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Introduction

Let G = (V,E) be a graph. Its conductance is

φ(G) := min
∅6=S⊂V

φ(S) = min
∅6=S⊂V

# edges crossing S

min(total degree in S, total degree in Sc)
.

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of the normalized Laplacian L := I −
D−1/2AD−1/2. The classical Cheeger’s Inequality states that:

λ2
2

≤ φ ≤
√

2λ2.

We develop the theory of reweighted eigenvalues to extend this to vertex expansion, directed

graphs, and hypergraphs.

Motivation: Fastest Mixing Time

Boyd, Diaconis and Xiao [1] studied the problem of fastest mixing time. Consider this example:

Figure 1. The graph is two copies of Kn connected by a perfect matching. Its mixing time is Θ(n). We can improve

the mixing time to Θ(1) if the perfect matching edge weights are increased to n.

Objective is to find a π-reversible Markov chain P supported on E, that maximizes λ2(P ):
λ∗

2(G) := max
P≥0

λ2(P )

subject to P (u, v) = P (v, u) = 0 ∀uv /∈ E∑
v∈V

P (u, v) = 1 ∀u ∈ V

π(u)P (u, v) = π(v)P (v, u) ∀uv ∈ E.

Cheeger Inequality for Vertex Expansion [9, 6]

Let π : V → R+ be vertex weights and ∆ the max degree of the graph. Define vertex expansion:

ψ(G) := min
∅6=S⊂V

ψ(S) = min
∅6=S⊂V

π(N(S))
min(π(S), π(Sc))

.

Then,

λ∗
2 . ψ .

√
λ∗

2 · log ∆.

Moreover, we can find in polynomial time a set S ⊂ V such that ψ(S) .
√
λ∗

2 · log ∆.

The proof consists of rounding the following dual program (due to Roch [10]):

γ(n)(G) := min
f :V→Rn
g:V→R≥0

∑
v∈V

π(v)g(v)

subject to
∑
v∈V

π(v) ‖f (v)‖2 = 1∑
v∈V

π(v)f (v) = ~0

g(u) + g(v) ≥ ‖f (u) − f (v)‖2 ∀uv ∈ E.

There are three steps:

1. Gaussian projection to γ(1) where f is now a one-dimensional embedding (log ∆ loss)

2. Going from the “`22 program” to the “`1 program” (square-root loss)

3. Threshold rounding à la classical Cheeger

Past Spectral Formulations for Directed Graphs

It is tricky to develop a spectral theory for directed graphs. For one, the Laplacian is not sym-

metric. Past attempts include:

Cheeger constant for directed graphs by Fill [3] and Chung [2];

Cheeger inequality for nonlinear Laplacian by Yoshida [12]; etc.

Expansion Quantities on Directed Graphs

We are interested in the following quantities.

Directed edge conductance (w-weighted edges):

~φ(G) := min
∅6=S⊂V

~φ(S) = min
∅6=S⊂V

min(weights of edges leaving S, weights of edges leaving Sc)

min(total weighted degree in S, total weighted degree in Sc)
.

Directed vertex expansion (π-weighted vertices):

~ψ(G) := min
∅6=S⊂V

~ψ(S) = min
∅6=S⊂V

min(π(out-neighbors of S), π(out-neighbors of Sc))
min(π(S), π(Sc))

.

Main Idea: Eulerian Reweighting

For directed graphs, we consider vertex/edge-capacitated Eulerian reweightings, because:

Figure 2. Edge weight from S to Sc (and from Sc to S) in any edge-capacitated Eulerian reweighting A is at most

that from S to Sc in the original graph.

The goal is to search for the “best” Eulerian reweighting A that certifies conductance/vertex

expansion of graph G. To this end, we maximize λ2 of the underlying undirected graph A+AT
2 .

Cheeger Inequalities for Directed Graphs [7]

Reweighted eigenvalue objective for directed edge conductance is:

~λe∗2 (G) := max
A≥0

λ2

(
D−1

2
(
DA − A + AT

2

)
D−1

2

)
subject to A(u, v) = 0 ∀uv /∈ E∑

v∈V
A(u, v) =

∑
v∈V

A(v, u) ∀u ∈ V

A(u, v) ≤ w(uv) ∀uv ∈ E

Then,

~λe∗2 . ~φ .
√
~λe∗2 · log(1/~λe∗2 ).

Rounding algorithm follows the same outline, with some tweaks. For ~λv∗
2 similarly defined,

~λv∗
2 . ~ψ .

√
~λv∗

2 · log(∆/~λv∗
2 ).

Hypergraphs

Figure 3. For hypergraphs, we consider reweighting their clique-graphs.

Generalizations

Some extensions of Cheeger’s inequality (undirected, edge) have close analogies in the new

settings, but not others.

undirected, vertex directed, edge directed, vertex hypergraphs

“bipartite” Cheeger [11] 3 7 7 7

“higher-order” Cheeger [8] 3 7 7 3

“improved” Cheeger [5] 3 3 3 3

Applications

Certifying expanders in directed graphs

We see that ~φ(G) is constant iff ~λe∗2 (G) is constant.

Fastest mixing time of non-reversible Markov chains

By combining Cheeger inequality for ~ψ(G) and some mixing time argument, we arrive at:

1
~ψ(G)

· 1
log(1/πmin)

. τ∗(G) . 1
~ψ(G)2

· log ∆
~ψ(G)

· log 1
πmin

.

Future Directions

1. Determine if the Cheeger inequalities for directed graphs are tight.

2. Find practical applications for this spectral algorithm.

3. Design a fast (e.g. almost-linear time) algorithm to compute reweighted eigenvalues or

Cheeger cuts for directed graphs.

4. Formulate generalizations of Cheeger’s inequality (bipartite, higher-order) for directed graphs.
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