T ′

1, . . . , T
′
q, so that B(u, ε/(2β)) ⊆ Ti

for each u ∈ T ′
i , and that each T ′

i has π-weight between r/2 and r.

Now we use these sets to define disjointly supported vectors with small Rayleigh quo-
tient (energy divided by mass) with respect to (I − Π1/2QΠ−1/2). Consider the following
“smooth localization” f1, . . . , fq of the subsets:

fi(u) := max

(
0,

ε

2β
− ds(u, T ′

i )

)
,

and define f̃i := Π1/2fi. First, note the following about the mass of each f̃i:∥∥∥f̃i∥∥∥2 =∑
u∈V

π(u)fi(u)
2 ≥

(
ε

2β

)2

· π(T ′
i ) ≥

ε2

32β2k
.

Observe that since fi is supported on Ti and that Π is diagonal, f̃i is also supported on Ti.
The total energy with respect to (I − Π1/2QΠ−1/2) is then∑

i∈[q]

E(f̃i) =
∑
i∈[q]

f̃Ti (I − Π1/2QΠ−1/2)f̃i

=
∑
i∈[q]

fTi (Π− ΠQ)fi

=
∑
i∈[q]

∑
uv∈E

π(u)Q(u, v)(fi(u)− fi(v))2

≤
∑
i∈[p]

∑
u∈Ti

∑
v:uv∈E

π(u)Q(u, v)(fi(u)− fi(v))2

≤
∑
i∈[p]

∑
u∈Ti

∑
v:uv∈E

π(u)Q(u, v)ds(u, v)
2

≤ 2
∑
i∈[p]

∑
u∈Ti

∑
v:uv∈E

π(u)Q(u, v)(s(u)2 + s(v)2)

≤ 4
∑
u∈V

π(u)s(u)2 = 4.

The last inequality is because the coefficient of s(u)2 is at most

2

( ∑
v:uv∈E

π(u)Q(u, v) +
∑

v:vu∈E

π(v)Q(v, u)

)
≤ 4π(u),
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and the other inequalities go through as in Lemma 3.5.15. Since the number of functions is
at least 2k, there exists k such f̃i’s with disjoint support, such that E(f̃i) ≤ 4/k. Therefore,

E(f̃i)∥∥∥f̃i∥∥∥2 ≤
128

ε2
β2

for the chosen f̃i’s, and Proposition 2.5.4 yields the desired upper bound on λk(I−Q).

Bounds on Metric Padding

The second component of the proof is to upper bound the π-weighted metric padding
parameter in Definition 7.4.4. The strategy is simply to reduce to the unweighted case
using the constellation graph in Definition 7.3.6.

To prepare for the reduction, we prove a variant of Proposition 7.3.5 that allows us to
“discretize” the distribution π with arbitrarily small error.

Proposition 7.4.7. Given c > 0 and n positive real numbers a1, . . . , an summing to 1,
there exists positive integers M, b1, . . . , bn such that bi/M ≤ ai ≤ bi/M + c for all i ∈ [n].

Proof. Let Z be a positive integer such that 1/Z < ζ, and letM ∈ N be such thatMai ≥ Z
for all i ∈ [n]. Note that M ≥ Z and so 1/M ≤ 1/Z. Let bi := ⌊Mai⌋. Then, clearly
bi/M ≤ ai, and

ai ≤
bi + 1

M
=

bi
M

+
1

M
≤ bi
M

+ ζ,

as desired.

Lemma 7.4.8 (Upper Bounding Metric Padding Parameter, π-Weighted Version). Let
G = (V,E) be a graph, and π : V → R+ be any distribution on V . Let ds be a shortest
path metric corresponding to a vertex weight function s : V → R≥0. Let γ > 0. Then,

• If G is planar, then βγ(V, ds) ≤ O(1).

• If G has genus g ≥ 1, then βγ(V, ds) ≤ O(log g).

• If G excludes Kh as a minor, then βγ(V, ds) ≤ O(h2).

So, in these cases, G satisfies the same metric padding upper bound as the unweighted case
in Lemma 3.5.16.
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Proof. First, apply Proposition 7.4.7 to find positive integers {nu}u∈V and M , such that
M =

∑
u∈V nu and nu/M is arbitrarily close to π(u) for all u ∈ V . Then, construct the

constellation graph G′ = (V ′, E ′) for G and {nu} as in Definition 7.3.6 and define the
following vertex weight function s′ : V ′ → R≥0 by

s′(ui) :=

{
s(u), if i = 0;

0, otherwise.

Now, by Lemma 3.5.16, there exists a partitioning P ′ of the metric space (V ′, ds′), such that
diamds′

(P ′) ≤ γ, and the unweighted metric padding parameter β(P ′, γ) is upper bounded
by O(1) (resp. O(log g) and O(h2)) in the planar (resp. bounded genus and Kh-minor free)
case. That means for this specific value of β = β(P ′, γ), at least half of the vertices of V ′

are in the set of “core” vertices

S ′
core := {ui ∈ V ′ : Bds′

(ui, γ/β) ⊆ P ′(ui)},
where again P ′(ui) denotes the partition in P ′ that ui belongs to. The plan, then, is to
construct a partitioning P of (V, ds), such that diamds(P ) ≤ γ and the π-weighted metric
padding parameter β(P, γ) is at most β.

It is clear that ds′(ui, uj) = s(u) and ds′(ui, vj) = ds(u, v) for u ̸= v. So, we may assume
without loss of generality that, if ui ∈ Score for some 0 ≤ i < nu, then u0 ∈ S ′

core. Take P
′

and consider the partitioning P of V induced by the restriction of P ′ on {u0}u∈V . Formally,
if S ′

1, . . . , S
′
ℓ are the partitions in P ′, then the nonempty subsets among

Si := {u ∈ V : u0 ∈ S ′
i}

are the partitions in P . Then, clearly diamds(Si) ≤ γ as well, and if u0 ∈ S ′
core, that

means v0 ∈ P ′(u0) for all v ∈ V such that ds(u, v) ≤ γ/β. This in turn implies that
Bds(u, γ/β) ⊆ P (u). Then, the total π-weight of all “core” vertices in V with respect to
P is at least∑

u:u0∈S′
core

π(u) ≥

 ∑
u:u0∈S′

core

nu
M

− o(1) ≥
 ∑
ui∈S′

core

1

M

− o(1) ≥ 1

2
− o(1),

which implies that the π-weighted padding parameter β(P, γ) is at most β.

Bounds on Metric Spreading

The third and final component of the proof is to lower bound the π-weighted metric spread-
ing parameter in Definition 7.4.5. Again, we start with a primal-dual result relating maxi-
mum metric spreading to minimum subset flow congestion. Then, we use the constellation
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graph in Definition 7.3.6 to reduce to the unweighted case, and use existing lower bound
results in Section 3.5.6.

As in Section 7.3, for any multicommodity flow solution F we define the π-weighted
congestion as

conπ(F ) :=

√∑
u∈V

cF (u)2

π(u)
,

where cF (u) is the total amount of flow in F passing through vertex u. Similar to
how Lemma 7.3.4 generalizes Lemma 3.5.9, Lemma 7.4.9 in the following generalizes
Lemma 3.5.17 that establishes strong duality between metric spreading parameter and
subset flow congestion. The proof is deferred to Appendix C.

Lemma 7.4.9 (Flow/Metric Duality, π-Weighted Version). Let G = (V,E) be a graph with
vertex distribution π : V → R+. Let Ψ be a collection of nonempty subsets of V . Then,
the π-weighted metric spreading maximization problem is strongly dual to the “subset flow”
minimum π-weighted congestion problem:

max
s:V→R≥0

εΨ(G, s) = min
F∈FΨ

π (G)
conπ(F ),

where FΨ
π (G) is the set of all multicommodity flows on G whose demand graph satisfies

Dh(u, v) = π(u)π(v) ·
∑

A∈Ψ:{u,v}⊆A

h(A)

π(A)2
∀u, v ∈ V

for some distribution h on Ψ, i.e. h : Ψ→ R≥0 with
∑

A∈Ψ h(A) = 1.

Having established the connection between metric spreading and subset flow congestion,
we end up with a similar situation as Section 7.3, where we need to lower bound conπ(F )
for some solution F to a multicommodity flow problem.

Again, the relation

conπ(F ) ≥ π−1/2
max

(∑
v∈V

cF (v)
2

)1/2

= π−1/2
max · con(F ) (7.6)

allows us to reduce the task at hand to lower bounding the unweighted congestion con(F ).
Then, we relate the current multicommodity flow problem FΨ

π (G), where the demand graph
is a weighted sum of subset π-product demands, to the multicommodity flow problem
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FΨ′
(G′) (see Lemma 3.5.18 for definition) on an auxiliary graph G′ = (V ′, E ′) and an

appropriate collection of subsets Ψ′ of V ′, and use Lemma 3.5.18 to lower bound the
congestion of F for F ∈ FΨ′

(G′), where the demand graph is a weighted sum of subset
uniform demands.

A natural choice for the auxiliary graph is the constellation graph in Definition 7.3.6,
since we already know from Lemma 7.3.8 that the special properties of G are preserved.
The following lemma summarizes the key properties of the reduction. Properties (i) and
(iii) ensure that we can apply the results in [KLPT11], and properties (ii) ensure that we
obtain an explicit congestion lower bound depending on n, k, and other simple parameters.

Lemma 7.4.10 (Properties of Constellation Graph). Let G = (V,E) be a graph with
distribution π on V . Let {nu}u∈V ,M be positive integers from Proposition 7.4.7 such that
nu/M is arbitrarily close to π(u) for all u ∈ V , and G′ be the constellation graph constructed
from G and {nu}u∈V . Given r ∈ (0, 1), let Ψ := Ψr,5r = {S ⊆ V : π(S) ∈ [r, 5r]} and

Ψ′ :=

{
{ui : u ∈ S, 0 ≤ i < nu} |S ∈ Ψ

}
.

Then, the following properties hold:

(i) If G is planar, so is G′. If G is of genus g ≥ 1, so is G′. If G is Kh-minor free for
h ≥ 3, so is G′.

(ii) |S ′| ∈ [rM/2, 6rM ] for all S ′ ∈ Ψ′.

(iii) For some absolute constants A,B > 0,

A · min
F∈FΨ

π (G)
con(F ) ≤ min

F ′∈FΨ′ (G′)
con(F ′) ≤ B · min

F∈FΨ
π (G)

con(F ).

Proof. We prove the three properties one by one. (i) follows directly from Lemma 7.3.8.
(ii) is because for all S ∈ Ψ whose corresponding set in Ψ′ is S ′ := {ui : u ∈ S, 0 ≤ i < nu},
one has |S ′|/M ≈ π(S) ∈ [r, 5r] for all S ′ ∈ Ψ′. Since the approximation can be arbitrarily
fine, we can make sure that |S ′| ∈ [rM/2, 6rM ] for all S ′ ∈ Ψ′.

It remains to prove (iii). The proof is similar to Lemma 7.3.7. First, we prove that

1

3
min

F∈FΨ
π (G)

con(F ) ≤ min
F ′∈FΨ′ (G′)

con(F ′).
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Let F ′ ∈ FΨ′
(G′) be a solution to the subset flow problem FΨ′

(G′). That means there is
a distribution h′ : Ψ′ → R≥0 such that the demand graph Dh′ satisfies

Dh′(ui, vj) =
∑

S′∈Ψ′:{ui,vj}⊆S′

h′(S ′)

|S ′|2
∀ui, vj ∈ V ′. (7.7)

Define h : Ψ→ R≥0 so that h(S) = h′(S ′) if S ∈ Ψ corresponds to S ′ ∈ Ψ′. We are looking
for a flow solution F to FΨ

π (G) such that the demand graph Dh satisfies

Dh(u, v) = π(u)π(v)
∑

S∈Ψ:{u,v}⊆S

h(S)

π(S)2
∀u, v ∈ V. (7.8)

As in Lemma 7.3.7, fix F ′ and construct F by “trimming” F ′ as follows: for each flow
path p′ in F ′ from ui to vj carrying a positive amount of flow, we take the flow path p by
removing ui → u0 (whenever i ̸= 0) and v0 → vj (whenever j ̸= 0) from p′, so that p only
uses edges in G and has a natural image in G. Add that amount of flow that flow path in
G. Add these flow paths up to form F .

We show that the congestion of F is at most 2 · con(F ′) and that F approximately
satisfies the demand graph Dh. First, other than the addition of the degenerate flow paths
u → u the congestion only decreases due to the flow trimming. As in Lemma 7.3.7, the
contribution of the degenerate flow paths to the congestion at u is at most the original
congestion at u0, so the overall congestion at most doubles after the trimming. Next, the
amount of flow sent between u and v is∑

0≤i<nu
0≤j<nv

D′
h(ui, vj) = nunv ·

∑
S′∈Ψ′:{u0,v0}⊆S′

h′(S ′)

|S ′|2

≈ M2π(u)π(v) ·
∑

S∈Ψ:{u,v}⊆S

h(S)

M2π(S)2
= Dh(u, v).

Therefore, by scaling up F by a factor of at most 3/2 and then removing some flow paths,
we obtain an exact solution to the subset flow problem FΨ

π (G), with congestion at most
3 · con(F ′).

Next, we prove that

min
F ′∈FΨ′ (G′)

con(F ′) ≤ 4 · min
F∈FΨ

π (G)
con(F ).
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The proof is by following the branching procedure in Lemma 7.3.7. Let F ∈ FΨ
π (G) be a

solution to the subset flow problem FΨ
π (G). That means there is a distribution h : Ψ→ R≥0

such that the demand graph Dh satisfies (7.8). Define h′ : Ψ→ R≥0 so that h(S) = h′(S ′)
if S ∈ Ψ corresponds to S ′ ∈ Ψ′. We are looking for a flow solution F ′ to FΨ′

(G′) such
that the demand graph Dh′ satisfies (7.7).

Construct F ′ as follows: for each flow path p in F from u to v carrying a positive amount
of flow, send (nunv)

−1 portion of that flow from ui to vj along the path ui → p → vj for
each 0 ≤ i < nu and 0 ≤ j < nv.

We first show that the branching procedure at most triples the original congestion,
and then show that F ′ is approximately feasible for Dh′ . Following the same argument as
Lemma 7.3.7, the congestion at u0 dominates the total congestion at the other vertices ui
for i ̸= 0: ∑

i ̸=0

cF ′(ui) ≤ 2cF ′(u0).

Furthermore, there is a net decrease in congestion at u0 due to the branching procedure.
Therefore, as in Lemma 7.3.7 we have con(F ′) ≤ 3·con(F ). To show approximate feasibility,
note that the total amount of flow from ui to vj is

1

nunv
Dh(u, v) ≈

1

M2π(u)π(v)
· π(u)π(v) ·

∑
S∈Ψ:{u,v}⊆S

M2 · h(S)
|S|2

= Dh′(ui, vj).

Therefore, by scaling up F ′ by a factor of at most 4/3 and then removing some flow paths,
we obtain an exact solution to the subset flow problem, with congestion at most 4 ·con(F ).

This completes the proof of (iii) and hence of the lemma.

Putting It All Together

Proof of Theorem 7.1.8. Start with the eigenvalue upper bound in Lemma 7.4.6 that

λ∗k(G) ≲
1

ε2
(
βε/2(V, ds)

)2
, (7.9)

where ε = εΨ(G, s) with Ψ = Ψr,5r := {S ⊆ V : π(S) ∈ [r, 5r]} and r = 1/(4k). Find
positive integers {nu} and M so that nu/M is arbitrarily close to π(u) for all u ∈ V . Note
that by the flow-metric duality in Lemma 7.4.9, property (iii) in Lemma 7.4.10, and (7.6),

ε = min
F∈FΨ

π (G)
conπ(F ) ≥ π−1/2

max · min
F∈FΨ

π (G)
con(F ) ≳ π−1/2

max · min
F ′∈FΨ′ (G′)

con(F ′),
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where G′ is the constellation graph given G and {nu}, and Ψ′ is defined as in Lemma 7.4.10.

We may now apply the congestion lower bound in Lemma 3.5.10 case by case. Let
n′ := |V ′| be the number of vertices of G′. Then,

1 =
∑
u∈V

π(u) ≈
∑
u∈V

nu
M

=
n′

M
.

Let MΨ′
:=
∑

S′∈Ψ′ h(S ′)/|S ′|2 as in Lemma 3.5.10. By property (ii) in Lemma 7.4.10,

MΨ′
= Θ(1/(rM)2) = Θ((k/n′)2).

• If G is planar, then G′ is also planar by property (i) in Lemma 7.4.10. There are
two cases to consider per Lemma 3.5.10. If MΨ′

< o(1) then by Lemma 3.5.10

it is possible to take ε = Θ(π
−1/2
max (n′)−1/2(MΨ′

)−1/4) = Θ(1/
√
k · πmax). Now by

Lemma 7.4.8, βε/2(V, ds) ≤ O(1). Plugging all the values in (7.9) we get

λ∗k(G) ≲ kπmax.

If MΨ′ ≥ Ω(1), that means k ≥ Ω(n′) ≥ Ω(n). Since πmax ≥ 1/n and λ∗k(G) ≤ O(1)
by the trivial upper bound (see the proof of Theorem 7.1.6), we obtain the desired
upper bound via

λ∗k(G) ≲ 1 ≲
k

n
≲ kπmax.

• If G has genus g ≥ 1, then G′ is also of genus g ≥ 1 by property (i) in Lemma 7.4.10.
Again there are two cases to consider. If gMΨ′

< o(1) then by Lemma 3.5.10 it

is possible to take ε = Θ(π
−1/2
max (gn′)−1/2(MΨ′

)−1/4) = Θ(1/
√
gk · πmax). Now by

Lemma 7.4.8, βε/2(V, ds) ≤ O(log g). Plugging all the values in (7.9) we get

λ∗k(G) ≲ kπmax · g log2 g.

If gMΨ′ ≥ Ω(1), then a similar argument as in the first case establishes the required
upper bound on λ∗k(G).

• If G is Kh-minor free for h ≥ 3, then G′ is also Kh-minor free by property (i) in
Lemma 7.4.10. Again there are two cases to consider. If (h2 log h)MΨ′

< o(1) then

by Lemma 3.5.10 it is possible to take ε = Θ(π
−1/2
max (h2 log h · n′)−1/2(MΨ′

)−1/4) =
Θ(1/

√
(h2 log h)k · πmax). Now by Lemma 7.4.8, βε/2(V, ds) ≤ O(h2). Plugging all

the values in (7.9) we get

λ∗k(G) ≲ kπmax · h6 log h.

If (h2 log h)MΨ′ ≥ Ω(1), then a similar argument as in the first case establishes the
required upper bound on λ∗k(G).
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This concludes the proof.

7.5 Concluding Remarks

In this chapter, we have proved upper bounds on reweighted eigenvalues of special classes
of graphs. These bounds lead to a new suite of spectral algorithms for finding small
balanced separators, with improved bounds over past work [ST96, BLR10, KLPT11] when
the graph is not constant-degree. In particular, for planar graphs we presented a fast
spectral algorithm with optimal O(

√
n) separator size, based on adjusting the “kissing

circle” embedding for Cheeger rounding. It is possible that similar techniques may be
applied to bounded genus graphs as well.

While there is a fast and simple algorithm for computing eigenvalues and eigenvectors
of the ordinary graph Laplacian, the current fastest algorithm in [LTW24] for computing
reweighted eigenvalues, which runs in almost-linear time, is considerably more complicated
than the classical counterpart. A fast and simple algorithm for computing reweighted
eigenvalues is thus of interest here, for it would potentially make spectral partitioning
using reweighted eigenvalues a practical alternative to existing algorithms.

One may wonder if there is an analogous upper bound on reweighted eigenvalues in
the directed graph and hypergraph settings. While the claim that “topologically simple
directed graphs and hypergraphs have small reweighted eigenvalues” is likely true, the
concepts of planarity, genus, and graph minor do not generalize readily to these settings,
so to make precise such a claim one needs to first find meaningful classes of generalized
graphs to investigate.
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Chapter 8

Tightening Reweighted Eigenvalues
with Triangle Inequalities

In this chapter, we propose new semidefinite programming relaxations for expansion and
multi-way expansion problems. They are derived from the reweighted eigenvalues for-
mulation in Chapter 4 and Chapter 5 by adding ℓ22 triangle inequality constraints to the
programs.

For generalized graph expansion problems, we show that this achieves O(
√
log n) in-

tegrality gap, providing a simple and unified approach to attain the best-known approxi-
mation. Solving the reweighted eigenvalues program with ℓ22 triangle inequalities gives an
embedding of the generalized graph satisfying the conditions of the ARV structure theorem
[ARV09], and the traditional region growing argument [LR99, ARV09] is used to extract
sparse cuts.

For k-way expansion problems, we adapt the approach of [BFK+14, LM14a, LM14b]
using orthogonal separators to round the reweighted sum of first k eigenvalue programs plus
ℓ22 triangle inequalities and find (1−ε)k sparse cuts of expansion Oε(k log k log log k

√
log n)

times the optimal. This works for undirected expansion problems, most generally multi-
way hypergraph edge expansion.

The first half of the chapter about generalized graph expansion problems is based on
the paper [LTW24]. In the paper, the main goal is to design almost linear-time algorithms
to obtain low expansion cuts whose expansion is within O(

√
log n) of the optimal. This is

however out of the scope of this thesis, and we refer the interested reader to the paper.
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8.1 Our Results

We present our results in this section. Results on expansion problems on generalized
graphs are presented in Section 8.1.1, and results on k-way expansions are presented in
Section 8.1.2.

8.1.1 Expansions and Reweighted Second Eigenvalues with Tri-
angle Inequalities

We consider a new semidefinite program for generalized expansion quantities based on
the reweighted eigenvalue formulation. To illustrate the idea and to better compare with
previous work, we lay out our results for directed edge expansion (with arbitrary vertex
weights). We first recall the definition of directed edge expansion.

Definition 8.1.1 (π-Weighted Directed Edge Expansion (from Section 2.3.2)). Let G =
(V,E,w) be a directed graph with edge weights w : E → R+, and let π : V → R+ be a
vertex measure. For S ⊆ V , let δ+(S) := {uv ∈ E : u ∈ S, v /∈ S} be the set of arcs going
out of S. The π-weighted edge expansion of S ⊆ V and of the graph G are defined as

ϕ⃗π(S) :=
min{w(δ+(S)), w(δ+(Sc))}

min{π(S), π(Sc)}
and ϕ⃗π(G) := min

∅≠S⊂V
ϕ⃗π(S).

As we have seen in Section 2.3.2, this is a general problem that encompasses various
expansion problems studied in the literature. The directed edge expansion problem is
when π(u) = 1 for all u ∈ V , and this is equivalent (up to a factor of Θ(n)) to the directed
sparsest cut of G, defined as

min
∅≠S⊂V

min{w(δ+(S)), w(δ+(Sc))}
|S| · |Sc|

and studied in [ACMM05]. The directed edge conductance in Definition 5.1.2 is when
π(u) = degw(u) := deg+w(u) + deg−w(u), the weighted total degree of vertex u. Clearly, the
corresponding problems in undirected graphs can be reduced to Definition 8.1.1 by bidi-
recting the edges in the undirected graph. Also, the undirected vertex expansion problem
studied in [FHL08, LRV13]1 and the directed vertex expansion problem in Chapter 5 can

1To be precise, [FHL08] studies “minimum ratio vertex cuts”, which is up to a constant equivalent to
undirected vertex expansion as defined in Section 2.3.1 in the thesis. They use “vertex expansion” to refer
to a different quantity incomparable to ours.
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be reduced to Definition 8.1.1 through a standard reduction of splitting each vertex into
two. Furthermore, the corresponding problems in undirected and directed hypergraphs
can be reduced to Definition 8.1.1 through a reduction of replacing each hyperedge by a
vertex as shown in [CS18] (see Definition 3.6.5).

We consider a new SDP relaxation for directed edge expansion in Definition 8.1.1. For
undirected graphs, the SDP formulation in [ARV09] (c.f. (3.18)) can be understood as
the spectral formulation for the second smallest Laplacian eigenvalue plus the ℓ22 triangle
inequalities [Tre16]. For directed graphs, our SDP formulation is the reweighted eigenvalue
formulation in Definition 5.1.7 plus the ℓ22 triangle inequalities.

Definition 8.1.2 (Reweighted Eigenvalue with Triangle Inequalities). Given an edge-
weighted directed graph G = (V,E,w), we say that P : E → R≥0 is an Eulerian reweighting
on G 2 if

∑
v:uv∈E P (u, v) =

∑
v:vu∈E P (v, u) for all u ∈ V . We let F(G) be the set of all Eu-

lerian reweightings on G that also satisfy the arc weight constraints that P (u, v) ≤ w(u, v)
for all uv ∈ E. Given also vertex weights π : V → R+, the λ△2 (G) program for directed
edge expansion is defined as

min
f :V→Rn

max
P∈F(G)

∑
u,v∈V

1

2

(
P (u, v) + P (v, u)

)
· ∥f(u)− f(v)∥2

subject to
∑
u∈V

π(u) · f(u) = 0⃗∑
u∈V

π(u) · ∥f(u)∥2 = 1

∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 ∀u, v, u′ ∈ V.
(8.1)

Here we use the convention that P (u, v) = 0 if uv ̸∈ E.

Using the semidefinite programming formulation for the second eigenvalue and the von
Neumann min-max theorem, λ∗2(G) in Definition 5.1.7 can be rewritten as the form in
Definition 8.1.2 without the triangle inequalities.

Just as the addition of triangle inequalities to the spectral formulation reduces the
integrality gap of undirected edge expansion to O(

√
log n) in [ARV09], we show the ex-

act analog for directed edge expansion by using the spectral formulation for reweighted
eigenvalues.

2In [LTW24], network flows is a main theme, and so P was referred to as a circulation. Here we revert
to calling it an Eulerian reweighting for consistency with other chapters.
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Theorem 8.1.3 (O(
√
log n)-Approximation for Directed Edge Expansion). For any edge-

weighted directed graph G = (V,E,w) with vertex weights π : V → R+,

λ△2 (G) ≲ ϕ⃗π(G) ≲
√
log n · λ△2 (G).

Moreover, there is a randomized polynomial-time algorithm3 that, given G and π, computes
a subset S ⊆ V such that

ϕ⃗π(S) ≲
√
log n · ϕ⃗π(G).

As we shall elaborate in Section 8.2, the proof is a simple adaptation of that in [ARV09];
see Section 3.6 for a review of their work.

Note that, since λ△2 (G) (when setting π(u) to be the total weighted degree of u) is a

tightening of the λ⃗e∗2 (G) program in Definition 5.1.7 and that λ⃗e∗2 (G) can be used to certify

expanders (in the sense that ϕ⃗(G) = Θ(1) if and only if λ⃗e∗2 (G) = Θ(1)), λ△2 (G) can also be
used to certify expanders. Note also that, as we shall see later, our rounding algorithm for
Theorem 8.1.3 provides an alternative rounding algorithm to recover the Cheeger inequality
in Theorem 5.1.8 for directed edge conductance.

Agarwal, Charikar, Makarychev and Makarychev [ACMM05] also derived an SDP-based
rounding algorithm for directed edge expansion and proved O(

√
log n) integrality gap; see

Section 3.6.3 for a detailed review. Compared to their program sdp∆(G) in (3.20), the
λ△2 (G) program that we introduce in Definition 8.1.2 is less constrained. We can see this
by taking the linear programming dual of the inner maximization problem with respect to
the P (u, v) variables, so that

max
P∈F(G)

∑
u,v∈V

1

2

(
P (u, v) + P (v, u)

)
· ∥f(u)− f(v)∥2

becomes
min
r:V→R

∑
uv∈E

w(uv) ·max
{
0, ∥f(u)− f(v)∥2 − r(u) + r(v)

}
.

Thus, we see that every feasible solution to (3.20) corresponds to a feasible solution to
the λ△2 (G) program with the same objective value by taking r(u) = ∥f(u)− f(0)∥2. (The
reason we define λ△2 in the min-max form is for ease of presentation of our analyses.)

Finally, we note that the same approach of adding ℓ22 triangle inequalities to reweighted
eigenvalues provides considerably simpler formulations and proofs for undirected vertex

3As remarked before, an almost linear-time algorithm is obtained in [LTW24].
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expansion and hypergraph edge expansion than that in [FHL08] and in [LM14b] (see Sec-
tion 3.6 for a review of their work), while having the same integrality gap O(

√
log n); these

results are presented in Section 8.4. Just as how the reweighted eigenvalue formulations
in Chapter 4 and Chapter 5 provide a unifying framework to obtain Cheeger-type inequal-
ities for generalized expansion quantities, we show in this study that in all these cases,
adding ℓ22 triangle inequality constraints to the reweighted eigenvalue formulations gives
O(
√
log n)-approximation algorithms for estimating these quantities.

Remark 8.1.4 (Concurrent Work). Concurrent to the publication of [LTW24], Chen,
Orecchia, and Tani [COT23] designed an O(

√
log n)-approximation algorithm for “polyma-

troidal cut functions”, which is a new subclass of submodular transformations that is more
general than directed hypergraph expansion (with arbitrary vertex measure). Their result
was in turn generalized by Chekuri and Louis [CL24] to “directed polymatroidal networks”.
Both results used an SDP relaxation similar to that in [ACMM05]; see Section 3.6.3. We
note that in both papers, unlike in [LTW24], there is no fast (e.g. almost linear-time)
algorithms with O(

√
log n) approximation guarantees.

In light of the negative evidence in Chapter 6, it remains to be seen if the reweighted
eigenvalue formulation can be applied to models beyond generalized graphs, to obtain ARV-
like approximation guarantees matching the aforementioned results.

8.1.2 Higher Expansions and Reweighted Higher Eigenvalues with
Triangle Inequalities

Motivated by the positive results in the previous subsection, we then consider adding ℓ22
triangle inequalities to the reweighted k-th eigenvalue formulation to obtain tighter relax-
ations of k-way expansion quantities. In previous chapters, higher-order Cheeger inequali-
ties have been established for multi-way edge conductance (Theorem 3.1.6) and multi-way
vertex expansion of undirected graphs (Theorem 4.1.10), as well as multi-way expansion of
undirected hypergraphs ((3.11) and Theorem 5.11.1), but not for directed expansion quan-
tities as explained in Section 5.10.1. Below, we formulate the problem and state the result
for k-way hypergraph expansion, which is the most general symmetric expansion problem
considered in this thesis. We begin by formally defining k-way hypergraph expansion.

Definition 8.1.5 (k-Way Hypergraph Edge Expansion). Given an undirected hypergraph
H = (V,E,w) and a vertex measure π : V → R+. For 1 ≤ k ≤ n, the k-way hypergraph
edge expansion of disjoint subsets S1, . . . , Sk and of H are defined as

(ϕπ)k(S1, . . . , Sk) := max
i∈[k]

w(δ(Si))

π(Si)
and (ϕπ)k(G) := min

S1⊔···Sk⊆V
(ϕπ)k(S1, . . . , Sk),
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where δ(S) := {e ∈ E : e ∩ S ̸= ∅ ∧ e ∩ Sc ̸= ∅} is the set of hyperedges cut by S.

Theorem 8.1.6 (Approximating k-Way Hypergraph Edge Expansion). There is a ran-
domized polynomial-time algorithm that, given an undirected hypergraph H = (V,E,w) with
vertex measure π : V → R+, and also 2 ≤ k ≤ n and ε ∈ (0, 1/2], returns ℓ := ⌊(1− ε)k⌋
disjoint subsets S1, S2, · · · , Sℓ ⊆ V , such that

(ϕπ)ℓ(S1, S2, . . . , Sℓ) ≤ Oε

(
k log k log log k ·

√
log n

)
· (ϕπ)k(H).

We compare Theorem 8.1.6 with past work on the approximation of multi-way hyper-
graph expansion. We note that in the case where π = degw is the degree measure, for
fixed ε, the multiplicative factor in the approximation guarantee of ϕ⌊(1−ε)k⌋(H) in Theo-
rem 8.1.6 is better than that in (3.11) by Chan, Louis, Tang, and Zhang [CLTZ18] roughly
by a factor of k1.5 but worse than that in Theorem 5.11.1 roughly by a factor of

√
k. How-

ever, there is no square-root loss in our approximation guarantee, and so it is significantly
better than Cheeger-type results when the hypergraph has small k-way conductance.

By restricting the size of each hyperedge to be two, the result can be directly applied
to k-way edge expansion of ordinary graphs. However, it is possible to obtain a better
approximation factor of Oε(

√
log n log k) for k-way edge expansion, which matches that in

Theorem 3.6.13 by Louis and Makarychev [LM14a] for the related but different problem
of sparsest k-partitioning (Φπ)k(G).

Theorem 8.1.7 (Approximating k-Way Edge Expansion). There is a randomized polynomial-
time algorithm that, given an undirected graph G = (V,E,w) with vertex measure π :
V → R+, and also 2 ≤ k ≤ n and ε ∈ (0, 1/2], returns ℓ := ⌊(1− ε)k⌋ disjoint subsets
S1, S2, · · · , Sℓ ⊆ V , such that

(ϕπ)ℓ(S1, S2, . . . , Sℓ) ≤ Oε

(√
log n log k

)
· (ϕπ)k(G).

As remarked in Section 3.6.4, (ϕπ)k(G) ≤ (Φπ)k(G), and so Theorem 8.1.7 is a strength-
ening of Theorem 3.6.13. For k-way conductance by taking π(u) = degw(u), this result
is worse by a factor of

√
log n than the higher-order Cheeger inequality Theorem 3.1.6 by

Lee, Oveis Gharan, and Trevisan [LOT12], but without the square-root loss, and is likewise
almost always better than (3.11) and Theorem 5.11.1 when specialized to graphs.

One significance of Theorem 8.1.7 is that it provides a better approximation algorithm
for k-way expansion of low-rank hypergraphs via a reduction to graphs.
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Corollary 8.1.8 (Approximating k-Way Hypergraph Edge Expansion for Low-Rank Hy-
pergraphs). There is a randomized polynomial-time algorithm that, given an undirected
hypergraph H = (V,E,w) of rank r = r(H) := maxe∈E |e| with vertex measure π :
V → R+, and also 2 ≤ k ≤ n and ε ∈ (0, 1/2], returns ℓ := ⌊(1− ε)k⌋ disjoint sub-
sets S1, S2, . . . , Sℓ ⊆ V , such that

(ϕπ)ℓ(S1, S2, . . . , Sℓ) ≤ Oε

(
min(r

√
log k, k log k log log k) ·

√
log n

)
· (ϕπ)k(H).

The reduction from small-set vertex expansion to hypergraph small-set expansion in
Remark 3.6.20 applies to k-way expansions as well, and we obtain the following result
about approximating k-way vertex expansions in graphs.

Corollary 8.1.9 (Approximating k-Way Vertex Expansion). There is a randomized polynomial-
time algorithm, that, given an undirected graph G = (V,E) of maximum degree ∆ with
vertex measure π : V → R+, and also 2 ≤ k ≤ n and ε ∈ (0, 1/2], returns ℓ := ⌊(1− ε)k⌋
disjoint subsets S1, S2, . . . , Sℓ ⊆ V , such that

ψℓ(S1, . . . , Sℓ) ≤ Oε

(
min(∆

√
log k, k log k log log k) ·

√
log n

)
· ψk(G).

8.2 Our Techniques

Conceptually, the main contribution is that the reweighted eigenvalue formulation in Chap-
ter 4 and Chapter 5 can be easily extended to obtain state-of-the-art approximation guar-
antees for generalized expansion and higher expansion quantities. On top of Theorem 8.1.3,
we shall see in Section 8.4 that the technique of adding ℓ22 triangle inequalities to reweighted
eigenvalue formulations applies readily to directed hypergraph expansion, providing a uni-
fying method to extend the results for undirected graphs to generalized graphs.

Technically, the proof of Theorem 8.1.3 begins similarly as [ARV09, FHL08, ACMM05],
with the ℓ22 structure theorem of [ARV09] in Theorem 3.6.2. After finding two vertex subsets
that are well-separated in the average ℓ22 embedding distance, a traditional region growing
argument [LR99, ARV09] is used to produce a sparse cut.

As for the proof of Theorem 8.1.6 for k-way hypergraph expansion, our SDP relaxation
is the σ∗

k(H) program introduced previously in Section 5.11.2 plus ℓ22 triangle inequalities.
As discussed before, σ∗

k(H) is itself introduced as a convex reformulation of λ∗k(H). Our
SDP relaxation is defined formally as follows:
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Definition 8.2.1 (Reweighted Sum of Eigenvalues with Triangle Inequalities). Given an
undirected hypergraph H = (V,E,w), vertex measure π : V → R+, and 2 ≤ k ≤ n, the
λ∆k (H) program is defined as

min f :V→Rn

g:V→R≥0

1

k

∑
e∈E

w(e)g(e)

subject to g(e) ≥ ∥f(u)− f(v)∥2 ∀{u, v} ⊆ e, ∀e ∈ E∑
u∈V

π(u) ∥f(u)∥2 = k∑
u∈V

π(u)f(u)f(u)T ⪯ In

∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 ∀u, v, u′ ∈ V ∪ {0}

where we define f(0) := 0⃗ ∈ Rn. Note that the scaling factor 1
k
in the objective was absent

from σ∗
k(H). Note also that this definition makes sense for undirected graphs as well.

We apply the hypergraph orthogonal separators introduced by Louis and Makarychev
[LM14b] (see Definition 3.6.15), generating many of them and postprocessing to obtain
Θ(k) disjoint small expansion cuts. The proof flow follows that of Section 3.6.4.

As for Theorem 8.1.7 for k-way edge expansion, the only difference between sdp∆k (G)
and λ∆k (G) is that the spreading constraint∑

v∈V

π(v)⟨f(u), f(v)⟩ = 1 ∀u ∈ V

is replaced by ∑
u∈V

π(u)f(u)f(u)T ⪯ In.

We show that the same key properties in Lemma 3.6.12 of the algorithm can also be inferred
from the new constraints of the λ∆k (G) program.

The reduction to obtain Corollary 8.1.8 from Theorem 8.1.7 is simply to construct an
auxiliary graph by replacing each hyperedge by its star graph. It is possible to show that
hypergraph expansion and ordinary edge expansion in the auxiliary graph are within a
factor r from one another.
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8.3 Rounding Reweighted Eigenvalues with Triangle

Inequalities

In this section, we prove Theorem 8.1.3 that reweighted eigenvalue with triangle inequalities
provides O(

√
log n) approximation for directed edge expansion with general vertex weights.

The proof is by applying a traditional threshold rounding on the two sets provided by the
structure theorem of Arora, Rao, and Vazirani (see Theorem 3.6.2). The proof that λ△2 (G)
is indeed an SDP relaxation of directed edge expansion can be found in Appendix D.

Proposition 8.3.1 (Easy Direction). For any edge-capacitated directed graph G = (V,E,w)

with vertex weights π : V → R+, it holds that λ△2 (G) ≤ 2ϕ⃗π(G).

We will use the structure theorem in [ARV09] for the proof of ϕ⃗π(G) ≲
√
log n ·λ△2 (G).

Since we consider π-weighted directed edge expansion, we need the following weighted
version of the structure theorem. The proof of the weighted version is a straightforward
reduction to the unweighted version in Theorem 3.6.2 and is deferred to Appendix D
(see [ACMM05, Algorithm 1] for a similar weighted structure theorem and reduction).

Lemma 8.3.2 (π-Weighted Structure Theorem). Let G = (V,E,w) be a directed graph
with vertex measure π : V → R+ and π(V ) = 1. Let {f(u)}u∈V be a set of embedding
vectors satisfying ℓ22 triangle inequalities and

∑
u,v∈V π(u) · π(v) · ∥f(u)− f(v)∥

2 = 1. The

embedding {f(u)}u∈v is said to be well-spread if π(B(u, 1/
√
10)) ≤ 1/10 for all u ∈ V ,

where B(u, t) denotes the set of points v ∈ V such that ∥f(u)− f(v)∥ < t. If {f(u)}u∈v is
well-spread, then there exists two subsets L,R ⊆ V with π(L), π(R) ≥ Ω(1) and

d(L,R) := min
u∈L,v∈R

∥f(u)− f(v)∥2 ≳ 1/
√

log n.

Moreover, there is a randomized polynomial-time algorithm that finds such sets with high
probability.

The proof of the hard direction below then follows a case analysis as in Theorem 3.6.3.

Theorem 8.3.3 (Hard Direction). Let G = (V,E,w) be a directed graph with vertex
measure π : V → R+. There is a polynomial-time algorithm which, with high probability,
finds a set S ⊆ V with ϕ⃗π(S) ≲ λ△2 (G) ·

√
log n.

Proof. Let {f(u)}u∈V be an optimal solution to the λ△2 (G) program. By Fact 2.10.4, the
two normalization constraints in λ△2 (G) in Definition 8.1.2 imply∑

u,v∈V

π(u)π(v) · ∥f(u)− f(v)∥2 = 2. (8.2)
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There are two cases to consider: the “well-spread” case and the “large core” case.
In either case, we assume without loss of generality that π(V ) = 1. In the context of
the Cheeger-type proof for Theorem 5.1.8, the ARV-type proof here produces directly a
one-dimensional ℓ1 solution h : V → R, so that the loss is only O(

√
log n):

maxP∈F(G)
1
2
(P (u, v) + P (v, u)) · |h(u)− h(v)|∑

u,v∈V π(u)π(v) · |h(u)− h(v)|

≲
√
log n ·

maxP∈F(G)
1
2
(P (u, v) + P (v, u)) · ∥f(u)− f(v)∥2∑

u,v∈V π(u)π(v) · ∥f(u)− f(v)∥
2 . (8.3)

• Suppose that f is well-spread. Then, since∑
u,v∈V

π(u) · π(v) ·
∥∥∥∥ 1√

2
f(u)− 1√

2
f(v)

∥∥∥∥2 = 1,

we can apply Lemma 8.3.2 to obtain, with high probability, two subsets L,R ⊆ V
with π(L), π(R) ≥ Ω(1) and

d(L,R) := min
u∈L,v∈R

∥f(u)− f(v)∥2 ≳ 1/
√

log n

in randomized polynomial time. We then define h(u) := d(u, L). Then, since

|d(u, L)− d(v, L)| ≤ d(u, v) = ∥f(u)− f(v)∥2

for any u, v ∈ V , in the numerator we have

max
P∈F(G)

1

2
(P (u, v)+P (v, u))·|h(u)−h(v)| ≲ max

P∈F(G)

1

2
(P (u, v)+P (v, u))·∥f(u)− f(v)∥2 .

As for the denominator, we have∑
u,v∈V

π(u)π(v)|h(u)− h(v)| ≥
∑

u∈L,v∈R

π(u)π(v)|d(u, L)− d(v, L)|

≳ π(L)π(R) · 1√
log n

≳
1√
log n

·
∑
u,v∈V

π(u)π(v) ∥f(u)− f(v)∥2 .

This proves (8.3).
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• Suppose that f is not well-spread, so that it has a large core C := B(u0,
1√
10
) with

π(C) > 1/10 for some u0 ∈ V . That means d(u, u0) ≤ 1/10 for all u ∈ C. Define
h(u) := d(u,C). Using the same reason as in the first case, in the numerator we have

max
P∈F(G)

1

2
(P (u, v)+P (v, u))·|h(u)−h(v)| ≲ max

P∈F(G)

1

2
(P (u, v)+P (v, u))·∥f(u)− f(v)∥2 .

As for the denominator, we use that, for any u ∈ C and v ∈ V ,

|h(u)− h(v)| = |d(u,C)− d(v, C)| = d(v, C) ≥ d(v, u0)−
1

10
,

so that ∑
u,v∈V

π(u)π(v)|h(u)− h(v)| ≥
∑

u∈C,v∈V

π(u)π(v)

(
d(v, u0)−

1

10

)

≥ π(C) ·

(∑
v∈V

π(v)d(v, u0)−
1

10

)
.

This can be further lower bounded using∑
v∈V

π(v)d(v, u0) =
1

2

∑
u,v∈V

π(u)π(v)(d(u, u0) + d(v, u0))

≥ 1

2

∑
u,v∈V

π(u)π(v) ∥f(u)− f(v)∥2 = 1,

where the last equality is (8.2). Therefore, in fact we have∑
u,v∈V

π(u)π(v)|h(u)− h(v)| ≥ π(C) ·
(
1− 1

10

)
≳
∑
u,v∈V

π(u)π(v) ∥f(u)− f(v)∥2 .

Once (8.3) is established, the rest of the proof is the same as the threshold rounding
step in Section 5.7.3. By scaling we can assume that

∑
u,v∈V π(u)π(v) · |h(u)− h(v)| = 2,

and Fact 2.10.4 implies that∑
v∈V

π(v)h(v) = 0 and
∑
v∈V

π(v)|h(v)| = 1,

by appropriately shifting h by a constant. Then, h is a feasible solution to the π-weighted
ℓ1 dual program (similar to Lemma 5.7.6 but with vertex weight π(u) instead of degw(u)
in the constraints). It is straightforward to verify that the threshold rounding proof works
for vertex weights other than just degw(u).

Theorem 8.1.3 follows immediately from Theorem 8.3.3 and Proposition 8.3.1.
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8.4 Generalization to Directed Hypergraphs

In this section, we show that adding ℓ22 triangle inequality constraints to the reweighted
eigenvalue SDP for directed hypergraph expansion, we obtain a tighter relaxation which
has an integrality gap of O(

√
log n). This encompasses all the expansion problems we have

studied in this thesis, including undirected and directed vertex expansion and undirected
hypergraph expansion. For definition of directed hypergraph and its expansion, refer to
Section 2.2 and Section 2.3.3.

We again derive our SDP by adding ℓ22 triangle inequalities to the reweighted eigenvalue
program for directed hypergraphs, which we have introduced in Definition 6.3.11.

Definition 8.4.1 (Directed Hypergraph Reweighted Eigenvalue with Triangle Inequali-
ties). Given a directed hypergraph H = (V,E,w) over vertex measure π : V → R+. Let

F(H) :=

{
P : V × V → R≥0

∣∣∣∣∃{Pe : e− × e+ → R≥0}e∈E s.t.

P (u, v) =
∑

e:(u,v)∈(e−,e+)

Pe(u, v),∑
(u,v)∈(e−,e+)

Pe(u, v) ≤ w(e) ∀e ∈ E,

∑
v′∈V

P (v′, u) =
∑
v∈V

P (u, v) ∀u ∈ V
}

be the set of feasible reweightings on H. The λ∆2 (H) program for directed hypergraph
expansion is defined as

min
f :V→Rn

max
P∈F(H)

∑
u,v∈V

1

2
(P (u, v) + P (v, u)) ∥f(u)− f(v)∥2

subject to
∑
u∈V

π(u) · f(u) = 0⃗∑
u∈V

π(u) · ∥f(u)∥2 = 1

∥f(u)− f(v)∥2 + ∥f(v)− f(u′)∥2 ≥ ∥f(u)− f(u′)∥2 ∀u, v, u′ ∈ V.

The intuition for defining feasible reweightings on directed hypergraphs this way is
that they correspond to Eulerian reweightings of an underlying “clique graph” KH of the
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directed hypergraph H, where for each directed hyperedge (e−, e+), we add an arc uv from
every u ∈ e− to v ∈ e+ with weight w(e). The definition λ△2 (H) is a natural one for various

reasons. First, it can be shown that λ△2 (H) is a relaxation of ϕ⃗π(H). Second, when H
is an undirected hypergraph and π is the total weighted degree, i.e. e− = e+, ∀e ∈ E,
and π(u) = degw(u), then λ

△
2 (H) is equivalent to the reweighted eigenvalue program for

undirected hypergraphs as defined in Definition 5.1.9 but with ℓ22 triangle inequalities.
Third, just as our program for directed graphs is a relaxation of the SDP in [ACMM05],
this program is a relaxation of the SDP in [CS18] (refer to Section 2 of their paper for
details).

We show that our main result for directed edge expansion extends readily to the most
general graph-like setting of directed hypergraphs.

Theorem 8.4.2 (Hypergraph Integrality Gap). Let H = (V,E,w) be an edge-weighted
directed hypergraph with vertex measure π : V → R+. Then we have

λ∆2 (H) ≲ ϕ⃗π(H) ≲
√
log n · λ∆2 (H)

Proof outline. We first get the easy direction out of the way. The simplest proof is to apply
Proposition 6.3.15 directly, noticing that the two-point embedding f in the proof satisfies
ℓ22 triangle inequalities. Now we focus on the hard direction.

One may attempt to prove the hard direction is by relating hypergraph expansion of
H to the edge expansion of an ordinary derived graph GH as in [CS18], which we have

introduced in Definition 3.6.5. However, if we perform a black-box reduction from ϕ⃗π(H) to

ϕ⃗π′(GH), the approximation guarantee using this approach degrades to O(
√

log(n+m)),
which is worse when m = ω(poly(n)).

To obtain the optimal approximation guarantee, we follow the proof of Theorem 8.3.3.
The exact same argument using the ARV structure theorem (Theorem 3.6.2) produces an
h : V → R such that

maxP∈F(H)
1
2
(P (u, v) + P (v, u)) · |h(u)− h(v)|∑

u,v∈V π(u)π(v) · |h(u)− h(v)|

≲
√

log n ·
maxP∈F(H)

1
2
(P (u, v) + P (v, u)) · ∥f(u)− f(v)∥2∑

u,v∈V π(u)π(v) · ∥f(u)− f(v)∥
2 .

Again, shifting gives a feasible solution to the π-weighted ℓ1 dual program in Defini-
tion 6.3.3, and the threshold rounding proof in Proposition 6.3.8 works for arbitrary vertex
weights.
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8.5 Many Hypergraph Sparse Cuts from Orthogonal

Separators

In this section, we prove Theorem 8.1.6. Our approach is to use the SDP relaxation in
Definition 8.2.1 and design a rounding algorithm using hypergraph orthogonal separators.
We shall prove the following integrality gap about the λ∆k (H) program.

Theorem 8.5.1 (Integrality Gap of λ∆k (H) Program). Let H = (V,E,w) be an undirected
hypergraph with vertex measure π : V → R+. Given also 2 ≤ k ≤ n and ε ∈ (0, 1/2]. Let
ℓ := ⌊(1− ε)k⌋. Then,

ϕℓ(H) ≲ε k log k log log k ·
√

log n · λ∆k (H) and λ∆k (H) ≲ ϕk(H).

Moreover, there is a randomized polynomial-time algorithm that, given a feasible solution
to the λ∆k (H) program with objective value OBJ , returns ℓ disjoint vertex subsets S1, . . . , Sℓ
such that

max
i∈[ℓ]

ϕ(Si) ≲ε k log k log log k ·
√

log n ·OBJ.

Clearly, Theorem 8.1.6 follows from Theorem 8.5.1. We present the proof of the easy
direction in Appendix D.

Proposition 8.5.2 (Easy Direction). For any undirected hypergraph H = (V,E, π) with
vertex measure π : V → R+, and for any 2 ≤ k ≤ n, we have

λ∆k (H) ≤ ϕk(H).

8.5.1 Hard Direction

Before giving the proof of the hard direction, we provide a technical overview here. Our
rounding algorithm is similar to that of [LM14a, LM14b], with several differences in the
analysis. The reader is strongly encouraged to read Section 3.6.4 before proceeding.

First, our vector solution to the λ∆k (H) satisfies a different spreading constraint that∑
u∈V

π(u)f(u)f(u)T ⪯ In,
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and we need to show that the orthogonal separators generated are unlikely to have a large
mass, where the mass of S ⊆ V is again defined in relation to the vector solution f as

µ(S) :=
∑
u∈S

π(u) ∥f(u)∥2 .

(Note that µ(V ) = k.) Second, we need to define a new ν potential for analyzing the
expected total weight of hyperedges cut by the ℓ returned sets. Unlike in the k-way edge
expansion and small-set hypergraph expansion settings, here each hyperedge can be cut
by many sets, and a careful analysis is needed to limit the loss.

The following constraint, a direct consequence of applying ℓ22 triangle inequality to
vectors f(u), f(v), and f(0) = 0⃗, will be useful:

Fact 8.5.3. Let f be a solution to the λ∆k (H) program. Then, 0 ≤ ⟨f(u), f(v)⟩ ≤ ∥f(u)∥2
for any u, v ∈ V .

We present our rounding algorithm in Algorithm 4, which is based on Algorithm 2.
We prove its key properties in Lemma 8.5.4 and finally show how these properties imply
Theorem 8.5.1.

Algorithm 4 Many Sparse Cuts using Hypergraph Orthogonal Separators

Input: Hypergraph H = (V,E,w), solution f : V → Rn to λ∆k (H), parameters k, ε
Output: ℓ := ⌊(1− ε)k⌋ disjoint subsets S1, . . . , Sℓ ⊆ V

1: Compute the normalization f̄ from f per Proposition 3.6.11
2: Let s := (12k/ε). Sample T = Θ( 1

α
log 1

ε
) independent hypergraph s-orthogonal sep-

arators S1, . . . , ST for vectors f̄(u) and some choice of α ≥ max(1/s, 1/n) ≥ ε/(12k),
with separation threshold β = 1− ε

12
and distortion D = Oβ(

√
log n · s log s log log s)

3: For each i ∈ [T ], define S ′
i := Si if µ(Si) ≤ 1 + ε/2 and S ′

i := ∅ otherwise
4: For each i ∈ [T ], let S ′′

i := S ′
i \ (∪j<iS ′

j)

5: For each i ∈ [T ], let Pi := {u ∈ S ′′
i : ∥f(u)∥2 ≥ ti}, where ti is chosen to minimize

ϕ(Pi)
6: return the ℓ sets from Pi with the smallest edge conductance ϕ(Pi)

Lemma 8.5.4 (Key Properties of Algorithm 4). Let H = (V,E,w) be an undirected
hypergraph with vertex measure π : V → R+. Suppose that H is of rank r. Let 2 ≤ k ≤ n
and ε ∈ (0, 1/2]. Then, the following guarantees about Algorithm 4 hold.

(a) For every vertex u ∈ V where ∥f(u)∥ ≠ 0 and i ∈ {1, . . . , T}, we have Pr[u ∈ S ′
i] ≥ α

2
.
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(b) All sets S ′′
i are disjoint, and for a suitable choice of T ,

E
[
µ(∪S ′′

i )

]
≥ k

(
1− ε

8

)
(c) Let f : V → Rn be an optimal solution to λ∆k (H). For a set S ⊆ V , define

ν(S) :=
∑
e∈E

w(e)

[
1[e ∈ δ(S)] max

u∈e∩S
∥f(u)∥2 + 1[e ⊆ S] max

u,v∈e

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣] .
Then,

E

∑
i∈[T ]

ν(S ′′
i )

 ≲ (1 + T · αD) · kλ∆k (H).

Proof. To prove (a), note that we apply hypergraph orthogonal separators to the normal-
ized vectors f̄(u). Then, if ∥f(u)∥ ̸= 0 the normalization satisfies

∥∥f̄(u)∥∥ = 1, and so

Pr[u ∈ Si] = α
∥∥f̄(u)∥∥2 = α by Proposition 3.6.11. Thus, it suffices to prove that

Pr[µ(Si) ≤ 1 + ε/2 |u ∈ Si] ≥ 1/2

for all i ∈ [T ]. Let B := {v ∈ V : ⟨f̄(u), f̄(v)⟩ ≤ β}. Whenever v ∈ B, we have

Pr[v ∈ Si |u ∈ Si] =
Pr[u, v ∈ Si]
Pr[u ∈ Si]

≤ ε

12k

by the second property of orthogonal separators. Since µ(B) ≤ µ(V ) = k, by linearity of
expectation and Markov’s inequality it follows that

Pr
[
µ(Si ∩B) ≤ ε

6
|u ∈ Si

]
≥ 1

2
.
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Next, use the spreading constraint to show that most of the vectors are in B. Indeed,

µ(V \B) =
∑
v ̸∈B

π(v) ∥f(v)∥2

≤
∑
v ̸∈B

π(v)max(∥f(u)∥2 , ∥f(v)∥2)

=
∑
v ̸∈B

π(v)
⟨f(u), f(v)⟩
⟨f̄(u), f̄(v)⟩

(by Proposition 3.6.11)

≤ 1

β

∑
v ̸∈B

π(v)⟨f(u), f(v)⟩ (since ⟨f(u), f(v)⟩ ≥ 0 from Fact 8.5.3)

≤ 1

β2

∑
v ̸∈B

π(v)
⟨f(u), f(v)⟩2

∥f(u)∥2

(
since β ≤ ⟨f̄(u), f̄(v)⟩ = ⟨f(u), f(v)⟩

max(∥f(u)∥2 , ∥f(v)∥2)

)

=
1

β2
· f(u)

T

∥f(u)∥

(∑
v ̸∈B

π(v)f(v)f(v)T

)
f(u)

∥f(u)∥

≤ 1

β2
· f(u)

T

∥f(u)∥
· I · f(u)

∥f(u)∥

=
1

β2
≤ 1 +

ε

3
.

which implies that µ(V \B) ≤ 1 + ε/3. To summarize, with Si = (Si ∩B) ∪ (Si \B),

Pr
[
µ(Si) ≤ 1 +

ε

2
|u ∈ Si

]
≥ Pr

[
µ(Si ∩B) ≤ ε

6
|u ∈ Si

]
≥ 1

2
.

This completes the proof of (a). (b) immediately follows since for any vertex u ∈ V with
nonzero mass,

Pr

[
u ∈ ∪i∈[T ]S ′

i

]
≥ 1−

(
1− α

2

)T
≥ 1− exp

(
−Θ

(
log

1

ε

))
≥ 1− ε

8

for suitably chosen T , so the expected total mass in the union of the Si’s is at least

µ(V ) ·
(
1− ε

8

)
= k ·

(
1− ε

8

)
.

It remains to prove (c). To bound the expectation

E

∑
i∈[T ]

∑
e∈E

w(e)

(
1[e ∈ δ(S ′′

i )] max
u∈e∩S′′

i

∥f(u)∥2 + 1[e ⊆ S ′′
i ] max

u,v∈e

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣)
 ,
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we break it into two parts. For any hyperedge e ∈ E, there is at most one i ∈ [T ] such
that e ⊆ S ′′

i , and so

E

∑
i∈[T ]

∑
e∈E

w(e)1[e ⊆ S ′′
i ] max

u,v∈e

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣


≤
∑
e∈E

w(e)max
u,v∈e

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣ ,
which is at most kλ∆k (H) by ℓ22 triangle inequality. The remaining part to bound is

E

∑
i∈[T ]

∑
e∈E

w(e)1[e ∈ δ(S ′′
i )] max

u∈e∩S′′
i

∥f(u)∥2
 .

For e ∈ δ(S ′′
i ) to happen, it is necessary that either e ∈ δ(Si), or i ∈ [T ] satisfies (1) i is

the first index such that ∪j≤iS ′′
j ⊇ e and (2) e ∈ δ(Sj) for some j < i. Since the Si’s are

i.i.d. generated, we can upper bound the above expectation by∑
e∈E

w(e)
[
2T · Pr

S
[e ∈ δ(S)] ·max

u∈e
∥f(u)∥2

]
, (∗)

where S is a randomly generated hypergraph orthogonal separator with the parameters
specified in Algorithm 4. The following technical observation allows us to bound this.

Proposition 8.5.5. Given f : V → Rn from and its normalization f̄ : V → Rn in
accordance to Proposition 3.6.11, we have, for any e ⊆ V ,

max
u∈e
∥f(u)∥2 ·max

u,v∈e

∥∥f̄(u)− f̄(v)∥∥2 ≤ 4max
u,v∈e
∥f(u)− f(v)∥2 .

Proof. We consider two cases.

• Case 1: maxu∈e ∥f(u)∥2 ≥ 2minu∈e ∥f(u)∥2. Then, maxu,v∈e
∥∥f̄(u)− f̄(v)∥∥2 ≤ 2 and

max
u,v∈e
∥f(u)− f(v)∥2 ≥ max

u∈e
∥f(u)∥2 −min

v∈e
∥f(v)∥2 ≥ 1

2
max
u∈e
∥f(u)∥2 .

Rearranging, we get the desired inequality.

338



• Case 2: maxu∈e ∥f(u)∥2 < 2minu∈e ∥f(u)∥2. Then, for any u, v ∈ e,∥∥f̄(u)− f̄(v)∥∥2 ≤ 2
∥f(u)− f(v)∥2

max(∥f(u)∥2 , ∥f(v)∥2)
≤ 4
∥f(u)− f(v)∥2

maxu′∈e ∥f(u′)∥2
,

where the first inequality is by Proposition 3.6.11. Taking maximum over all pairs
(u, v) yields the desired inequality.

This completes the proof.

By Proposition 8.5.5 and the third property of hypergraph orthogonal separators,

Pr
S
[e ∈ δ(S)] ≲ αD ·max

u,v∈e

∥∥f̄(u)− f̄(v)∥∥2 ≲ αD · maxu,v∈e ∥f(u)− f(v)∥2

maxu∈e ∥f(u)∥2
,

and so (∗) may be further bounded above by

T · αD ·
∑
e∈E

w(e)max
u,v∈e
∥f(u)− f(v)∥2 ≤ T · αD · kλ∆k (H).

The proof of (c) is complete.

Proof of Theorem 8.5.1. We run Algorithm 4. Since Lemma 8.5.4(b) asserts that the ex-
pected total mass of S ′′

i is at least k(1 − ε/8), so with probability at least 1/2 the total
mass M :=

∑
i∈[T ] µ(S

′′
i ) is at least k(1− ε/4). Assume that this is the case, and let

Z :=

∑
i∈[T ] ν(S

′′
i )∑

i∈[T ] µ(S
′′
i )

=
1

M

∑
i∈[T ]

ν(S ′′
i ).

The correct way to view ν(S ′′
i ) is the expected weight of the hyperedge boundary under a

certain threshold rounding scheme, and so the following definition

I :=

{
i ∈ [T ] : S ′′

i ̸= ∅ and
ν(S ′′

i )

µ(S ′′
i )
≤ 4Z

ε

}
chooses precisely those sets that will round to a small hypergraph expansion set. Let
S ′′
I := ∪i∈IS ′′

i . The total mass of sets S ′′
i for i outside I is upper bounded by∑

i ̸∈I

µ(S ′′
i ) <

ε

4Z

∑
i ̸∈I

ν(S ′′
i ) ≤

ε

4Z
·MZ,
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and so

µ(S ′′
I) ≥M − Mε

4
=M

(
1− ε

4

)
≥ k

(
1− ε

4

)2
.

Since µ(S ′′
i ) ≤ (1 + ε/2) for all i ∈ [T ], the set I has at least ℓ = ⌊(1− ε)k⌋ elements.

Now, for the threshold rounding, for any i ∈ [T ], let Mi := max{∥f(u)∥2 : u ∈ S ′′
i }

and define threshold sets
Ut := {u ∈ S ′′

i : ∥f(u)∥2 > t}
for t ∈ [0,Mi]. The “average” denominator is∫ Mi

0

vol(Ut) dt =
∑
u∈S′′

i

π(u) ∥f(u)∥2 = µ(S ′′
i ).

For a hyperedge e to be cut by Ut, there are several cases to consider:

• if e ∩ S ′′
i = ∅, then e ̸∈ δ(Ut) for any t ∈ [0,Mi].

• If e is cut by S ′′
i , then e ∈ δ(Ut) if and only if t < maxu∈e∩S′′

i
∥f(u)∥2.

• If e ⊆ S ′′
i , then e ∈ δ(Ut) if and only if

min
u∈e
∥f(u)∥2 ≤ t < max

v∈e
∥f(v)∥2 .

Therefore, the “average” numerator is∫ Mi

0

w(δ(Ut)) dt

=
∑
e∈E

w(e)

∫ Mi

0

1 [e ∈ δ(Ut)] dt

=
∑
e∈E

w(e)

[
1[e ∈ δ(S ′′

i )] max
u∈e∩S′′

i

∥f(u)∥2 + 1[e ⊆ S ′′
i ] max

u,v∈e

∣∣∥f(u)∥2 − ∥f(v)∥2∣∣] = ν(S ′′
i ).

Therefore, for i ∈ I, Pi in step 5 of Algorithm 4 satisfies

ϕ(Pi) ≤
ν(S ′′

i )

µ(S ′′
i )
≤ 4Z

ε
.

Since we have chosen

T = Θ

(
1

α
log

1

ε

)
and D = O

(
β−1 · s log s log log s ·

√
log n

)
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with s = (12k/ε), we have

1 + T · αD = Oε

(
k log k log log k ·

√
log n

)
,

and so
E[Z] ≤ Oε

(
k log k log log k ·

√
log n

)
· λ∆k (H)

by Lemma 8.5.4(c). Therefore, with probability at least 3/4, picking the ℓ sets Pi(1), . . . , Pi(ℓ)
with the smallest conductance we have

ϕℓ(Pi(1), . . . , Pi(ℓ)) ≤ Oε(ε
−1k log k log log k ·

√
log n · λ∆k (H))

= Oε(k log k log log k ·
√

log n · λ∆k (H)),

as required. Finally, a careful but straightforward inspection of Algorithm 4 verifies that
the algorithm indeed runs in randomized polynomial time.

8.6 Multi-Way Edge Expansion and Vertex Expan-

sion using Orthogonal Separators

8.6.1 Multi-Way Edge Expansion

We prove Theorem 8.1.7 in this subsection.

Proof of Theorem 8.1.7. Our algorithm is a straightforward modification of Algorithm 2,
the only change being that the input embedding f : V → Rn is a solution to the λ∆k (G)
program in Definition 8.2.1 instead of to the sdp∆k (G) program in [LM14a]. We would like
to show that the properties of Theorem 3.6.10 hold for our algorithm as well. Indeed, only
the proof of (a) is affected by the change, as we need to show that

µ(V \B) ≤ 1 + ε/3,

where B := {v ∈ V : ⟨f̄(u), f̄(v)⟩ ≤ β}, using the new spreading constraint. The proof is
exactly the same as in Lemma 8.5.4(a) for hypergraphs.

Following the proof of Theorem 3.6.13, we obtain the following hard direction that

ϕ⌊(1−ε)k⌋(G) ≤ Oε(
√

log n log k · λ∆k (G)).

The easy direction that λ∆k (G) ≤ ϕk(G) is a special case of Proposition 8.5.2.
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8.6.2 Implication about Low-Rank Hypergraphs

We prove Corollary 8.1.8 in this subsection.

Proof of Corollary 8.1.8. Given a hypergraph H = (V,E,w) with vertex measure π :
V → R+, consider the following graph G = (V ′, E ′, w′) with V ′ = V and equipped with
the same vertex measure. For each hyperedge e ∈ E with weight w(e), add a star graph
to G, i.e. fix a vertex u0 ∈ e and add weight w(e) to edge (u0, v) for all v ∈ e \ {u0}. From
Theorem 8.1.7, there is a randomized polynomial-time algorithm that, given G, 2 ≤ k ≤ n
and ε ∈ (0, 1/2], produces ℓ = ⌊(1− ε)k⌋ disjoint subsets S1, . . . , Sℓ ⊆ V , such that

ϕGπ (S1, . . . , Sℓ) ≤ Oε(
√

log n log k) · (ϕπ)k(G).

(We use ϕGπ to mean expansion in G.) Let S ⊆ V . By our construction, π(S) = π′(S). If
e is cut by S, then at least one and at most |e| − 1 edges in the star graph in G gets cut
by S, whereas if e is not cut by S then none of the edges in the star graph in G gets cut
by S. Therefore,

ϕGπ (S)

r(H)
≤ ϕHπ (S) ≤ ϕGπ (S),

and this shows that the same subsets S1, . . . , Sℓ generated above satisfies

ϕHπ (S1, . . . , Sℓ) ≤ Oε(r
√

log n log k) · (ϕπ)k(H).

By choosing the better solution between the above and that from Theorem 8.1.6, the result
is proven.

8.6.3 Multi-Way Vertex Expansion

We prove Corollary 8.1.9 in this subsection.

Proof of Corollary 8.1.9. Given G = (V,E) and distribution π : V → R+. Suppose the
maximum degree of G is ∆, and let

C := Oε

(
min(∆

√
log k, k log k log log k) ·

√
log n

)
for an appropriate constant in the big-O. We require also that C ≥ 2.

If ψk(G) ≥ 1/C, then by the definition of multi-way vertex expansion we can return
any ℓ disjoint subsets. Otherwise, use Proposition 2.3.6 followed by Proposition 2.3.7 to
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construct a hypergraph H = (V ′′, E ′′, w′′) with distribution π′′ : V ′′ → R+ on the vertices
of H. Run the algorithm for Corollary 8.1.8 to obtain ℓ = ⌊(1− ε)k⌋ disjoint subsets
S ′′
1 , . . . , S

′′
ℓ ⊆ V ′′, such that

(ϕπ′′)ℓ(S
′′
1 , S

′′
2 , . . . , S

′′
ℓ ) ≤

C

6
· (ϕπ′′)k(H).

By the assumption that ψk(G) ≤ 1/C ≤ 1/2, Proposition 2.3.6 and Proposition 2.3.7 imply

ψk(G) ≥
1− 1

2

1 + 1
2

· (ϕπ′′)k(H) =
1

3
(ϕπ′′)k(H).

Finally, since

(ϕπ′′)(S ′′
i ) ≤

C

6
· 3ψk(G) ≤

1

2
,

for all i ∈ [ℓ], we can again combine Proposition 2.3.6 and Proposition 2.3.7 to construct
disjoint subsets S1, . . . , Sℓ ⊆ V such that

ψ(Si) ≤
ϕπ′′(S ′′

i )

1− 1
2

= 2ϕπ′′(S ′′
i ).

Output them at the end of the algorithm, so that

ψℓ(S1, . . . , Sℓ) ≤ 2(ϕπ′′)ℓ(S
′′
1 , . . . , S

′′
ℓ ) ≲ C · (ϕπ′′)k(H) ≲ C · ψk(G),

as desired. Since the algorithm for Corollary 8.1.8 and the reductions all run in randomized
polynomial time, our algorithm runs in randomized polynomial time as well.

8.7 Concluding Remarks

In this chapter, we have provided a unifying approach for obtaining ARV-type approx-
imation results for directed hypergraph expansion using reweighted eigenvalues, which
encompasses directed edge expansion and directed vertex expansion. The SDP relaxation
of the expansion quantities is simply by adding ℓ22 triangle inequality constraints to the
corresponding reweighted second eigenvalue. Using the same idea, we obtain new approxi-
mation results of multi-way expansion quantities such as vertex expansion and hypergraph
expansion, by adding ℓ22 triangle inequality constraints to the corresponding reweighted
sum of first k eigenvalues. The approximation ratios obtained are similar to those in
[LM14a, LM14b].
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On the practical side, it is worth noting that the ARV-type approximation results in
this chapter can be implemented in almost-linear time; see [LTW24] for details. While
we have theoretical guarantee on their runtimes and approximation ratios, we are curious
about whether they may be implemented to find good sparse cuts in large graphs quickly.
Such implementation would bring these algorithms into the practical realm; in particular,
fast spectral algorithms for computing hypergraph sparse cuts would be useful in certain
machine learning applications, and fast algorithms for finding reweightings could be useful
in graphical neural networks for hypergraphs and directed graphs.

Since multi-way graph partitioning has found many applications in clustering and clas-
sification, one interesting open area of research is to design fast approximation algorithms
for multi-way graph partitioning that at least match the approximation guarantees pre-
sented in Section 8.1.2, and to generalize it to the directed (hyper)graph setting. Another
open problem would be to generalize these results to more general classes of submodular
functions, which were partially obtained in [COT23, CL24] using a different approach.
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Chapter 9

Conclusion

In this thesis, we have developed the reweighted eigenvalue framework and used it to build
a spectral theory for a general class of graph expansion problems. The inception of the
framework was inspired by the fastest mixing Markov chain in [BDX04, Roc05].

Our results demonstrated that reweighted eigenvalues is a simple and effective frame-
work for reducing the study of expansion quantities as general as directed hypergraph
conductance to the basic setting of edge conductance in undirected graphs. Our first new
idea of Eulerian reweighting was the key to extending the framework to directed graphs
and directed hypergraphs. Our second new idea of k-th reweighted eigenvalue allowed us
to capture direct analogues of the work of [Tre09, LOT12, LRTV12, KLL+13] in vastly
more general settings. Our results have applications in graph partitioning, expander char-
acterization, and mixing time analysis.

The table below summarizes the results we have obtained using reweighted eigenvalues.

EC VE Dir. EC Dir. VE H. EC Dir. H. EC
Cheeger Y Y Y Y Y Y

“Bipartite” Y Y N N N N
“Higher-Order” Y Y N N Y N
“Improved” Y Y Y Y Y Y
O(
√
log n) Y Y Y Y Y Y

Ortho. Sep.1 Y Y N N Y N

Table 9.1: Summary of results. (Y = known result, Y = new result, N = no result)
(EC = Edge Conductance, VE = Vertex Expansion, Dir. = Directed, H. = Hypergraph.)
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Philosophically, reweighted eigenvalues marks a significant departure from past work
for designing rounding-based approximation algorithms. While most past work [BHT00,
LRV13, Yos16, Yos19, Lou15, CLTZ18] defined a non-computable spectral quantity before
relaxing it to a computable spectral quantity, reweighted eigenvalues operates on the ℓ1
fractional program, symmetrizing it so that it can be lifted to a polynomial-time com-
putable spectral quantity in a straightforward manner. It is possible that this idea may be
useful in the design of approximation algorithms for very different problems.

It is our hope that reweighted eigenvalues may prove to be useful in tackling other
important problems in graph theory and beyond.

We wrap up this thesis with some future research directions and open problems.

• Investigate the tightness of the Cheeger-type inequalities in Theorem 5.1.4, Theo-
rem 5.1.8, and Theorem 6.3.23. A related problem is whether the projection loss
using the Large Optimal Property can be improved (e.g. using generic chaining).

• Is there a combinatorial interpretation of the asymmetry ratio α(GH) for directed
hypergraphs in Proposition 6.3.19?

• One major obstacle for deriving a directed analogue of higher-order Cheeger inequal-
ity [LOT12, KLL+13] is that the k-th reweighted eigenvalue does not relate to k-way
expansion in directed graphs (see Section 5.10.1). Find the “correct” multi-way com-
binatorial quantity to relate to higher reweighted eigenvalues. Similarly, find a robust
combinatorial characterization of λ∗n.

• Establish a Cheeger-type inequality for small-set expansion of directed hypergraphs
similar to [ABS10] (see Section 3.1.5). This has potential consequences in subexpo-
nential algorithms for generalized small-set expansion problems.

• Currently, the reweighted eigenvalues framework is largely limited to directed hy-
pergraphs. Explore the second approach for applying reweighted eigenvalues to sub-
modular transformations in Section 6.4. Find an interesting subclass of problems
where this approach yields Cheeger-type inequalities and ARV-type results, poten-
tially matching or generalizing the results of [COT23, CL24].

• The Cheeger rounding algorithms presented in this thesis all involve the dual solution
(e.g. using r to order the vertices in Section 5.7.3). Other than being directly
related to fastest mixing Markov chain, are there any algorithmic applications of the
computed optimal reweighting?

1This refers to approximations of k-way expansion problems using orthogonal separators; see Chapter 8.
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• While our results come with polynomial-time algorithms, they might not be fast
enough for modern, large graphs. For ARV-type approximation of directed hyper-
graphs, an almost linear time algorithm was established in [LTW24]. Can we establish
a fast algorithm for finding k disjoint sparse cuts (e.g. in undirected hypergraphs)
that matches the guarantees in Section 8.1.2?

• Local algorithms [ST13, ACL06, ACL07, AP09] are pivotal in applying spectral al-
gorithms to finding local sparse cuts in large graphs. In this context, one limitation
of reweighted eigenvalues is that finding a reweighting seems to be a “global” task.
Can we bypass this obstacle and design local algorithms for generalized expansion
problems, using reweighted eigenvalues?
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Appendix A

Deferred Proofs for Chapter 4

A.1 Deferred Proofs for Weighted Vertex Expansion

Proof of Lemma 4.3.8. The case where there is an optimizer S ⊆ V to ψ(G), with
0 < π(S) ≤ 1/2 and ψ(S) = ψ(G), has been proven in Proposition 3.2.8. The other case is
when ψ(G) = 1. We will show that γ(1)(G) ≤ 2 and this would imply that γ(1)(G) ≤ 2ψ(G).
Let v be a vertex with 0 < π(v) ≤ 1/2, which must exist as long as the graph has at least
two vertices. We define a solution f, g to γ(1)(G) as in Proposition 3.2.8 with S = V \ {v}.
Following the same arguments, f, g is a feasible solution to γ(1)(G) with objective value∑

v∈V

π(v)g(v) = π(∂S)

(
1

π(v)
+

1

1− π(v)

)
≤ π(v) · 2

π(v)
= 2.

This proves γ(1)(G) ≤ 2ψ(G) in the other case when ψ(G) = 1.

Proof of Theorem 4.3.7. The easy direction γ(1)(G) ≲ ψ(G) is proved in Lemma 4.3.8. For

the hard direction, given a solution (f,
−→
E ) to γ⃗(1)(G), we apply the ℓ22 to ℓ1 step to obtain h :

V → R with π-weighted median 0, then the threshold rounding step in Proposition 4.3.10
on h, to obtain a set S with 0 < π(S) ≤ 1/2 and ψ⃗τ (S) ≲

√
γ⃗(1)(G). If ψ⃗τ (S) ≥ 1/2,

then it implies that γ⃗(1)(G) = Ω(1), and so the inequality ψ(G)2 ≲ γ⃗(1)(G) holds trivially

as ψ(G) ≤ 1 by definition. Otherwise, if ψ⃗τ (S) < 1/2, we apply the postprocessing step

in Lemma 4.3.11 on S to obtain S ′ ⊆ S with ψ(S ′) ≤ 2ψ⃗τ (S). Therefore, S ′ is a set with

π(S ′) ≤ π(S) ≤ π(supp(x)) ≤ 1/2 and ψ(S ′) ≤ 2ψ⃗τ (S) ≲
√
γ⃗(1)(G). Thus we conclude

the hard direction that ψ(G) ≤ ψ(S ′) ≲
√
γ⃗(1)(G) ≲

√
γ(1)(G).
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A.2 Deferred Proofs for Bipartite Vertex Expansion

Proof of Lemma 4.4.8. First we consider the case that there is an optimizer S ⊆ V to
ψB(G), with bipartition S = S1 ⊔ S2 and π(∂S)/π(S) = ψB(G). Define f : V → R and
g : V → R as follows:

• f(u) = 1 if u ∈ S1, and f(u) = −1 if u ∈ S2, and f(u) = 0 if u ̸∈ S;

• g(u) = 1 if u ∈ ∂S, and g(u) = 0 otherwise.

For each edge uv ∈ E, we claim that g(u)+g(v) ≥ (f(u)+f(v))2. Note that u and v cannot
both belong to S1 or both belong to S2. One can check that the constraint is satisfied in
all the remaining cases: (1) u ∈ S1 and v ∈ S2 (or vice versa), (2) u ∈ S and v ̸∈ S (or
vice versa), and (3) u, v ̸∈ S. So, (f, g) is a feasible solution to the ν(1)(G) program, and
the objective value is∑

v∈V π(v)g(v)∑
v∈V π(v)f(v)

2
=

∑
v∈∂S π(v)∑

v∈S1∪S2
π(v)

=
π(∂S)

π(S)
= ψ(S).

This implies that ν(1)(G) ≤ 2ψ(S) in this case. The other case is when ψB(G) = 1.
Choosing the feasible solution f ≡ 1 and g ≡ 2 to the ν(1)(G) program shows that ν(1)(G) ≤
2. This implies that ν(1)(G) ≤ 2ψB(G) in the other case.

Proof of Theorem 4.4.4. The easy direction ν(1)(G) ≲ ψB(G) is proved in Lemma 4.4.8.

For the hard direction, given a solution (f,
−→
E ) to ν⃗(1)(G), we apply the ℓ22 to ℓ1 step and

then the threshold rounding step in Proposition 4.4.10 to obtain two disjoint sets S1, S2 ⊆ V
with ψ⃗τ (S1, S2) ≲

√
ν⃗(1)(G). If ψ⃗τ (S1, S2) ≥ 1/2, then it implies that ν⃗(1)(G) = Ω(1), and

so the inequality ψB(G)
2 ≲ ν⃗(1)(G) holds trivially as ψB(G) ≤ 1 by definition. Otherwise,

if ψ⃗τ (S1, S2) < 1/2, we apply the postprocessing step in Lemma 4.4.11 on (S1, S2) to obtain

(S ′
1, S

′
2) so that S ′

1 ∪ S ′
2 is an induced bipartite graph in G and ψ(S ′

1 ∪ S ′
2) ≤ 2ψ⃗τ (S1, S2).

Thus we conclude the hard direction that ψB(G) ≤ ψ(S ′
1 ∪ S ′

2) ≤ 2ψ⃗τ (S1, S2) ≲
√
ν⃗(1)(G).

A.3 Deferred Proofs for Multiway Vertex Expansion
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Proof of Lemma 4.5.11. If ψk(G) ≥ 1, then the lemma holds trivially as λ∗k(G) ≤ 2.
Henceforth, we assume ψk(G) < 1, and there are nonempty disjoint subsets S1, . . . , Sk ⊆ V
with max1≤i≤k ψ(Si) = ψk(G).

Using the notation in Proposition 4.5.2, the λ∗k program in Definition 4.1.9 can be
written as

λ∗k(G) := max
Q≥0

min
f1,...,fk:V→R

max
1≤i≤k

fTi (Π−Q)fi

subject to
∑
v

π(v)fi(v)
2 = 1 ∀1 ≤ i ≤ k∑

v

π(v)fi(v)fj(v) = 0 ∀1 ≤ i ̸= j ≤ k

Q(u, v) = 0 ∀uv /∈ E∑
v∈V

Q(u, v) = π(u) ∀u ∈ V

Q(u, v) = Q(v, u) ∀uv ∈ E.

Each fTi (Π−Q)fi can be written as∑
uv∈E

Q(u, v)
(
fi(u)− fi(v)

)2
=
∑
uv∈E

π(u)P (u, v)
(
fi(u)− fi(v)

)2
.

We set

fi(u) :=

{
1√
π(Si)

, if u ∈ Si

0, otherwise.

We can check that the constraints on fi are satisfied. Moreover, for any P satisfying the
constraints,∑
uv∈E

π(u)P (u, v)
(
fi(u)− fi(v)

)2
=

∑
v∈Si,u∈∂(Si)

π(u)P (u, v)
1

π(Si)

≤ 1

π(Si)

∑
v∈V,u∈∂(Si)

π(u)P (u, v) =
π(∂(Si))

π(Si)
= ψ(Si).

So, max1≤i≤k f
T
i (Π − ΠP )fi ≤ max1≤i≤k ψ(Si). Taking maximum over P gives λ∗k(G) ≤

ψk(G).
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A.4 Deferred Proofs for 0/1-Polytopes with Poor Ver-

tex Expansion

Proof of Lemma 4.7.4. The plan is to prove that the stated conditions imply 1
2
(x+ y) ∈

conv(M), which would then immediately imply that there is no edge connecting x and y
in Q. We will prove the contrapositive: if 1

2
(x+ y) /∈ conv(M), then there is a p-consistent

affine function l such that l(z) < 0 for all z ∈M matching the pattern p.

Denote w := 1
2
(x+y). As w /∈ conv(M), by Proposition 2.7.2, there is an affine function

l′ : (u1, . . . , un) 7→ β′ +
∑

i α
′
iui such that l′(w) = 0 and l′(z) < 0 for all z ∈M . We would

like to modify l′ to obtain an affine function l : (u1, . . . , un) 7→ β +
∑

i αiui such that (i)
l(w) = 0, (ii) αi = 0 for i ∈ supp(p), and (iii) l(z) < 0 for all z ∈M matching the pattern
p.

Note that, by the definition of common pattern, for i ∈ supp(p), either xi = yi = 1 or
xi = yi = 0, and so wi ∈ {0, 1}. Also, for any z ∈ {0, 1}n that matches the pattern p, we
must have zi = wi for i ∈ supp(p). So, for any such z,

l′(z) = β′ +
n∑
i=1

α′
izi =

(
β′ +

∑
i∈supp(p)

α′
izi

)
+

∑
i ̸∈supp(p)

α′
izi

=

(
β′ +

∑
i∈supp(p)

α′
iwi

)
+

∑
i ̸∈supp(p)

α′
izi.

Hence, if we set β := β′ +
∑

i∈supp(p) α
′
iwi, and αi = α′

i for i /∈ supp(p) and αi = 0 for

i ∈ supp(p), then the affine function l : (u1, u2, . . . , un) ∈ Rn 7→ β +
∑

i αiui satisfies
l(z) = l′(z) for any z that matches the pattern p. Therefore, l is an affine function that
satisfies the three properties that (i) l(w) = l′(w) = 0, (ii) αi = 0 for i ∈ supp(p), and (iii)
l(z) = l′(z) < 0 for z ∈M matching the pattern p.

Proof of Lemma 4.7.5. Note that for x ∈ L and y ∈ R in our construction in Defi-
nition 4.7.1, their common pattern p satisfies | supp0(p)| = | supp1(p)| ≤ k. The lemma
follows by applying Lemma 4.7.4 on all possible such patterns.

Proof of Lemma 4.7.6. Let z ∈ {0, 1}n be such that |z| = n
2
and z matching the pattern

p. Let zτ ∈ {0, 1}n be its “opposite point” formed by toggling the coordinates of zi for
i ̸∈ supp(p) and leaving other coordinates unchanged. Note that the lemma follows from
the following two facts: (i) |zτ | = n

2
and zτ matches the pattern p, and (ii) l(z)+ l(zτ ) = 0.
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For the first fact, zτ matches the pattern p because zτi = zi for i ∈ supp(p). And
|zτ | = n

2
because |z| = n

2
and there are the same number of zeroes and ones in p, the latter

being a consequence of |x|+ |y| = k + (n− k) = n.

For the second fact, as l is p-consistent,

l(z) + l(zτ ) =

(
β +

∑
i ̸∈supp(p)

αizi

)
+

(
β +

∑
i ̸∈supp(p)

αiz
τ
i

)
= 2

(
β +

1

2

∑
i ̸∈supp(p)

αi

)
= 0,

where the last equality is from the second condition in Definition 4.7.3.

Proof of Lemma 4.7.7. The number of points z ∈ {0, 1}n with |z| = n
2
is
(
n
n/2

)
, whereas

the number of such points that matches pattern p is
(
n−2s
n/2−s

)
. Therefore,

Pr
z∼Z

[z matches pattern p] =

(
n− 2s

n/2− s

)/( n

n/2

)
≳

(√
2

π(n− 2s)
· 2n−2s

)/(√ 2

πn
· 2n
)
≥ 4−s,

where we used Stirling’s approximation n! ≈n
√
2πn(n/e)n.

Proof of Theorem 4.1.12. Let Q be a 0/1-polytope from Definition 4.7.1. We would like
to apply Lemma 4.7.5 to prove the theorem.

Let Z be the uniform distribution on {z ∈ {0, 1}n : |z| = n/2}. Combining Lemma 4.7.6
and Lemma 4.7.7, it follows that for any pattern p with | supp0(p)| = | supp1(p)| = s ≤ k
and any p-consistent affine function l,

Pr
z∼Z

[ l(z) ≥ 0 and z matches pattern p ] ≥ c · 4−s

for some universal constant c > 0. Therefore, if we take independent samples z1, . . . , zm ∼
Z and set M := {z1, . . . , zm} where m is a value to be determined later, then for any
pattern p with | supp0(p)| = | supp1(p)| = s ≤ k and any p-consistent affine function l,

Pr[∄z ∈M with l(z) ≥ 0 and z matching pattern p] ≤ (1− c · 4−s)m ≤ (1− c · 4−k)m.

To apply a union bound, we upper bound the numbers of different such p and l. The
number of patterns p with | supp0(p)| = | supp1(p)| = s ≤ k is

k∑
s=0

(
n

2s

)
·
(
2s

s

)
≤ (k + 1) · n2k.
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The number of p-consistent affine functions l with different sign patterns on the boolean
hypercube {0, 1}n is upper bounded by the number of affine threshold functions on {0, 1}n,
which is at most 2n

2
by Proposition 4.7.8. Combining the two estimates and the above

probability bound, the failure probability is

Pr[∃p ∃l s.t. ∄z ∈M with l(z) ≥ 0 and z matching pattern p] ≤ (1−c·4−k)m·(k+1)·n2k·2n2

.

Setting

m =
4k

c
· (1 + log(k + 1) + 2k log n+ n2 log 2) ≲ 4kn2,

the failure probability is at most

(1− c · 4−k)m · (k + 1) · n2k · 2n2

≤ exp(−c · 4−k ·m) · exp(log(k + 1) + 2k log n+ n2 log 2)

≤ exp(−(1 + log(k + 1) + 2k log n+ n2 log 2)) · exp(log(k + 1) + 2k log n+ n2 log 2)

= e−1.

Therefore, by Lemma 4.7.5, we conclude that there exists M ⊆ {z ∈ {0, 1}n : |z| = n/2}
with |M | ≲ 4kn2 such that there are no edges between L and R in the graph of Q.

Finally, as |L| =
(
n
k

)
≥ (n/k)k and ∂L ⊆M , it follows that

ψ(L) ≤ |M |
|L|

≲
4kn2

(n/k)k
=

(4k)k

nk−2
.

A.5 Deferred Proofs for Spherical Proximity Graph

Proof of Proposition 4.8.3. The construction largely follows that of [GM12, Lemma
8.3.22]. Given n and γ > 0, we iteratively choose points y1, y2, . . . , ym ∈ Sk−1, such that
each new point yi+1 has distance at least γ/2 from y1, . . . , yi. We stop when it is no longer
possible to choose a point that is (γ/2)-far from all existing points.

We now let S ′
1, S

′
2, . . . , S

′
m be the cells of the Voronoi diagram of y1, y2, . . . , ym. That

is, for any x ∈ Sk−1, x ∈ S ′
i iff d(x, yi) = minj∈[m] d(x, yj). Note that cell S ′

i contains
B(yi, γ/4) and is contained in B(yi, γ/2). Therefore, the measure of each S ′

i is at least
ε = µ(Cap(γ/4)) and the diamater of each S ′

i is at most γ. By further subdividing the
cells (evenly) until each cell has measure ≤ 2ε, we obtain S1, S2, . . . , Sn, such that the
measure of each Si is between ε and 2ε, and diam(Si) ≤ γ for each i ∈ [n]. We can choose
the points xi ∈ Si arbitrarily.
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Proof of Lemma 4.8.4. First, we prove the bound on the maximum degree. For any
vertex u ∈ V , its degree is equal to the number of points xv that are δ-close to xu. We can
count the number of such points using volume estimation. If a point xv is within distance
δ from xu, then the entire cell Sv is within distance δ + γ from xu. This contributes at
least ε = µ(Cap(γ/4)) total measure to B(xu, δ + γ). The total measure of these cells is
at most µ(B(xu, δ + γ)), so

|∂(u)| · µ(Cap(γ/4)) ≤ µ(B(xu, δ + γ)).

Rearranging gives the desired upper bound on |∂(u)|, and thus on the maximum degree.

Next, we prove the bound on the vertex expansion. Given any T ⊆ V , we wish to
lower bound |∂(T )|. For j ∈ V , if the cell Sj is completely contained in ST + Cap(δ),
then xj ∈ T ∪ ∂(T ). If we take the union of all such cells, then the set will contain
ST + Cap(δ − γ):

∪{Sj : Sj ⊆ ST + Cap(δ)} ⊇ ST + Cap(δ − γ).

This is because, for any point u ∈ ST + Cap(δ − γ), the cell containing u will be inside

{u}+ Cap(γ) ⊆ ST + Cap(δ − γ) + Cap(γ) = ST + Cap(δ).

It follows that

∪{Sj : j ̸∈ T and Sj ⊆ ST + Cap(δ)} ⊇ (ST + Cap(δ − γ)) \ ST .

Combining previous observations, and since each cell has measure at most 2ε,

|∂(T )| = |(T ∪ ∂(T )) \ T | ≥ |{Sj : j ̸∈ T and Sj ⊆ ST + Cap(δ)}|

≥ µ(ST + Cap(δ − γ))− µ(ST )
2ε

.

We are done after substituting this and |T | ≤ µ(ST )/ε into ψ(T ) = |∂(T )|/|T |.

Proof of Proposition 4.8.5. We will use the following formula for spherical cap volume:

µ(Cap(x)) =

∫ x
0
sink−2 θ dθ∫ π

0
sink−2 θ dθ

.

This comes from the formula for unnormalized spherical cap volume [Li11]:

µ0(Cap(x)) =
2π(k−1)/2

Γ((k − 1)/2)
·
∫ x

0

sink−2 θ dθ.
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We shall use the approximation

sink θ ≈k
(
θ − θ3

3!

)k
for 0 ≤ θ ≤ O(1/

√
k). The third-degree approximation is sufficient because for θ in this

range, (θ − θ3/3! +O(θ5))k ≈k (θ − θ3/3!)k. Then, for x = O(1/
√
k),∫ x

0

sink θ dθ ≈k
∫ x

0

(
θ − θ3

3!

)k
dθ

≈k
∫ x

0

(
θ − θ3

3!

)k
· (1− θ2/2) dθ (∵ (1− θ2/2) is close to 1)

y:=θ−θ3/6
=

∫ x−x3/6

0

yk dy (∵ y(θ) := θ − θ3/6 is increasing for θ ∈ [0, x])

=
(x− x3/6)k+1

k + 1
.

Therefore,

µ(Cap(δ + γ))

µ(Cap(γ/4))
=

∫ δ+γ
0

sink−2 θ dθ∫ γ/4
0

sink−2 θ dθ

≈k
(
δ + γ

γ/4

)k−1

·
(
1− (δ + γ)2/6

1− (γ/4)2/6

)k−1

=

(
4(c1 + c2)

c1

)k−1

·
(
1− (c1 + c2)/6k

1− c1/96k

)k−1

≲

(
4(c1 + c2)

c1

)k
≤ 2O(k).

Proof of Proposition 4.8.6. By isoperimetric inequality on the sphere (see e.g. [Bal97] for
reference), LHS is minimized when the set ST is a spherical cap. Therefore, it suffices to
prove that, for any τ ∈ (0, π/2],

µ(Cap(τ + (δ − γ))) ≥ (1 + Ω(1)) · µ(Cap(τ)).
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Let c := c2 − c1 > 0. This is equivalent to∫ τ+c/
√
k

0

sink−2 θ dθ ≥ (1 + Ω(1))

∫ τ

0

sink−2 θ dθ.

For technical reasons, we first deal with the case where τ is close to π/2. Indeed, when
τ ≥ π/2−c/

√
k, the result follows from well-known upper bounds on spherical cap volume.

For example, we may use the upper bound in [Tko12]:

µ(Cap(π/2− θ)) ≤ e−k sin
2 θ/2, θ ∈ [0, π/2)

and the fact that sin θ ≈k θ for θ = O(1/
√
k). Then, if c is such that

exp

[
−k sin2

(
c

2
√
k

)
/2

]
≤ 1/3,

one has

µ(Cap(τ + c/
√
k))

µ(Cap(τ))
≥ min

(
µ(Cap(π/2))

µ(Cap(π/2− c/2
√
k))

,
µ(Cap(π/2 + c/2

√
k))

µ(Cap(π/2))

)
≥ 4

3
.

Therefore, we may assume that τ < π/2− c/
√
k.

We will actually prove the following relation: for all x ∈ [0, π/2− c/
√
k],∫ x+c/

√
k

x

sink−2 θ dθ ≥ (1 + Ω(1))

∫ x

x−c/
√
k

sink−2 θ dθ. (A.1)

If this relation is proven to be true, then letting t :=
⌊
τ
√
k/c
⌋
, writing

∫ τ+c/
√
k

0

sink−2 θ dθ =

(∫ τ+c/
√
k

τ

+

∫ τ

τ−c/
√
k

+ · · ·+
∫ τ−tc/

√
k

0

)
sink−2 θ dθ,

and applying (A.1) to each term on RHS, we obtain the desired result.

In order to prove the relation, we show that, for all x ∈ [0, π/2− c/
√
k],

sink−2(x+ c/
√
k) ≥ (1 + Ω(1)) · sink−2 x.
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It is equivalent to showing that the function

f(x) :=
sink−2(x+ c/

√
k)

sink−2(x)

is at least 1 + Ω(1) for x ∈ [0, π/2 − c/
√
k]. Check that, for k ≥ 3, f(x) is decreasing by

differentiating sin(x+ c/
√
k)/ sin(x). It remains to compute

f(π/2− c/
√
k) =

sink−2(π/2)

sink−2(π/2− c/
√
k)

= [cos(c/
√
k)]−(k−2)

=

(
1− c2

2k

)−(k−2)

+ o(1) (by Taylor expansion)

= exp(c2/2) + ok(1).

Therefore, f(x) ≥ 1 + Ω(1) for sufficiently large k, as required.

Proof of Proposition 4.8.7. LetGk = (V,E) be the (γ, δ)-spherical proximity graph defined
in Definition 4.8.1 with embedding u 7→ xu ∈ Sk−1, where γ = c1/

√
k and δ = c2/

√
k. We

wish to construct test vectors f : V → Rk, such that
∑

u∈V f(u) = 0⃗ and∑
uv∈E P (u, v) ∥f(u)− f(v)∥

2∑
u∈V ∥f(u)∥

2

is small for any doubly stochastic reweighting P of the graph Gk. Referring to the proof of
Proposition 4.8.3 in the beginning of this subsection, We claim that setting f(u) := xu− x̄
works, where x̄ := 1

n

∑
u∈V xu. By construction,

∑
u∈V f(u) = 0⃗. We next show that∑

u∈V

∥f(u)∥2 ≥ Ω(n).

Since
∑

u∈V f(u) = 0⃗, by Fact 2.10.4 we have∑
u∈V

∥f(u)∥2 = 1

2n

∑
u,v∈V

∥f(u)− f(v)∥2 = 1

2n

∑
u,v∈V

∥xu − xv∥2 .

It then suffices to show that, for all u ∈ V ,∑
v∈V

∥xu − xv∥2 ≥ Ω(n). (A.2)
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Divide the sphere Sk−1 into two halves: the half H+ closer to xu and the half H− closer
to the antipodal point −xu. Referring to the construction in Proposition 4.8.3, since the
cells Su have volume between ε and 2ε, at most 2n/3 cells will be completely contained
in H+. Therefore, at least n/3 cells Sv will have a nontrivial intersection with H−, which
implies that the corresponding chosen points xv satisfy d(xu, xv ≥ π

2
− γ ≥ Ω(1), and so

are of Euclidean distance Ω(1) from xu. This proves (A.2).

Since ∥f(u)− f(v)∥2 = ∥xu − xv∥2 ≤ d(xu, xv)
2 ≤ δ2 for any uv ∈ E, we conclude that,

for any doubly stochastic reweighting P ,

λ2(I − P ) ≤
∑

uv∈E P (u, v) ∥f(u)− f(v)∥
2∑

u∈V ∥f(u)∥
2 ≤

∑
u∈V

∑
v:uv∈E P (u, v) · δ2

Ω(n)
= O(δ2),

and hence λ∗2(Gk) ≲ δ2 ≲ 1/k. Combining with the degree bound in Proposition 4.8.5,

λ∗2(Gk) ≲
1

k
≲

1

log∆
,

and the proof is complete.
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Appendix B

Deferred Proofs for Chapter 6

Proof of Proposition 6.3.26. The proof largely follows Proposition 3.1.18. Given a
one-dimensional solution X(u, v) = ⟨x(u), x(v)⟩ to the reweighted eigenvalue program
(σ∗

µ)k(FH) for the directed hypergraph H, the inner maximization objective M(X) is

max
λe,(u,v)

∑
e∈E

∑
u∈e−
v∈e+

λe,(u,v)(x(u)− x(v))2

subject to
∑
u∈e−
v∈e+

λe,(u,v) ≤ 1 ∀e ∈ E

∑
v∈V

∑
e∈E

λe,(u,v) =
∑
v∈V

∑
e∈E

λe,(v,u) ∀u ∈ V

λe,(u,v) ≥ 0.

Let yx : V → R be a k-step function, taking values t1 < t2 < · · · < tk. Let c ∈ R be a
parameter, and define h : V → R so that

h(u) :=

∫ f(u)

c

ν(t) dt,

where ν(t) := mini∈[k] |t− ti|. We then choose c so that
∑

u∈V µ(u)h(u) = 0. By the same
argument as in Proposition 3.1.18, we have the denominator lower bound that∑

v∈V

µ(v)|h(v)| ≳ 1

k

∑
v∈V

µ(v)(x(v)− c)2 ≥ 1

k

∑
v∈V

µ(v)x(v)2 ≥ 1

k
.
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As for the numerator, we have from Proposition 3.1.18 that for any u, v ∈ V ,

|h(u)− h(v)| ≤ 1

2
|x(u)− x(v)| (|x(u)− yx(u)|+ |x(v)− yx(v)|+ |x(u)− x(v)|) ,

so that for any feasible reweighting {λe,(u,v)},∑
e∈E

∑
u∈e−
v∈e+

λe,(u,v)|h(u)− h(v)|

≤ 1

2

∑
e∈E

∑
u∈e−
v∈e+

λe,(u,v)|x(u)− x(v)| (|x(u)− yx(u)|+ |x(v)− yx(v)|+ |x(u)− x(v)|)

(∗)
≤ 1

2

M(x) +

√
2M(x) ·

∑
e∈E

∑
u∈e−,v∈e+

λe,(u,v) ((x(u)− yx(u))2 + (x(v)− yx(v))2)


(∗∗)
≲ M(x) + ∥x− yx∥µ ·

√
M(x),

where we used Cauchy-Schwarz inequality in (∗) and the fact that µ is the total degree
measure in (∗∗). Combining the numerator and denominator bounds yields the result.

Proof of Proposition 6.3.27. The proof follows closely that of Proposition 3.1.19. First,
the dual of the inner maximization program in the proof of Proposition 6.3.26 is

min
g:V→R≥0

r:V→R

∑
e∈E

g(e)

subject to (x(u)− x(v))2 ≤ g(e)− r(u) + r(v) ∀e ∈ E, (u, v) ∈ (e−, e+),

and the dual of the inner maximization program in (σ∗
µ)k(FH) is the same, except that

(x(u)− x(v))2 is replaced by ∥f(u)− f(v)∥2 if X(u, v) = ⟨f(u), f(v)⟩.

Suppose that a feasible dual solution (x, g, r) is given and X(u, v) = ⟨x(u), x(v)⟩. Let
M > 0 be a parameter to be determined later. Let t0 = −∞ and successively choose
t1, t2, . . . so that ti > ti−1 is the smallest real number such that the following function

f̄i(u) :=

{
min (x(u)− ti−1, ti − x(u)) , if ti−1 < x(u) ≤ ti

0, otherwise
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satisfies
∥∥f̄i∥∥2µ ≥ M . If such a ti does not exist, we set ti =∞ and terminate the process.

The process always terminates within n steps, and if it terminates with tk+1 =∞ then the
following function (which is determined once f and the ti’s are fixed)

yx(u) := arg min
ti:i∈[k]

|x(u)− ti|

is a k-step function. Again, the hi’s have disjoint support, and in fact

k+1∑
i=1

∥∥f̄i∥∥2µ = ∥x− yx∥2µ .

Consider the scenario that the process does not terminate after k steps. That means

f̄1, f̄2, . . . , f̄k are all well-defined and each having mass
∥∥f̄i∥∥2π exactly M . We will construct

from f̄1, . . . , f̄k a solution (f̄ , ḡ, r̄) to the dual program of (σ∗
µ)k(F ) with small objective

value. Define f̄ : V → Rn, ḡ : V → R≥0 and r̄ : V → R as follows:

f̄(v) :=
( f̄1(v)√

M
, . . . ,

f̄k(v)√
M

, 0, . . . , 0
)T
, ḡ(v) :=

1

M
g(v), r̄(v) :=

1

M
r(v).

We will check that (f̄ , ḡ, r̄) is a feasible solution to the dual program of (σ∗
µ)k(FH). Define

Si := supp f̄i ⊆ V . For the sub-isotropy condition, note that each f̄(v) has at most one
nonzero entry, and the Gram matrix X̄(u, v) = ⟨f̄(u), f̄(v)⟩ satisfies

diag(µ)
1
2 X̄ diag(µ)

1
2

= diag
( 1

M

∑
v∈S1

µ(u)f̄1(u)
2,

1

M

∑
v∈S2

µ(v)f̄2(u)
2, . . . ,

1

M

∑
v∈Sk

µ(v)f̄k(v)
2, 0, . . . , 0

)
=

1

M
diag

(∥∥f̄1∥∥2µ ,∥∥f̄2∥∥2µ , . . . ,∥∥f̄k∥∥2µ , 0, . . . , 0)
= diag(1, 1, . . . , 1, 0, . . . , 0) ⪯ In.

The mass constraint is satisfied as

tr
(
diag(µ)

1
2 X̄ diag(µ)

1
2

)
= tr

(
diag

(
1, 1, . . . , 1, 0, . . . , 0

))
= k.

The dual constraints are satisfied as∥∥f̄(u)− f̄(v)∥∥2 =
1

M

k∑
i=1

(f̄i(u)− f̄i(v))2 ≤
1

M
(x(u)− x(v))2

(∗)
≤ 1

M
(g(e)− r(u) + r(v)) = ḡ(e)− r̄(u) + r̄(v),
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where (∗) follows the same reasoning as in the proof of Proposition 3.1.19. Therefore,
(f̄ , ḡ, r̄) is a feasible solution to the dual program of (σ∗

µ)k(FH), and its objective value is

∑
e∈E

ḡ(e) =
1

M

∑
e∈E

g(e) =
M(X)

M
≥ (σ∗

µ)k(F ).

Choose M = 2M(X)/(σ∗
µ)k(FH) so that the above inequality fails. This means that

the process terminates after at most k steps, and with tk =∞, which gives

∥x− yx∥2µ =
k∑
i=1

∥∥f̄i∥∥2µ ≤ kM ≲
k ·M(X)

(σ∗
µ)k(FH)

.

This completes the proof.
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Appendix C

Deferred Proofs for Chapter 7

Proof of Lemma 7.3.3. The proof basically follows that of the unweighted version in
Lemma 3.5.7, and bears similarities with the ARV-type proofs such as Theorem 8.3.3.
Recall that π is a distribution on V , so that π(V ) = 1.

For convenience, normalize the vertex weights so that
∑

u,v∈V π(u)π(v)ds(u, v)
2 = 1. We

would like to construct a 1-Lipschitz mapping u 7→ f(u) ∈ R such that df (u, v) ≤ ds(u, v)
for all u, v ∈ V , and ∑

u,v∈V

π(u)π(v)df (u, v) ≳ α−2. (C.1)

There are two cases to consider: the “well-spread” case and the “large core” case. Define
“well-spread” similarly to Lemma 8.3.2: that the π-weight of all ds-balls

Bds(u, 1/
√
20) :=

{
v ∈ V : ds(u, v) ≤ 1/

√
20
}

is at most 1/10. In this case, using the definition of α = α(G) (which involves padded
decomposition in Definition 3.1.12), fix a partitioning P of V such that each partition in
P has ds-diameter at most 1/

√
20, and that π(U) ≥ 1/2 for

U :=

{
u ∈ V : Bds

(
u,

1√
10 · α

)
⊆ P (u)

}
,

where P (u) denotes the (unique) partition in P that contains u ∈ V . Such partitioning P
exists by Markov’s inequality. Let τ : P → {0, 1} be a random variable that assigns i.i.d.
0/1 values to each partition in P , and let

L := {u ∈ V : τ(P (u)) = 1}
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be a random subset. Define

f(u) := ds(u, L) = min
v∈L

ds(u, v).
1

Clearly this is 1-Lipschitz that df (u, v) ≤ ds(u, v). We show that

Ef

[∑
u,v∈V

π(u)π(v)df (u, v)
2

]
≳ α−2,

which implies the result by averaging argument. For any u ∈ U , either τ(P (u)) = 1 so
that f(u) = 0, or τ(P (u)) = 0 so that f(u) ≥ 1/(

√
20 · α). Therefore, for any u, v ∈ U in

different partitions, there is at least 1/2 probability that

df (u, v)
2 = |f(u)− f(v)|2 ≥ 1

20α2
.

By the well-spread property, for any u ∈ U the total π-weight of vertices v ∈ U that is not
in P (u) is at least 1/2− 1/10 = 3/10. Therefore,

Ef

[∑
u,v∈V

π(u)π(v)df (u, v)
2

]
≥ 1

2
· 3
10
· 1

20α2
≳ α−2,

so such f exists that satisfies (C.1).

In the “large core” case, there exists a u0 ∈ V such that

π
(
Bds(u0, 1/

√
20)
)
>

1

10
.

Take L := Bds(u0, 1/
√
20) and define f(u) := ds(u, L). Again, df (u, v) ≤ ds(u, v) for all

u, v ∈ V . We prove a stronger average distortion bound that∑
u,v∈V

π(u)π(v)df (u, v)
2 ≥ Ω(1).

Note that diam(L)2 ≤ (2/
√
20)2 = 1/5, and so

2 =
∑
u,v∈V

π(u)π(v)ds(u, v)
2

≤ 4
∑
u,v∈V

π(u)π(v)
[
ds(u, L)

2 + diam(L)2 + ds(v, L)
2
]

≤ 4

(
1

5
+ 2

∑
u∈V

π(u)ds(u, L)
2

)
,

1When L = ∅, this is not well-defined, so we just set f ≡ 0. This does not affect the rest of the proof.
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where the first equality is by Fact 2.10.4 and the first inequality is by applying the relaxed
triangle inequality 2ds(u, v)

2 + 2ds(v, u
′)2 ≥ ds(u, u

′)2 twice. Thus,∑
v∈V

π(v)f(v)2 =
∑
v∈V

π(v)ds(v, L)
2 ≥ 1

4
− 1

10
=

3

20
.

It follows that ∑
u,v∈V

π(u)π(v)df (u, v)
2 ≥

∑
u∈L

∑
v ̸∈L

π(u)π(v)df (u, v)
2

= π(L) ·
∑
v∈V

π(v)f(v)2

≥ 1

10
· 3
20
≥ Ω(1),

which concludes the proof for the large core case.

Proof of Lemma 7.3.4. The proof is by writing out the Lagrangian of the minimum conges-
tion program, simplifying it to obtain Λs(G) as a dual program, and lastly finding a Slater
point to establish strong duality. It is modeled heavily after the proof of Lemma 3.5.9.

Introduce primal variables c(v) for the congestion at vertex v and w(p) for the amount
of flow sent along a path p. Use P to denote the set of all paths on G and P(u, v) to denote
the set of all u-v paths on G. The minimum congestion program can then be written as

min
c,w

(∑
v∈V

c(v)2

π(v)

)1/2

subject to c(v) =
∑
p∋v

w(p) ∀v ∈ V

w(p) ≥ 0 ∀p ∈ P∑
p∈P(u,v)

w(p) = π(u)π(v) ∀u, v ∈ V, u ̸= v.

Note that the objective function is convex. Using dual variables s(v), µ(p), α(u, v) for the
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three constraints, we obtain the Lagrangian dual program as

max
s,µ,α

min
c,w

(∑
v∈V

c(v)2

π(v)

)1/2

−
∑
v∈V

s(v)

[
c(v)−

∑
p∋v

w(p)

]

−
∑
p∈P

µ(p)w(p)−
∑
u̸=v

α(u, v)

 ∑
p∈P(u,v)

w(p)− π(u)π(v)


subject to µ(p) ≥ 0 ∀p ∈ P .

For fixed s, µ, α, we solve the inner minimization problem. We isolate the part relevant to
c from the part relevant to w and minimize them separately. The part relevant to c is(∑

v∈V

c(v)2

π(v)

)1/2

−
∑
v∈V

s(v)c(v).

First derivative test yields the local minimizer condition

c(v) = π(v)s(v) ·

(∑
v∈V

c(v)2

π(v)

)1/2

∀v ∈ V,

and the objective becomes(∑
v∈V

c(v)2

π(v)

)1/2(
1−

∑
v∈V

π(v)s(v)2

)
.

We see that the minimum value is 0 if
∑

v∈V π(v)s(v)
2 ≤ 1 and −∞ otherwise. There-

fore, we may remove this from the objective of the Lagrangian dual and instead add the
constraints that

∑
v∈V π(v)s(v)

2 ≤ 1.

The part relevant to w is∑
u,v∈V

∑
p∈P(u,v)

w(p)

[∑
v∈p

s(v)− µ(p)− 1[u ̸= v] · α(u, v)

]
.

For the minimum value to not be −∞, we need
∑

v∈p s(v)− µ(p)− 1[u ̸= v] · α(u, v) = 0
for all p ∈ P(u, v), which is equivalent to s(v) ≥ 0 for all v ∈ V and

α(u, v) ≤
∑
v∈p

s(v) ∀u ̸= v, p ∈ P(u, v).
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Again, we add these as constraints and remove the w part from the objective of the
Lagrangian. After these steps, the primal variables w and h are eliminated, µ becomes
redundant, and we end up with the following maximization problem:

max
s≥0,α

∑
u̸=v

π(u)π(v)α(u, v)

subject to α(u, v) ≤
∑
v∈p

s(v) ∀u ̸= v, p ∈ P(u, v)∑
v∈V

π(v)s(v)2 ≤ 1.

Clearly, the best choice of α(u, v) is α(u, v) = ds(u, v) where ds(u, v) is the s-weighted short-
est path length from u to v. Since Λs(G) is homogeneous in s, we see that maxs:V→R≥0

Λs(G)
is equivalent to the above program.

It remains to establish strong duality. It follows from the convexity of the primal
objective and the existence of Slater point by taking w(p) = π(u)π(v)/|P(u, v)| for any
p ∈ P(u, v) and c(v) =

∑
p∋v w(p).

Proof of Lemma 7.4.9. The proof is again by standard Lagrangian duality and is modeled
heavily after the proof of Lemma 3.5.17. Rewrite the metric spreading maximization
problem as follows:

max
ε,δ,s

ε

subject to
1

π(A)2

∑
u,v∈A

π(u)π(v)δ(u, v) ≥ ε ∀A ∈ Ψ

δ(u, v) ≤
∑
u′∈p

s(u′) ∀u, v ∈ V ∀p ∈ P(u, v)

s(u) ≥ 0 ∀u ∈ V∑
u∈V

π(u)s(u)2 = 1.

Here P(u, v) denotes the set of all paths on G from u to v and δ(u, v) represents the length
of the shortest path from u to v. Introduce dual variables h(A) for the first constraint,
α(p) for the second constraint, and µ for the final constraint. We obtain the Lagrangian
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dual program as

min
h,α,µ

max
ε,δ,s

ε+
∑
A∈Ψ

h(A)

(
1

π(A)2

∑
u,v∈A

π(u)π(v)δ(u, v)− ε

)

+
∑
u,v

∑
p∈P(u,v)

α(p)

(∑
u′∈p

s(u′)− δ(u, v)

)
+ µ

(
1−

∑
u∈V

π(u)s(u)2

)
subject to h(A) ≥ 0 ∀A ∈ Ψ

α(p) ≥ 0 ∀p ∈ P
s(u) ≥ 0 ∀u ∈ V.

We first solve the inner maximization problem to eliminate the primal variables, and then
interpret the dual variables as subset flow parameters. For the inner maximization problem,
the part involving ε is

ε

(
1−

∑
A∈Ψ

h(A)

)
,

as ε is unconstrained, for the maximum value to not be ∞, we need
∑

A∈Ψ h(A) = 1, in
which case the maximum is 0. The part involving δ(u, v) is

δ(u, v)

π(u)π(v) ∑
A∈Ψ:{u,v}⊆A

h(A)

π(A)2
−

∑
p∈P(u,v)

α(p)

 .
Again, as δ(u, v) is unconstrained, for the maximum value to not be ∞, we need∑

p∈P(u,v)

α(p) = π(u)π(v)
∑

A∈Ψ:{u,v}⊆A

h(A)

π(A)2
=: Dh(u, v),

in which case the maximum is 0. Finally, the part involving s(u) is( ∑
p∈P:u∈p

α(p)

)
· s(u)− µ · π(u)s(u)2.

Write
C(u) :=

∑
p∈P :u∈p

α(p).
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When µ < 0 this is unbounded, and otherwise first derivative test gives the optimizer

s(u) =
C(u)

2µ · π(u)
.2

Simplifying, the dual program becomes

min
h,α,µ

∑
u∈V

C(u)

(
C(u)

2µ · π(u)

)
+ µ

(
1−

∑
u∈V

π(u)

(
C(u)

2µ · π(u)

)2
)

subject to h(A) ≥ 0 ∀A ∈ Ψ∑
A∈Ψ

h(A) = 1

α(p) ≥ 0 ∀p ∈ P∑
p∈P(u,v)

α(p) = Dh(u, v) ∀u, v ∈ V.

The objective is

µ+
1

4µ

∑
u∈V

C(u)2

π(u)

and by first derivative test the minimizer is µ =
√∑

u∈V C(u)
2/π(u)/2, attaining a mini-

mum value of 2µ.

By now the subset flow interpretation should be clear: h : Ψ→ R≥0 is a distribution on
Ψ, Dh(u, v) is the corresponding demand between u and v in the subset flow problem, α(p)
is the amount of flow along path p in the flow solution, which we denote by F . Then, the
objective is exactly conπ(F ), and the above constraints can be condensed into F ∈ FΨ

π (G).
Therefore, the Lagrangian dual of the metric spreading maximization problem is

min
F∈FΨ

π (G)
conπ(F ).

It remains to establish strong duality. Clearly, the primal maximization problem is
concave. We can find a Slater point as follows: take s(u) = 1 for all u ∈ V , δ(u, v) = 1 for
all u, v ∈ V , and ε = 1/10. This is feasible and all inequality constraints are strict. This
completes the proof.

2We treat 0/0 = 0 here.
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Appendix D

Deferred Proofs for Chapter 8

Proof of Proposition 8.3.1. Let ∅ ≠ S ⊂ V . We construct an SDP solution to show that
ξ(G) ≤ 2ϕ⃗π(S). Consider the vector solution

vi :=

{
(a, 0, . . . , 0), if i ∈ S,
(b, 0, . . . , 0), otherwise .

where a, b ∈ R satisfies aπ(S)+bπ(Sc) = 0 and a2π(S)+b2π(Sc) = 1. Note that such (a, b)
must exist. A routine check reveals that all the constraints on vi are satisfied. It remains
to show that

1

2

∑
uv∈E

P (u, v) ∥f(u)− f(v)∥2 ≤ 2ϕ⃗π(S) ∀F ∈ P(G).

Solving for a and b, we see that (a− b)2 = π(V )/π(S)π(Sc). Then,

1

2

∑
uv∈E

P (u, v) ∥f(u)− f(v)∥2 =
1

2

[ ∑
u∈S,v∈Sc

+
∑

u∈Sc,v∈S

]
P (u, v)(a− b)2

= (P (S, Sc) + P (Sc, S)) · π(V )

2π(S)π(Sc)

≤ P (S, Sc) + P (Sc, S)

min(π(S), π(Sc))

≤ 2min(δ+(S), δ+(Sc))

min(π(S), π(Sc))
= 2ϕ⃗π(S),
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where the last inequality uses the fact that P ∈ F(G) is an Eulerian reweighting,
so that P (S, Sc) = P (Sc, S) ≤ min(w(δ+(S)), w(δ+(Sc))). This finishes the proof that

λ∆π (G) ≤ 2ϕ⃗π(G).

Proof of Lemma 8.3.2. The algorithm for the unweighted version in Theorem 3.6.2 pro-
ceeds as follows. Let σ > 0 be a suitable absolute constant. First, choose a random
direction w ∼ Sn−1 ⊆ Rn, and order the vertices u by ⟨f(u), w⟩. Second, if the median
value is M , set L to be the set of vertices u such that ⟨f(u), w⟩ ≥ M + σ/

√
n, and set

R to be the set of vertices u such that ⟨f(u), w⟩ < M . Third, while there are pairs
(u, v) ∈ L × R such that ∥f(u)− f(v)∥2 < ∆ = Θ(1/

√
log n), remove u from L and v

from R. If |L| ≥ Ω(n) and |R| ≥ Ω(n) at the end, the procedure successfully finds two
large subsets that are at least ∆ ≥ Ω(1/

√
log n) apart in ℓ22 distance. Refer to [ARV09] for

complete details.

To prove the π-weighted version in Lemma 8.3.2, we do a reduction to the unweighted
case. Recall the assumption that π(V ) = 1. Let K ∈ N such that K · minu∈V π(u) ≥
1/2, and let π′(u) := ⌈Kπ(u)⌉ for u ∈ V . We may further assume that minu∈V π(u) ≥
Ω(1/ poly(n)) (vertices with smaller measure may be ignored), so that K ≤ O(poly(n)).
Create π′(u) copies of f(u) and feed the embedding to the unweighted algorithm. Note that
the embedding consists of Θ(K) vectors. In the end of the unweighted algorithm, w.h.p.
the output sets L and R will have size Θ(K) each, and they will be at least Ω(1/

√
log n)

apart in ℓ22 distance.

Note that if one copy of f(u) is in either of the output set, we may include all copies
of f(u) in that output set, without affecting the distance between L and R. Then, the
π-measure of vertices in L will be at least∑

u∈L

π(u) ≥
∑
u∈L

π′(u)

2K
= |L|/2K ≥ Ω(1);

same for R. We have proved that w.h.p. π(L), π(R) ≥ Ω(1). The runtime is polynomial
in the number of vectors which is Θ(K), and hence polynomial in n.

To get rid of the K-dependence in the runtime, we may modify the unweighted algo-
rithm as follows: In the second step, compute the weighted median. In the third step,
instead of removing both vertices u and v, subtract min(π(u), π(v)) from both π(u) and
π(v), and remove the vertex whose π-measure drops to zero.

Proof of Proposition 8.5.2. The proof is standard. Given k disjoint subsets S1, . . . , Sk,
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define the following solution to the λ∆k (H) program:

f(u)i :=

{
1√
π(Si)

, if i ≤ k and u ∈ Si;

0, otherwise,
and g(e) := max

u,v∈e
∥f(u)− f(v)∥2 .

Here f(u)i denotes the i-th coordinate of f(u). It is routine to check that (f, g) is a feasible
solution. Its objective value is

1

k

∑
e∈E

w(e)g(e) =
1

k

∑
e∈E

w(e)max
u,v∈e
∥f(u)− f(v)∥2

≤ 1

k

∑
e∈E

w(e) ·

∑
i∈[k]

max
u,v∈e

(f(u)i − f(v)i)2


=
1

k

∑
i∈[k]

∑
e∈δ(Si)

w(e)

π(Si)

=
1

k

∑
i∈[k]

ϕ(Si)

≤ max
i∈[k]

ϕ(Si).

This completes the proof.
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