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What is Spectral Graph Theory?

• Graphs

• Laplacian Matrix

Spectral graph theory studies graphs through eigenvalues and 
eigenvectors of associated matrices

 

  

  

 Vertex Set Edge Set

𝐺 = (𝑉, 𝐸)

𝐿′ =

2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1

(Unnormalized) 
Laplacian Matrix

Degree Matrix

(Unnormalized) 
Adjacency Matrix
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= 𝐷 − 𝐴′



Cheeger’s Inequality

• Conductance of cut 𝑆 ⊆ 𝑉 and of graph 𝐺

𝜙 𝑆 ≔
#edges crossing 𝑆

volume total degree of 𝑆
and 𝜙 𝐺 ≔ min

𝑆:𝑣𝑜𝑙 𝑆 ≤
𝑣𝑜𝑙 𝑉

2

𝜙(𝑆)

• Eigenvalues of normalized Laplacian 𝐿 ≔ 𝐷−
1

2𝐿′𝐷−
1

2

• 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 ≤ 2

• Sanity check:   𝐺 disconnected ⇔ 𝜙 𝐺 = 0 ⇔ 𝜆2 𝐺 = 0

Theorem (Cheeger’s Inequality) [Cheeger ‘70, Alon, Milman ‘85, Alon ‘86]

𝜙 𝐺 2

2
≤ 𝜆2(𝐺) ≤ 2𝜙(𝐺)

𝐾𝑛 𝐾𝑛

𝜙 𝐺 = Θ
1

𝑛
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Conductance, Eigenvalue, and Mixing Time

• Random Walk on 𝐺: from 𝑢, go to uniformly random neighbour

• Mixing time 𝑇𝑚𝑖𝑥: time needed to get (1/𝑒)-close to stationary 
distribution from any starting distribution

Conductance 𝜙

Eigenvalue 𝜆2 Mixing time 𝑇𝑚𝑖𝑥
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Theorem (𝜆2 and Mixing Time)
1

𝜆2
≾ 𝑇𝑚𝑖𝑥 ≲

log 𝑛

𝜆2

𝒕 𝒑𝟏
(𝒕)

𝒑𝟐
(𝒕)

𝒑𝟑
(𝒕)

𝒑𝟒
(𝒕)

𝒑𝟓
(𝒕)

𝒑𝟔
(𝒕)

Start here
0 1 0 0 0 0 0

1 0 1/2 0 0 1/2 0

2 1/3 1/6 1/6 1/6 1/6 0



Sweep-Cut Algorithm

Input: Graph 𝐺 = 𝑉, 𝐸 Output: cut 𝑆 ⊆ 𝑉

• Analysis:

• Output 𝑆 ⊆ 𝑉 satisfies 𝑣𝑜𝑙 𝑆 ≤
𝑣𝑜𝑙 𝑉

2
and 𝜙 𝑆 ≤ 2 𝜙(𝐺)

• Runtime is 𝑂(𝑛 log 𝑛 +𝑚), near linear in input size!
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By proof of Cheeger’s inequality

𝐺

𝑓 𝑢1 ≤ 𝑓 𝑢2 ≤ 𝑓 𝑢3 ≤ ⋯ ≤ 𝑓 𝑢𝑛−1 ≤ 𝑓 𝑢

⋯

𝑆𝑖 ≔ {𝑢1, … , 𝑢𝑖} or {𝑢𝑖+1, … , 𝑢𝑛}, find min conductance

Sort by second eigenvector 𝑓



Applications of Cheeger’s Inequality

• Cheeger cut can be found in near-linear time
• Computing the optimal cut is NP-hard

• Applications:
• Graph partitioning (e.g. image segmentation)

• Expander certification

• Laplacian solvers

• Divide and conquer algorithms

• Mixing time analysis

• etc.
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𝜙 𝐺 = Θ(1) iff 𝜆2 𝐺 = Θ(1)



“Cheeger generalizations”

Alias References Informal Statement

“Bipartite” [Trevisan ‘09] 𝜆𝑛 is close to 2 ⇔𝐺 has an (almost) bipartite sparse cut

“Higher-Order” [Lee, Oveis Gharan, Trevisan ‘12]
[Louis, Raghavendra, Tetali, Vempala ’12]

𝜆𝑘 is small ⇔𝐺 has 𝑂(𝑘) disjoint sparse cuts

“Improved” [Kwok, Lau, Lee, Oveis Gharan, 
Trevisan ’13]

𝜆𝑂(1) is large ⇒ spectral partitioning algorithm output 𝑆 has 

conductance 𝑂(𝜙 𝐺 ) instead of 𝑂( 𝜙 𝐺 )

These generalizations enrich spectral graph theory for undirected 
graphs using Laplacian eigenvalues 
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Other Measures of Isoperimetry

• Edge Expansion

𝜙′ 𝑆 ≔
#edges crossing 𝑆

|S|
and 𝜙′ 𝐺 ≔ min

𝑆:|𝑆|≤
|𝑉|

2

𝜙′(𝑆)

• Vertex Expansion

𝜓(𝑆) ≔
#neighbours of 𝑆

S
and    𝜓 𝐺 ≔ min

𝑆:|𝑆|≤
|𝑉|

2

𝜓(𝑆)
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Other Graph Models

• Directed Graphs

• Hypergraphs

• Directed Hypergraphs
• Common generalization of the above
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Research Gap

• There have been many efforts to derive a spectral theory for these 
more general settings

• Nevertheless, these existing theories fail to fully capture the rich 
applications of the basic spectral theory…
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Reweighted Eigenvalues

• We propose “reweighted eigenvalues” as a new, unifying spectral 
theory on these general settings

• It reduces these general settings to the basic setting of conductance 
on undirected graphs

• The result is a rich spectral theory that captures:
• Cheeger’s inequalities for these settings

• Direct analogues of “Cheeger generalizations” for these settings

• Spectral certification of directed expander graphs

• and so on…
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Related Publications

• Tsz Chiu Kwok, Lap Chi Lau, Kam Chuen Tung. Cheeger inequalities for 
vertex expansion and reweighted eigenvalues
• Accepted to FOCS 2022

• Lap Chi Lau, Kam Chuen Tung, Robert Wang. Cheeger inequalities for 
directed graphs and hypergraphs using reweighted eigenvalues
• Accepted to STOC 2023

• Lap Chi Lau, Kam Chuen Tung, Robert Wang. Fast algorithms for 
directed graph partitioning using flows and reweighted eigenvalues
• Accepted to SODA 2024
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Cheeger Inequalities for Vertex 
Expansion using Reweighted 
Eigenvalues

Joint work with Tsz Chiu Kwok and Lap Chi Lau
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Motivation: “Improving” Graph Random 
Walk

Mixing time is Θ(𝑛) Mixing time is Θ(1)

𝐾𝑛 𝐾𝑛 𝐾𝑛 𝐾𝑛

14

1/𝑛

1/𝑛

1/𝑛

1/2𝑛

1/2𝑛 Θ 1



Fastest Mixing Markov Chain (FMMC)

• Given a target stationary distribution 𝜋 on 𝑉

• Goal: Find a reversible Markov chain supported on the graph edges 𝐸, 
s.t. the mixing time to 𝜋 is small

• Equivalently:
• Assign weights 𝐴(𝑢, 𝑣) ≥ 0 to each edge 𝑢𝑣 ∈ 𝐸 or 𝑢 = 𝑣

• Induced Markov chain 𝑃 𝑢, 𝑣 = 𝐴(𝑢, 𝑣)/ deg𝐴(𝑢)

• Require: deg𝐴 𝑢 = 𝜋(𝑢) for all 𝑢 ∈ 𝑉

• Fastest mixing time 𝑇𝑚𝑖𝑥
∗ defined as min

𝑃
𝑇𝑚𝑖𝑥(𝑃)
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SDP Formulation of FMMC [Boyd, Diaconis, Xiao ‘04]

• Maximizing 𝜆2(𝐼 − 𝑃) as a proxy for minimizing 𝑇𝑚𝑖𝑥(𝑃)

• 𝜆2
∗ ≲ 𝜓 [Roch ’05]

• Small vertex expansion ⇒ torpid fastest mixing

• 𝜓2/ log 𝑛 ≲ 𝜆2
∗ ≲ 𝜓 [Olesker-Taylor, Zanetti ’22]

• First Cheeger-like relation between vertex expansion and 𝜆2
∗

• Proven for uniform distribution
16

Since 𝑇𝑚𝑖𝑥 𝑃 ≈ 𝜆2 𝐼 − 𝑃 −1



Our Results

• Optimal Cheeger’s inequality for vertex expansion

• Analogue of “Cheeger generalizations” using 𝜆𝑘
∗ (𝐺)

• 0/1 polytope with torpid fastest mixing

17

Theorem (Cheeger’s Inequality for Vertex Expansion) [Kwok, Lau, T. ’22]

𝜓 𝐺 2

log Δ
≲ 𝜆2

∗ (𝐺) ≤ 2𝜓(𝐺)



Review: Proof Flow of Cheeger’s Inequality
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𝜆2 = min
𝑓⊥𝑑𝑒𝑔

σ𝑢𝑣∈𝐸 𝑓 𝑢 − 𝑓 𝑣
2

σ𝑣∈𝑉 deg 𝑣 𝑓 𝑣 2

𝜉 = min
𝑀𝑑𝑒𝑔 ℎ =0

σ𝑢𝑣∈𝐸 |ℎ 𝑢 − ℎ 𝑣 |

σ𝑣∈𝑉 deg 𝑣 |ℎ 𝑣 |

𝜙 = min
𝑀𝑑𝑒𝑔 𝑥 =0

𝑥 𝑢 ∈{0,1}

σ𝑢𝑣∈𝐸 |𝑥 𝑢 − 𝑥 𝑣 |

σ𝑣∈𝑉 deg 𝑣 |𝑥 𝑣 |

(1) ℓ2
2 to ℓ1 step

(2) threshold rounding𝑑𝑒𝑔-weighted median

𝜙 𝑆 ≤ 𝜉 ≤ 2𝜆2

(2) (1)

Key technique: Cauchy-Schwarz Inequality

𝑥(𝑢) depends on if ℎ 𝑢 > 𝑡 for random 
threshold 𝑡 ∈ ℝ

𝑆 = {𝑢 ∈ 𝑉: 𝑥 𝑢 = 1}

Rayleigh quotient for 𝜆2



Abstracting the Proof Flow
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𝜆2 = min
𝑓

ℓ2
2 energy of 𝑓

ℓ2
2 mass of 𝑓

𝜉 = min
ℎ

ℓ1 energy of ℎ

ℓ1 mass of ℎ

𝜙 = min
𝑆𝑡

edge boundary of 𝑆𝑡
volume of 𝑆𝑡

(1) ℓ2
2 to ℓ1 step

(2) threshold rounding

𝑆𝑡 with minimum conductance 𝜙 𝑆 ≤ 𝜉 ≤ 2𝜆2

(2) (1)



Dual program [Roch ‘05]
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𝜆2
∗ = max

𝑃 𝑟𝑤𝑡.
min
𝑓⊥𝜋

σ𝑢𝑣∈𝐸 𝜋 𝑢 𝑃(𝑢, 𝑣) 𝑓 𝑢 − 𝑓 𝑣
2

σ𝑣∈𝑉 𝜋 𝑣 𝑓 𝑣 2

𝛾(𝑛)=min
𝐹𝑖⊥𝜋

max
𝑃 𝑟𝑤𝑡.

σ𝑢𝑣∈𝐸 𝜋 𝑢 𝑃 𝑢, 𝑣 ‖𝐹 𝑢 − 𝐹 𝑣 ‖2

σ𝑣∈𝑉 𝜋 𝑣 ‖𝐹 𝑣 ‖2

Von Neumann minimax (require 𝐹: 𝑉 → ℝ𝑛)

LP dual of inner max program

𝛾(𝑛)=min
𝐹𝑖⊥𝜋

min
𝑔≥0

σ𝑣∈𝑉 𝜋 𝑢 𝑔 𝑢

σ𝑣∈𝑉 𝜋 𝑢 𝐹 𝑢 2

s.t. 𝑔 𝑢 + 𝑔 𝑣 ≥ 𝐹 𝑢 − 𝐹 𝑣 2 ∀𝑢𝑣 ∈ 𝐸

ℓ2
2 objective of 𝐹

ℓ2
2 mass of 𝐹



Proof Flow of KLT22
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𝛾 1 = min
𝑓

ℓ2
2 objective of 𝑓

ℓ2
2 mass of 𝑓

𝜉 = min
ℎ

ℓ1 objective of ℎ

ℓ1 mass of ℎ

𝜓 = min
𝑆𝑡

vertex boundary of 𝑆𝑡
π−weight of 𝑆𝑡

(1) ℓ2
2 to ℓ1 step

(2) threshold rounding

𝑆𝑡 with minimum vertex expn.

𝜆2
∗ = reweighted eigenvalue

𝛾 𝑛 = min
𝐹

ℓ2
2 objective of 𝐹

ℓ2
2 mass of 𝐹

Strong duality [Roch ‘05]
Gaussian Projection

𝜓 𝑆 ≤ 𝜉 ≤ 𝛾 1 ≲ 𝛾 𝑛 ⋅ log Δ
(2) (1)

Polynomial time!



Alias References Informal Statement

“Bipartite” [Kwok, Lau, T. ‘22] 𝜆𝑛
∗ is close to 2 ⇔𝐺 has an (almost) bipartite small-𝜓 cut

“Higher-Order” [Kwok, Lau, T. ‘22] 𝜆𝑘
∗ is small ⇔𝐺 has 𝑂(𝑘) disjoint small-𝜓 cuts

“Improved” [Kwok, Lau, T. ‘22] 𝜆𝑂 1
∗ is large ⇒ spectral partitioning algorithm output 𝑆 has 

𝜓 𝑆 ≤ 𝑂(𝜓 𝐺 ⋅ log Δ) instead of 𝑂( 𝜓 𝐺 ⋅ log Δ)

Higher Reweighted Eigenvalues

• 𝜆𝑘
∗ defined as max

𝑃
𝜆𝑘(𝐼 − 𝑃), not convex

• Idea: Consider 𝜎𝑘
∗ 𝐼 − 𝑃 = max

𝑃
σ𝑖≤𝑘 𝜆𝑖(𝐼 − 𝑃)

22

Alias References Informal Statement

“Bipartite” [Trevisan ‘09] 𝜆𝑛 is close to 2 ⇔𝐺 has an (almost) bipartite sparse cut

“Higher-Order” [Lee, Oveis Gharan, Trevisan ‘12]
[Louis, Raghavendra, Tetali, Vempala ’12]

𝜆𝑘 is small ⇔𝐺 has 𝑂(𝑘) disjoint sparse cuts

“Improved” [Kwok, Lau, Lee, Oveis Gharan, 
Trevisan ’13]

𝜆𝑂(1) is large ⇒ spectral partitioning algorithm output 𝑆 has 

conductance 𝑂(𝜙 𝐺 ) instead of 𝑂( 𝜙 𝐺 )



0/1 Polytope Conjecture

• A 0/1 polytope is a polytope whose vertex set is a subset of 0,1 𝑑

• Graph = (vertex of polytope, edge of polytope)

• Proven true in several important subclasses, notably matroid 
polytopes [Anari, Liu, Oveis Gharan, Vinzant ’19]

• We gave a 0/1 polytope with small vertex expansion

• Consequence: fast uniform sampling is impossible on some 0/1 
polytopes

23

Conjecture (0/1 polytope conjecture) [Mihail, Vazirani]

The edge expansion of the graph of a 0/1 polytope is at least 1.



Summary

• Took the definition of Fastest Mixing Markov Chain

• Developed a new spectral graph theory for vertex expansion
• Optimal Cheeger’s inequality relating 𝜆2

∗ and 𝜓

• Cheeger-type inequalities involving 𝜆𝑘
∗ and vertex expansion-type quantity

• Implications about 0/1 polytope conjecture

24

Vertex Expansion 𝜓

Reweighted Eigenvalue 𝜆2
∗ Fastest Mixing time 𝑇𝑚𝑖𝑥

∗



Cheeger Inequalities for Directed 
Graphs and Hypergraphs using 
Reweighted Eigenvalues

Joint work with Lap Chi Lau and Robert Wang
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Expansion Quantities for Directed Graphs

• Directed edge conductance

• Directed vertex expansion

26

𝜙 𝑆 ≔
min(#outgoing edges, #incoming edges)

min(vol 𝑆 , vol 𝑆𝑐 ) 𝜙 𝑆 =
1

15

𝜓 𝑆 ≔
min(#out_neighbors, #in_neighbors)

min( 𝑆 , |𝑆𝑐|)



Spectrum of Directed Graphs…?

• No real eigenvalues in general

• Some remedies:
• Consider associated Hermitian matrices (e.g. sum and product matrices [Fill 

’91], [Chung ’05])

• Nonlinear Laplacian [Yoshida ’16]

27

Laplacian eigenvalues are 1 − 𝑒2𝜋𝑖𝑘/𝑛
…



A New Remedy: Eulerian Reweighting

Find the “best” Eulerian reweighting 𝑨

28

𝑆𝑐

𝜙 𝐺 (or 𝜓 𝐺 ) 𝜙 𝐴 = 𝜙
𝐴 + 𝐴𝑇

2

𝑆 𝑆𝑐𝑆

≥



Reweighted Eigenvalues for Directed Graphs

29

Eulerian constraints on 𝐴

Eulerian constraints on 𝐴

Edge capacity constraints

Vertex capacity constraints

• For edge conductance:

• For vertex expansion:



Our Results

• Main application: fastest mixing general Markov chain

30

Theorem (Cheeger’s Inequality for Directed Vertex Expansion) [Lau, T., Wang ’23]

𝜓 𝐺 2

log(Δ /𝜓(𝐺))
≲ 𝜆2

𝑣∗(𝐺) ≤ 2𝜓(𝐺)

• Main application: certification of directed expander graphs

Theorem (Cheeger’s Inequality for Directed Edge Conductance) [Lau, T., Wang ’23]

𝜙 𝐺 2

log(1/𝜙 𝐺 )
≲ 𝜆2

𝑒∗(𝐺) ≤ 2𝜙(𝐺)

𝜙 𝐺 = Θ(1) iff 𝜆2
𝑒∗ 𝐺 = Θ(1)



Proof Flow (same as KLT22!)
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𝛾 1 = min
𝑓

ℓ2
2 objective of 𝑓

ℓ2
2 mass of 𝑓

𝜉 = min
ℎ

ℓ1 objective of ℎ

ℓ1 mass of ℎ

𝜓 = min
𝑆𝑡

vertex boundary of 𝑆𝑡
π−weight of 𝑆𝑡

(1) ℓ2
2 to ℓ1 step

(2) threshold rounding

𝑆𝑡 with minimum vertex expn.

𝜆2
∗ = reweighted eigenvalue

𝛾 𝑛 = min
𝐹

ℓ2
2 objective of 𝐹

ℓ2
2 mass of 𝐹

Strong duality
Gaussian Projection

Asymmetric ratio

𝜓 𝑆 ≤ 𝜉 ≤ 𝛾 1 ≲ 𝛾 𝑛 ⋅ log 𝛼
(2) (1)



Asymmetric Ratio and Large Optimal 
Property
• Compare the optimal reweighting objective with the trivial upper 

bound

• Projection loss is log𝐾. 𝐾 related to asymmetric ratio for digraphs

• Alternative proof of log Δ projection loss for vertex expansion 
program [Jain, Pham, Vuong ‘22]

32

𝑆𝑐𝑆 𝑆𝑐𝑆

1

𝐾


𝑢𝑣∈𝐸

𝑤(𝑢, 𝑣) 𝐹 𝑢 − 𝐹 𝑣 2 

𝑢𝑣∈𝐸

𝐴(𝑢, 𝑣) 𝐹 𝑢 − 𝐹 𝑣 2
≤



Summary

• Developed a spectral theory for directed graphs
• Easily applied to hypergraphs

• Key idea: SDP to find “optimal” Eulerian reweighting

Main applications:

• Certification of directed expander graphs

• FMMC for non-reversible chains

33



Can we extend this spectral 
theory to a vastly more general 
setting?

34



Directed Hypergraphs: Positive!
Directed hyperedge: 𝑒 = (𝑒−, 𝑒+)

35

graphdirected 
graph

hypergraph

directed hypergraph

We can define reweighted eigenvalues for directed hypergraphs and 
obtain a Cheeger-type inequality :)



Submodular Transformations: Negative!

• Cut function of a directed hyperedge is submodular

• There is a Cheeger inequality for submodular transformations by 
relaxing the nonlinear Laplacian [Li, Milenkovic ‘18], [Yoshida ’19]

• Unfortunately, reweighted eigenvalues does not seem to extend to 
submodular transformations well :(

36



Summary

• Cheeger inequality for directed hypergraphs: common generalization 
of all graph-like settings so far!

• Need new ideas to capture submodular transformations

37



Reweighted Eigenvalue Upper 
Bounds for Special Families of 
Graphs

38



Primer: Planar Separation Theorem

• Balanced separator: 𝑆 ⊆ 𝑉 s.t. each connected component in 𝐺[𝑉\S]
is of size ≤ 2𝑛/3

• Planar graphs admit 𝑂( 𝑛)-sized separators [Lipton, Tarjan ’79]

• Spectral partitioning applied recursively gives 𝑂( Δ ⋅ 𝑛)-sized 
separators
• By showing that 𝜆2

′ ≤ 𝑂(Δ/𝑛) [Spielman, Teng ’96]

39



Bounded Genus and 𝐾ℎ-minor free Graphs

• Genus 𝑔: 𝐺 admits a non-crossing embedding in genus 𝑔 surface

• 𝐾ℎ-minor free: 𝐺 cannot become 𝐾ℎ after edge/node removal and 
edge contraction

• There are linear-time, non-spectral algorithms that find balanced 
separators given explicit embedding [Gilbert, Hutchinson, Tarjan ’84]

• Spectral partitioning works too [Biswal, Lee, Rao ’08]

• By upper bounding 𝜆2
′

40



Our Results

• Biswal, Lee, Rao: 𝜆2
′ ≤ 𝑂

Δ 𝑔 log2 𝑔

𝑛
, 𝜆2

′ ≤ 𝑂
Δ ℎ6 log ℎ

𝑛

• Implies separator size of 𝑂( 𝑛 𝜆2
′ )

• T.: 𝜆2
∗ ≤ 𝑂

𝑔 log2 𝑔

𝑛
, 𝜆2

∗ ≤ 𝑂
ℎ6 log ℎ

𝑛

• Implies separator size of 𝑂( 𝑛 𝜆2
∗ ⋅ log Δ)

Corollary: recursive spectral partitioning using reweighted 
eigenvalues produces smaller-sized separators

41

By vertex Cheeger’s inequality



Planar Graphs

• For planar graphs, we can do better than the separator size of 

𝑂 𝑛 log Δ from the previous analysis!

• Idea: Use the Koebe-Andreev-Thurston kissing circle embedding to 
construct a solution to the 3-dim dual program 𝛾 3 with small 
objective

42

𝜓 𝑆 ≤ 𝜉 ≤ 𝛾 1 ≲ 𝛾 3 ≲
1

𝑛

𝑂( 𝑛)-sized separator!



Summary

• First spectral algorithm for 𝑂( 𝑛)-sized planar separator

• Upper bounds on 𝜆2
∗ for vertex expansion imply balanced separator 

algorithms with better guarantees

• Upper bounds on 𝜆𝑘
∗ (applications?)
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𝑂 log 𝑛 Approximation of 
Expansion Quantities by adding ℓ2

2

Triangle Inequalities to 𝜆2
∗ , and 

Beyond

Joint work with Lap Chi Lau and Robert Wang
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Background: Arora-Rao-Vazirani

• 𝜆2 = min
𝑓⊥𝑑𝑒𝑔

σ𝑢𝑣∈𝐸 𝑓 𝑢 −𝑓 𝑣
2

σ𝑣∈𝑉 deg 𝑣 𝑓 𝑣 2

• 𝜆2
Δ = min

𝐹⊥𝑑𝑒𝑔

σ𝑢𝑣∈𝐸 ‖𝐹 𝑢 −𝐹 𝑣 ‖2

σ𝑣∈𝑉 deg 𝑣 ‖𝐹 𝑣 ‖2

s.t. ‖𝐹 𝑢 − 𝐹 𝑢′ ‖2 + ‖𝐹 𝑢′ − 𝐹 𝑣 ‖2 ≥ ‖𝐹 𝑢 − 𝐹 𝑣 ‖2
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Theorem (ARV for edge conductance) [Arora, Rao, Vazirani ’09]

For graphs 𝐺,
𝜙(𝐺)

log n
≲ 𝜆2

Δ(𝐺) ≲ 𝜙(𝐺)

ℓ2
2 triangle inequalities



Our Results

• By adding ℓ2
2 triangle inequalities to 𝜆2

∗ , we obtain 𝜆2
Δ

• Proof is adapted from ARV

• Unifies [Feige, Hajiaghayi, Lee ‘08], [Agarwal, Charikar, Macharychev, Macharychev ‘05], 
[Chan, Sun ’18] using one single formulation!
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Theorem (ARV for generalized expansions) [Lau, T., Wang ’24]

For directed hypergraphs 𝐻,
𝜙(𝐻)

log n
≲ 𝜆2

Δ(𝐻) ≲ 𝜙(𝐻)



Background: Orthogonal Separators

• Given some set 𝑋 ⊆ ℝ𝑑 of “normalized” vectors that satisfy the ℓ2
2

triangle inequalities

• Orthogonal separator is a random subset 𝑆 ⊆ 𝑋 such that:
• Pr 𝑥 ∈ 𝑆 ∝ 𝑥 2

• If 𝑥 and 𝑦 are “far away”, then probability that both are included is 
“exceptionally” small

• If 𝑥 and 𝑦 are “close”, then probability that one is in 𝑆 while the other is not 
(i.e. 𝑥𝑦 cut by 𝑆) is small

• Used to approximate unique games [Chlamtac, Makarychev, Makarychev ’06] and 
various expansion problems [Bansal et al. ’14], [Louis, Makarychev ’14a]

• “Hypergraph” orthogonal separator [Louis, Makarychev ’14b]
47



Our Results

• Let 𝜙𝑘(𝐻) be k-way expansion of hypergraph 𝐻

• By adding ℓ2
2 triangle inequalities to 𝜎𝑘

∗, we obtain 𝜆𝑘
Δ

• Proof is adapted from [Louis, Makarychev ’14b]

• First true approximation of 𝑘-way expansions without square-root 
loss
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Theorem (LM for 𝑘-way expansion) [T., unpublished]

For hypergraphs 𝐻, 𝜆𝑘
Δ(𝐻) ≲ 𝜙𝑘(𝐻) and 

𝜙 1−𝜖 𝑘 𝐻 ≲𝜖 𝑘 log 𝑘 log log 𝑘 ⋅ log 𝑛 ⋅ 𝜆𝑘
Δ(𝐻).



Summary

• By adding ℓ2
2 triangle inequalities to 𝜆2

∗ and 𝜎𝑘
∗, we can adapt existing 

techniques to obtain approximation algorithms for expansion 
quantities
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Concluding Remarks

• We developed the reweighted eigenvalue framework

• Obtained a spectral theory for a general class of expansion problems, 
with many nice applications

• Higher reweighted eigenvalues also useful

• Some concrete open problems about the theory

• Future research directions: local algorithms, applications of optimal 
primal reweighting, fast algorithms, …
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THANK YOU!
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Questioning Period
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