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What is Spectral Graph Theory?

Vertex Set Edge Set
I N
G = (V,E)

* Graphs

* Laplacian Matrix

Degree Matrix
I _ (/
L = =D—-A
7 AN
(Unnormalized)

(Unnormalized)

Adjacency Matrix

Laplacian Matrix

Spectral graph theory studies graphs through eigenvalues and
eigenvectors of associated matrices 2



Cheeger’s Inequality g

II 1
E==g
\ /A

* Conductance of cut S € IV and of graph G ‘~-—"¢(G) _ @@
¢(S) - #edges crossing S and ¢(G) o min ¢(S)
volume (total degree) of S S:vol(S)SvOlz(V)
1 1

* Eigenvalues of normalized Laplacian L := D 2L'D 2
c0=M4 <A< <A, <2
Theorem (Cheeger’s Inequality) [Cheeger 70, Alon, Milman ‘85, Alon ‘86]
¢ (G)?
2

= 4(6) = 2¢(G)

* Sanity check: G disconnected © ¢(G) =0 & A1,(G) =0



Conductance, Eigenvalue, and Mixing Time

* Random Walk on G: from u, go to uniformly random neighbour

| Start here
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* Mixing time T,,,;,.: time needed to get (1/e)-close to stationary
distribution from any starting distribution

Theorem (4, and Mixing Time)
1 logn
EW Tmix S
Az Az

Conductance ¢

‘ Eigenvalue A, I

I Mixing time Ty,




Sweep-Cut Algorithm

Input: Graph G = (V,E)  Output:cutS SV 4 by second eigenvector f
fu) S flu) £ fug) € 0 < ftn-1) < fW)

S; = {uq, ..., u;}or{uj,q, ..., Uy}, find min conductance

° fo By proof of Cheeger’s inequalit
Analysis: | v prootol™ Inequality
* Output S C V satisfies vol(S) < = ") and d(S) <2./¢p(G)

2
* Runtime is O(nlogn + m), near linear in input size!



Applications of Cheeger’s Inequality

* Cheeger cut can be found in near-linear time
* Computing the optimal cut is NP-hard

* Applications:
* Graph partitioning (e.g. image segmentation)
 Expander certification — ¢(6) = 0(1)iff 1,(G) = O(1)
Laplacian solvers
Divide and conquer algorithms
Mixing time analysis
etc.




“Cheeger generalizations”
s [References _________|mnformalStatement

“Bipartite” A, is close to 2 & G has an (almost) bipartite sparse cut
“Higher-Order” Ak is small & G has 0 (k) disjoint sparse cuts
“Improved” Ado(1) is large = spectral partitioning algorithm output S has

conductance 0(¢(G)) instead of 0(y/ p(G))

These generalizations enrich spectral graph theory for undirected
graphs using Laplacian eigenvalues



Other Measures of Isoperimetry

e Edge Expansion

P’ (S) = #edgeslc;"ssmgs and  ¢'(G) = min_ ¢'(S)

S|S|S7

* Vertex Expansion

#neighbours of S

p(S) = MEERAEOE ang y(6) = min Y(S)
S:|S|S7




Other Graph Models

* Directed Graphs
O——0

e Hypergraphs
ypergrap e

O O

* Directed Hypergraphs
« Common generalization of the above



Research Gap

* There have been many efforts to derive a spectral theory for these
more general settings

* Nevertheless, these existing theories fail to fully capture the rich
applications of the basic spectral theory...
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Reweighted Eigenvalues

* We propose “reweighted eigenvalues” as a new, unifying spectral
theory on these general settings

* It reduces these general settings to the basic setting of conductance
on undirected graphs

* The result is a rich spectral theory that captures:

* Cheeger’s inequalities for these settings
* Direct analogues of “Cheeger generalizations” for these settings

e Spectral certification of directed expander graphs
* and so on...
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Related Publications

* Tsz Chiu Kwok, Lap Chi Lau, Kam Chuen Tung. Cheeger inequalities for
vertex expansion and reweighted eigenvalues

e Accepted to FOCS 2022

* Lap Chi Lau, Kam Chuen Tung, Robert Wang. Cheeger inequalities for
directed graphs and hypergraphs using reweighted eigenvalues

* Accepted to STOC 2023

* Lap Chi Lau, Kam Chuen Tung, Robert Wang. Fast algorithms for
directed graph partitioning using flows and reweighted eigenvalues

* Accepted to SODA 2024
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Cheeger Inequalities for Vertex
Expansion using Reweighted
Eigenvalues

Joint work with Tsz Chiu Kwok and Lap Chi Lau



Motivation: “Improving” Graph Random

Mixing time is ©@(n) Mixing time is ©(1)
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Fastest Mixing Markov Chain (FMMC)

* Given a target stationary distribution T on V

* Goal: Find a reversible Markov chain supported on the graph edges E,
s.t. the mixing time to m is small
e Equivalently:
* Assign weights A(u,v) = 0toeachedgeuv € Eoru =v
* Induced Markov chain P(u,v) = A(u,v)/deg,(u)
* Require: deg, (u) = m(u) forallu e V

* Fastest mixing time T,,;, defined as mpin Tinix(P)

15



SDP Formulation of FMMC

Since T, (P) = A,(I — P)~1

—Z
* Maximizing A, (I — P) as a proxy for minimizing T,,,;, (P)

A(G) = max 1—an(P)

P>0
subject to P(u,v) = P(v,u) =0 Yuv ¢ E
ZP(H,?J) =1 VueV
vel
7(u)P(u,v) = 7(v)P(v,u) Vuv € I,

e 1 S
* Small vertex expansion = torpid fastest mixing
Y *
Ye/logn s A, Sy
* First Cheeger-like relation between vertex expansion and A5
* Proven for uniform distribution
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Our Results

* Optimal Cheeger’s inequality for vertex expansion

Theorem (Cheeger’s Inequality for Vertex Expansion) [kwok, Lau, T.”22]
P(G)?
log A

< A(6) < 2¢Y(6)

* Analogue of “Cheeger generalizations” using 4, (G)
* 0/1 polytope with torpid fastest mixing

17



Review: Proof Flow of Cheeger’s Inequality

A, = min

5_

deg-weighted median

: ZquE(f(u) — f(v))z
fldeg Yyey deg(v) f(v)?
@ (1) #5 to £, step
ZquE |h(u) h(v)l
Matg(h=0 3ycy deg(v) [A(V)
@ (2) threshold rounding

Rayleigh quotient for 4,

Key technique: Cauchy-Schwarz Inequality

¢ =

ZquE |x(u) _ x(v)l x(u) depends on if h(u) > t for random
Mdeg(x) =0 Zvev deg(v) lx(v) threshold t € R

x(u)e{0,1}
@ (2) (1)
S={ueV:x(u) =1} P(S) <§ <4/2,
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Abstracting the Proof Flow

£ energy of f
A; = min—
f f¢5massoff

ﬂ (1) #5 to £, step

£, energy of h

$ = T £, mass of h

@ (2) threshold rounding

edge boundary of S;

¢ = min
St volume of §;

4

S with minimum conductance

(2) (1)

$(S) <& <22,
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Dual program

A5 = max min Ywer T(WP(u, v) (f(u) _ f(v))z
27 prwt. fim > 72 (0) ()2

u Von Neumann minimax (require F:V — R")

(M) — mi > ver TP, v)||F(u) — F(v)||?
YV = min max

F;1m P rwt. Yey TW) [|F()]I?

u LP dual of inner max program

m>i(1)1 ey T(w)g(u) —

¥y = min

£ objective of F

Film Yy TWIF@I* —

st.gluw) + gw) = [|[F(w) — FW)||* YVuv € E

£2 mass of F
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Proof Flow of KLT22

£2 obijective of F £ objective of
y™ = min 22] = y) = min 22] /
F f£5massof F f {5massoff

Gaussian Projection
Strong duality ﬁ @ (1) #5 to £, step

5 = reweighted eigenvalue .11 objective of h
¢ = min
h Yymassofh

@ (2) threshold rounding

" _ vertex boundary of S;
= min

(2) (1) —
P($) <€ /)/(1) < Jy(n) -log A St Ttﬂwelght of S¢

Polynomial time! S, with minimum vertex expn.

21



Higher Reweighted Eigenvalues

* 1}, defined as max A (I — P), not convex

* Idea: Consider o;,(I — P) = mﬁle'sk Ai(I — P)

“Bipartite” A, is close to 2 & G has an (almost) bipartite sparse cut

“Higher-Order” Ak is small & G has 0 (k) disjoint sparse cuts

“Improved” Ado(1) is large = spectral partitioning algorithm output S has
conductance 0(¢(G)) instead of O(W)

“Bipartite” Ay, is close to 2 & G has an (almost) bipartite small-y cut

“Higher-Order” Ay is small & G has 0 (k) disjoint small-y cuts

“Improved” /'l’(‘)(l) is large = spectral partitioning algorithm output S has

Y(S) < 0(¥(G) - log A) instead of O (/1 (G) - log A)

22



0/1 Polytope Conjecture

* A 0/1 polytope is a polytope whose vertex set is a subset of {0,1}¢
* Graph = (vertex of polytope, edge of polytope)

Conjecture (0/1 polytope conjecture) [vihail, Vazirani]
The edge expansion of the graph of a 0/1 polytope is at least 1.

* Proven true in several important subclasses, notably matroid
polytopes

* We gave a 0/1 polytope with small vertex expansion
* Consequence: fast uniform sampling is impossible on some 0/1
polytopes

23



Summary

* Took the definition of Fastest Mixing Markov Chain

* Developed a new spectral graph theory for vertex expansion
* Optimal Cheeger’s inequality relating A5 and

‘ Vertex Expansion ‘

/_\

Reweighted Eigenvalue 45 I I Fastest Mixing time T,

* Cheeger-type inequalities involving ;. and vertex expansion-type quantity

* Implications about 0/1 polytope conjecture

24



Cheeger Inequalities for Directed
Graphs and Hypergraphs using
Reweighted Eigenvalues

Joint work with Lap Chi Lau and Robert Wang



Expansion Quantities for Directed Graphs

* Directed edge conductance

min(#outgoing edges, #incoming edges) .= ’

P(S) = min(vol(S), vol(5¢)) 5) = 12

* Directed vertex expansion

min(#out_neighbors, #in_neighbors)
min(|S], |S¢|)

P(S) =

26



Spectrum of Directed Graphs...?

* No real eigenvalues in general

Laplacian eigenvalues are 1 — e2™ik/n

* Some remedies:
» Consider associated Hermitian matrices (e.g. sum and product matrices

: )

* Nonlinear Laplacian

27



A New Remedy: Eulerian Reweighting

6 (G) (or P(G)) >

Find the “best” Eulerian reweighting A

28



Reweighted Eigenvalues for Directed Graphs

- PO _1 A+AT i
* For edge conductance: 42" (G) = max 4| D “’(DA— > )D .
subject to A(u,v) =0 Yuv ¢ E
A(u,v) = A(o,u) YueV
Eulerian constraints on A % ;, SEV
A(u,v) < w(uo) Yuv € E
Edge capacity constraints %
. - . T
* For vertex expansion: 1°*(G) := max ;|1 - n—i(’“A )n-i
o A>0 2
subject to A(u,v) =0 Yuv ¢ E
A(u,v) = A(o,u) YueV
Eulerian constraints on A % UEZ‘ UEZ‘
A(u,v) = YueV
Vertex capacity constraints i/ ;} (#.9) = %{4) “
0EV




Our Results

Theorem (Cheeger’s Inequality for Directed Vertex Expansion) [Lau, T., Wang 23]
Ik
log(A /¥ (G))

* Main application: fastest mixing general Markov chain

S 257 (G) < 2¢(G)

Theorem (Cheeger’s Inequality for Directed Edge Conductance) [Lau, T., Wang ’23]
$(G)>?
log(1/$(6))
* Main application: certification of directed expander graphs
ﬁ P(G) = (1) iff 15*(G) = O(1)

S 257 (G) < 2¢(6)

30



Proof Flow (same as KLT22!)

£2 obijective of F £ objective of
y™ = min 22] = y) = min 22] /
F f£5massof F f {5massoff

Gaussian Projection
Strong duality ﬁ @ (1) #5 to £, step

5, = reweighted eigenvalue .11 objective of h
¢ = min
h Yymassofh

@ (2) threshold rounding

vertex boundary of S;

Y= rréltn m—weight of S;

4

w
(2) (1)
Y(§S) <¢é< /y(l) < \/y(n) loga S; with minimum vertex expn.

Asymmetric ratio

31



Asymmetric Ratio and Large Optimal
Property

 Compare the optimal reweighting objective with the trivial upper
bound

SC
N N
=Y wanlF@ - FOIE < Y AwnIF@ - FO)IP
UveEE UveE

* Projection loss is log K. K related to asymmetric ratio for digraphs

* Alternative proof of log A projection loss for vertex expansion
program

32



Summary

* Developed a spectral theory for directed graphs
» Easily applied to hypergraphs

* Key idea: SDP to find “optimal” Eulerian reweighting

Main applications:
* Certification of directed expander graphs
* FMMC for non-reversible chains

33



Can we extend this spectral
theory to a vastly more general
setting?



O O:> ®
Directed Hypergraphs: Positive! |0 of "|o ©

Directed hyperedge: e = (e, e™")

directed hypergraph

directed
graph

graph | hypergraph

We can define reweighted eigenvalues for directed hypergraphs and
obtain a Cheeger-type inequality :)

35



Submodular Transformations: Negative!

 Cut function of a directed hyperedge is submodular

* There is a Cheeger inequality for submodular transformations by
relaxing the nonlinear Laplacian

* Unfortunately, reweighted eigenvalues does not seem to extend to
submodular transformations well :(

36



Summary

* Cheeger inequality for directed hypergraphs: common generalization
of all graph-like settings so far!

* Need new ideas to capture submodular transformations

37



Reweighted Eigenvalue Upper
Bounds for Special Families of
Graphs



Primer: Planar Separation Theorem

* Balanced separator: S € V s.t. each connected component in G[V\S]
is of size < 2n/3

* Planar graphs admit O (1/n)-sized separators

* Spectral partitioning applied recursively gives O (VA - n)-sized
separators
* By showing that A5 < O(A/n)

39



Bounded Genus and Kj;-minor free Graphs

* Genus g: G admits a non-crossing embedding in genus g surface
O O & @
* K;-minor free: G cannot become K;, after edge/node removal and
edge contraction

* There are linear-time, non-spectral algorithms that find balanced
separators given explicit embedding

e Spectral partitioning works too
* By upper bounding A,

40



Our Results

2 6
* Biswal, Lee, Rao: 1, < 0 (Aglog g), A, <0 (Ah log h)
n n

* Implies separator size of O(y/n 1)
. log? . h®logh
'T.:/IZSO(gOg g);AZSO( Og)

n n
* Implies separator size of 0(\/n A5 - log A)

_ﬁ! By vertex Cheeger’s inequality

Corollary: recursive spectral partitioning using reweighted
eigenvalues produces smaller-sized separators

41



Planar Graphs

* For planar graphs, we can do better than the separator size of
0(y/nlogA) from the previous analysis!

* |dea: Use the Koebe-Andreev-Thurston kissing circle embedding to

construct a solution to the 3-dim dual program y(?’) with small
objective

_
t/J(S)SsES\/Es\/%s % Ea’)
\ o

T

0 (\/n)-sized separator!



Summary

* First spectral algorithm for O (v/n)-sized planar separator

* Upper bounds on A5 for vertex expansion imply balanced separator
algorithms with better guarantees

* Upper bounds on A, (applications?)

43



0(\/log n) Approximation of
Expansion Quantities by adding €5
Triangle Inequalities to A5, and
Beyond

Joint work with Lap Chi Lau and Robert Wang



Background: Arora-Rao-Vazirani

e Suwee(f@-f @)
A2 = ch%?g Yvey deg(w) f (v)?
o /’l% — min ZuveE ||F(u)—F(v)||2

Fldeg Yy deg()||F(v)||? £2 triangle inequalities

st ||[F(w) — FW)|? + ||IFW) — F)|I? = ||F(w) — F(v)]|?

Theorem (ARV for edge conductance) [Arora, Rao, Vazirani ’09]
For graphs G,

¢(G)
J]1ogn

S 13(G) S ¢(G)

45



Our Results

e By adding ¥4 triangle inequalities to A}, we obtain /13

Theorem (ARV for generalized expansions)
For directed hypergraphs H,

¢ (H)
J]logn

* Proof is adapted from ARV

* Unifies ,
using one single formulation!

S A3(H) S ¢(H)

46



Background: Orthogonal Separators

* Given some set X € R% of “normalized” vectors that satisfy the £3

triangle inequalities
* Orthogonal separator is a random subset S € X such that:
e Pr[x € S] o« [|x]|?
* If x and y are “far away”, then probability that both are included is

“exceptionally” small
* If x and y are “close”, then probability that one is in S while the other is not

(i.e. xy cut by S) is small

* Used to approximate unique games and
various expansion problems

* “Hypergraph” orthogonal separator

47



Our Results

* Let ¢, (H) be k-way expansion of hypergraph H
e By adding ¥4 triangle inequalities to g, we obtain /lﬁ

Theorem (LM for k-way expansion)
For hypergraphs H, A% (H) < ¢, (H) and

d1-ek(H) S¢ klogkloglogk - \/logn - A8 (H).

* Proof is adapted from

* First true approximation of k-way expansions without square-root
loss

48



Summary

» By adding £5 triangle inequalities to A5 and gy, we can adapt existing
techniques to obtain approximation algorithms for expansion
guantities
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Concluding Remarks

* We developed the reweighted eigenvalue framework

* Obtained a spectral theory for a general class of expansion problems,
with many nice applications

* Higher reweighted eigenvalues also useful

* Some concrete open problems about the theory

* Future research directions: local algorithms, applications of optimal
primal reweighting, fast algorithms, ...
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THANK YOU'!
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