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Simplifying Assumptions

We make several assumptions before explaining the solution.

• There are N positions and each time we move clockwise by K steps.
Let g = gcd(N,K). The result is unchanged if we replace (N,K) by
(N/g,K/g). From now on, assume gcd(N,K) = 1.

• The case N = 1 is trivial. From now on, assume N > 1.

• Now, we 0-index the presents and choose A ∈ [0, N) such that AK ≡ 1
(mod N). We can remodel the task as one which asks whether the
permutation (0, A, 2A mod N , 3A mod N , ..., (N − 1)A mod N) is
odd or even. (An odd permutation is one that has an odd number
of inversions. An even permutation is one that has an even number
of permutations.)

For example, the first sample test has N = 10, K = 4.

• g = gcd(10, 4) = 2. Now, take N = 5 and K = 2.

• A = 3. We want to know: is the permutation (0, 3, 1, 4, 2) odd or even?

In fact, for the second simplifying step, we need not calculate A; the
answer will be the same if we consider (0, K, 2K mod N , 3K mod N , ...,
(N − 1)K mod N). Hence, for the example above, it suffices to consider the
permutation (0, 2, 4, 1, 3). This fact may seem puzzling at the moment; that
it is true follows (though nontrivially) from the solution.

Now, we have a transformed task at hand:

Given 1 ≤ K < N with gcd(N,K) = 1, is the permutation
(0, K, 2K mod N , 3K mod N , ..., (N − 1)K mod N) odd or even?

Propositions will be stated without proof. Most of them are simple facts
and it will be cumbersome to put down all the proofs here.
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Special Case: N is an odd prime

We focus on the special case where N is an odd prime. First, we use the
following proposition:

Proposition 1. An odd permutation becomes even after swapping two
(not necessarily adjacent) elements, and vice versa.

Thus, we only need to consider the number of (not necessarily adjacent)
swappings needed to sort the elements of the permutation.

An Example

Consider the following example (N = 11, K = 8). The permutation is:

0 8 5 2 10 7 4 1 9 6 3

Discarding 0 (this will not affect the answer), we see that the elements
are nicely split into two halves:

8 5 2 10 7 4 1 9 6 3

Do you see the nice symmetry?

8 + 3 = 11
5 + 6 = 11
2 + 9 = 11
10 + 1 = 11
7 + 4 = 11

Therefore, if we swap the blue elements that are “too large” (i.e. larger
than N/2) with the corresponding red elements, we obtain the following:

3 5 2 1 4 7 10 9 6 8

Three (3) swaps performed in total. Then, to sort the elements, we only
need to perform swappings independently within the blue group and the
red group. But the two groups are symmetric, so, for this stage, the total
number of swappings must be even.

Counting Tricks

Making use of this observation, we see that the parity of the number of
swappings only depends on the number of “large” elements in the blue group.
In other words, we need to count the number of solutions to the following
simultaneous equations:
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{
1 ≤ r ≤ N

2

rK mod N > N
2

This is not easy to count, but there is a trick when N is an odd prime
and when we are concerned only with the parity of the number of solutions.

Let the sought number of solutions be s. We consider the product P1 of
the blue elements.

P1 = K × (2K)× ...× (N−1
2 K)

= (N−1
2 )!×K

N−1
2

On the other hand, consider the product P2 of numbers from 1 to N−1
2 .

P2 = (N−1
2 )!

Observe that every time we swap a blue element with the corresponding
red element, the value of P1 (the product of blue elements) modulo N mul-
tiplies by (-1). (This is because X is replaced by N - X.) After swapping for
s times, the product changes from P1 to P2. So we have:

(−1)sP1 ≡ P2 (mod N)

(−1)s × (N−1
2 )!×K

N−1
2 ≡ (N−1

2 )! (mod N)

(−1)s ≡ K
N−1

2 (mod N)

To get from the second line to the last line, cancel (N−1
2 )! from both

sides, then multiply (−1)s on both sides. Cancellation of the term (N−1
2 )! is

valid because N is prime; without this condition, the last line does not follow.

Hence, we can find out whether s is odd or even by calculating K
N−1

2

mod N . If the value is 1, s is even. Otherwise, s is odd. This can be
computed in O(log N) per query, using fast exponentiation.

Case 1: N is odd

Next, we generalise our work to arbitrary odd N . The case where N is even
will be dealt with in the last section.

Let N = pM , where p is an odd prime and M > 1 is odd. Write the
N numbers in a rectangular array of size p×M (we omit mod N from the
table so it would not look clumsy):

0 K 2K ... (M − 1)K

MK (M + 1)K (M + 2)K ... (2M − 1)K

... ... ... ... ...

((p− 1)M)K ((p− 1)M + 1)K ((p− 1)M + 2)K ... (N − 1)K
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One can observe that numbers on the same column have the same value
modulo M . This provides inspiration for the following swapping algorithm:

• Step 1: sort the elements in each column

• Step 2: sort the columns “as a whole”

We demonstrate this two-step algorithm using the example N = 15,
p = 3, M = 5, K = 7. First, we draw the 3× 5 table:

0 7 14 6 13

5 12 4 11 3

10 2 9 1 8

Next, we sort the elements in each column.

0 2 4 1 3

5 7 9 6 8

10 12 14 11 13

Note that we perform no (0) swaps for column 1 and two (2) swaps for
columns 2 through 5. It is not a coincidence that these number of swappings
have the same parity; we state it as a proposition here.

Proposition 2. Let ui be the number of swappings required for column
i. Then ui ≡ uj (mod 2).

Corollary. Let s be the number of swappings required for step 1. Then

(−1)s ≡ K
p−1
2 (mod p)

From Proposition 2, it suffices to consider column 1. Dividing each
element by M , we obtain, in order, the elements 0, K mod p, ..., (p− 1)K
mod p. By previous analysis on the case where N is an odd prime, the
corollary follows.

Finally, we move on to step 2 and sort the columns.

0 2 4 1 3

5 7 9 6 8

10 12 14 11 13

0 1 4 2 3

5 6 9 7 8

10 11 14 12 13

0 1 2 4 3

5 6 7 9 8

10 11 12 14 13
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0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

Each time, we swap p pairs of elements. As p is odd, we may as well
consider just the first row, which consists of 0, K mod M , 2K mod M , ...,
(M − 1)K mod M . We have successfully reduced the problem from (N , K)
to (M , K mod M).

Hence, we arrive at the following algorithm for the case where N is odd:

solve(N, K):

// P = (0, K, 2K mod N, ..., (N − 1)K mod N)

// returns 0 if P is even, 1 if P is odd

if N = 1

return 0

p := odd prime dividing N

res := f(K, p),

where f(a, b) = a
b−1
2 mod b (take 1 or -1)

if res = 1

return solve(N
p , K mod N

p )

else

return 1 - solve(N
p , K mod N

p )

By induction, we can rewrite the above algorithm as follows:

solve2(N, K):

// P = (0, K, 2K mod N, ..., (N − 1)K mod N)

// returns 0 if P is even, 1 if P is odd

factorise N := p1p2p3...pa, pi prime

res := f(K,p1) f(K,p2) ... f(K,pa),

where f(a, b) = a
b−1
2 mod b (take 1 or -1)

if res = 1

return 0

else

return 1

This algorithm depends heavily on the efficiency of prime factorisation.
Also, we need fast exponentiation for calculating f(a, b). Therefore, the
time complexity (per query) is FACT(N) + O(log N), where FACT() is
the time complexity of the factorisation algorithm used. For example, if
FACT(N) = O(

√
N), it will be fast enough to solve all subtasks (at least

for the cases where N is odd).
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Case 2: N is even

Write N = 2M . There are two sub-cases to consider: M is odd and M is
even.

Case 2.1: M is odd

Write the 2M numbers in a M × 2 table, as follows (we omit mod N):

0 K

2K 3K

4K 5K

... ...

(2M − 2)K (2M − 1)K

The numbers on the first column are all even and those on the second
column are all odd, so we do not need to swap elements on the first column
with those on the second column. Again, as M is odd, the number of swaps
required to sort the first column is congruent to that to sort the second
column, modulo 2 (recall Proposition 2).

Therefore, when N ≡ 2 (mod 4), the permutation is always even.

Case 2.2: M is even

Similar to the sub-case above, we write the numbers in a M × 2 table:

0 K

2K 3K

4K 5K

... ...

(N − 2)K (N − 1)K

Our aim to to rearrange the second column so that each element on the
second column is exactly (1 + its left element), after which the table will be
symmetric and the additional number of swaps will be even.

For example, if N = 12 and K = 5, we initially have the table on the
left and we wish to achieve the table on the right.

0 5

10 3

8 1

6 11

4 9

2 7

0 1

10 11

8 9

6 7

4 5

2 3
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Notice that it can be done by cyclic shifting the whole column by a
certain number of steps. How many steps, you ask? It will become obvious
after we colour some cells.

0 5

10 3

8 1

6 11

4 9

2 7

Each shifting, we swap (M − 1) pairs of elements, and the green and red
cells interchange positions. In the final configuration, 1, which is green, is on
the top-right corner. Notice that originally K is the number on the top-right
corner. Therefore, if K is green, the number of swaps is odd; conversely, if
K is red, the number of swaps is even.

How exactly are the colours determined? It is deceptively simple:

• we colour a number X green if X ≡ 1 (mod 4)

• we colour a number X red if X ≡ 3 (mod 4)

Therefore, we have the following: if K ≡ 1 (mod 4), the permutation is
even. Otherwise, the permutation is odd.

Combining the two cases, the problem is solved.
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Footnote

Now we have solved the problem, but two questions remain:

1. Can we solve it more efficiently?

2. How did the author come up with such a (insert adjective) problem?

The answer to the first question is an emphatic YES. In fact, the two
questions are somewhat related, so I will answer them both at once.

The author came up with this problem while attending a number the-
ory lecture, which back then was exploring a great result called “quadratic
reciprocity” (QR). One proof of QR uses Gauss’s lemma, and after a bit
googling you will see its connection with this problem, for the case where N
is an odd prime. (To be more precise, Gauss’s lemma relates the quantity

K
N−1

2 mod N to the number of elements in the first part with value larger
than N−1

2 .)

In fact, when N is an odd prime, K
N−1

2 (mod N) is exactly the Legendre
symbol (KN ), and Jacobi symbol, a generalisation of the Legendre symbol,
corresponds exactly to our sought answer when N is odd (but not necessar-
ily prime)! Since the calculation of the Jacobi symbol (ab ) can be done in
O(log b) time (it is, in some sense, similar to the Euclidean algorithm), and
that the case when N is even can be solved in O(1) time, our problem can
thus be solved in O(log N) time per query.

Don’t worry if you find this problem intimidating. This problem ap-
pears in Mini-Comp 0 for the sole reason that it is not suitable for other
contests. In particular, we would not test “advanced” number theory/pure
mathematics/difficult pattern-finding in the Team Formation Test.
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