Reweighted Eigenvalues

A New Approach to Spectral Theory beyond Undirected Graphs

Kam Chuen (Alex) Tung PhD Defense Presentation 4th February, 2025 Advisor: Lap Chi Lau

What is Spectral Graph Theory?

Spectral graph theory studies graphs through eigenvalues and eigenvectors of associated matrices

Cheeger's Inequality

• Conductance of cut $S \subseteq V$ and of graph G

u 1 ' o

$$\phi(S) \coloneqq \frac{\# \text{edges crossing } S}{\text{volume (total degree) of } S} \text{ and } \phi(G) \coloneqq \min_{\substack{S: \text{vol}(S) \leq \frac{\text{vol}(V)}{2}}} \phi(S)$$

Eigenvalues of *normalized* Laplacian $L \coloneqq D^{-\frac{1}{2}}L'D^{-\frac{1}{2}}$

•
$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \le 2$$

<u>Theorem</u> (Cheeger's Inequality) [Cheeger '70, Alon, Milman '85, Alon '86] $\frac{\phi(G)^2}{2} \le \lambda_2(G) \le 2\phi(G)$

• Sanity check: G disconnected $\Leftrightarrow \phi(G) = 0 \iff \lambda_2(G) = 0$

Conductance, Eigenvalue, and Mixing Time

• Random Walk on G: from u, go to uniformly random neighbour

t	$p_1^{(t)}$	$p_2^{(t)}$	$p_3^{(t)}$	$p_4^{(t)}$	$p_5^{(t)}$	$p_{6}^{(t)}$
0	1	0	0	0	0	0
1	0	1/2	0	0	1/2	0
2	1/3	1/6	1/6	1/6	1/6	0

• Mixing time T_{mix} : time needed to get (1/e)-close to stationary distribution from *any* starting distribution

Sweep-Cut Algorithm

Applications of Cheeger's Inequality

- Cheeger cut can be found in near-linear time
 - Computing the optimal cut is NP-hard
- Applications:
 - Graph partitioning (e.g. image segmentation)
 - Expander certification

$$\phi(G) = \Theta(1) \text{ iff } \lambda_2(G) = \Theta(1)$$

- Laplacian solvers
- Divide and conquer algorithms
- Mixing time analysis
- etc.

"Cheeger generalizations"

Alias	References	Informal Statement
"Bipartite"	[Trevisan '09]	λ_n is close to 2 \Leftrightarrow G has an (almost) bipartite sparse cut
"Higher-Order"	[Lee, Oveis Gharan, Trevisan '12] [Louis, Raghavendra, Tetali, Vempala '12]	λ_k is small $\Leftrightarrow G$ has $O(k)$ disjoint sparse cuts
"Improved"	[Kwok, Lau, Lee, Oveis Gharan, Trevisan '13]	$\lambda_{O(1)}$ is large \Rightarrow spectral partitioning algorithm output <i>S</i> has conductance $O(\phi(G))$ instead of $O(\sqrt{\phi(G)})$

These generalizations enrich spectral graph theory for undirected graphs using Laplacian eigenvalues

Other Measures of Isoperimetry

• Edge Expansion

$$\phi'(S) \coloneqq \frac{\# \text{edges crossing } S}{|S|} \text{ and } \phi'(G) \coloneqq \min_{S:|S| \le \frac{|V|}{2}} \phi'(S)$$

• Vertex Expansion

$$\psi(S) \coloneqq \frac{\text{#neighbours of } S}{|S|} \text{ and } \psi(G) \coloneqq \min_{\substack{S:|S| \leq \frac{|V|}{2}}} \psi(S)$$

Other Graph Models

• Directed Graphs

• Hypergraphs

- Directed Hypergraphs
 - Common generalization of the above

Research Gap

- There have been many efforts to derive a spectral theory for these more general settings
- Nevertheless, these existing theories fail to fully capture the rich applications of the basic spectral theory...

Reweighted Eigenvalues

- We propose "reweighted eigenvalues" as a new, unifying spectral theory on these general settings
- It reduces these general settings to the basic setting of conductance on undirected graphs
- The result is a rich spectral theory that captures:
 - Cheeger's inequalities for these settings
 - Direct analogues of "Cheeger generalizations" for these settings
 - Spectral certification of directed expander graphs
 - and so on...

Related Publications

- Tsz Chiu Kwok, Lap Chi Lau, Kam Chuen Tung. Cheeger inequalities for vertex expansion and reweighted eigenvalues
 - Accepted to FOCS 2022
- Lap Chi Lau, Kam Chuen Tung, Robert Wang. *Cheeger inequalities for directed graphs and hypergraphs using reweighted eigenvalues*
 - Accepted to STOC 2023
- Lap Chi Lau, Kam Chuen Tung, Robert Wang. *Fast algorithms for directed graph partitioning using flows and reweighted eigenvalues*
 - Accepted to SODA 2024

Cheeger Inequalities for Vertex Expansion using Reweighted Eigenvalues

Joint work with Tsz Chiu Kwok and Lap Chi Lau

Motivation: "Improving" Graph Random Walk 1/n $\Theta(1)$ 1/n**1**/2n 1/n K_n K_n K_n K_n

Mixing time is $\Theta(n)$

Mixing time is $\Theta(1)$

Fastest Mixing Markov Chain (FMMC)

- Given a target stationary distribution π on V
- Goal: Find a *reversible* Markov chain supported on the graph edges E, s.t. the mixing time to π is small
- Equivalently:
 - Assign weights $A(u, v) \ge 0$ to each edge $uv \in E$ or u = v
 - Induced Markov chain $P(u, v) = A(u, v) / \deg_A(u)$
 - Require: $\deg_A(u) = \pi(u)$ for all $u \in V$
- Fastest mixing time T^*_{mix} defined as $\min_P T_{mix}(P)$

SDP Formulation of FMMC [Boyd, Diaconis, Xiao '04]

Since $T_{mix}(P) \approx \lambda_2 (I-P)^{-1}$

• Maximizing $\lambda_2(I - P)$ as a proxy for minimizing $T_{mix}(P)$

$$\begin{array}{lll} \lambda_2^*(G) &:=& \max_{P \geq 0} & 1 - \alpha_2(P) \\ & \text{subject to} & P(u,v) = P(v,u) = 0 & & \forall uv \notin E \\ & & \sum_{v \in V} P(u,v) = 1 & & \forall u \in V \\ & & \pi(u)P(u,v) = \pi(v)P(v,u) & & \forall uv \in E, \end{array}$$

• $\lambda_2^* \lesssim \psi$ [Roch '05]

- Small vertex expansion \Rightarrow torpid fastest mixing
- $\psi^2/\log n \lesssim \lambda_2^* \lesssim \psi$ [Olesker-Taylor, Zanetti '22]
 - First Cheeger-like relation between vertex expansion and λ_2^*
 - Proven for uniform distribution

Our Results

• Optimal Cheeger's inequality for vertex expansion

<u>Theorem</u> (Cheeger's Inequality for Vertex Expansion) [Kwok, Lau, T. '22] $\frac{\psi(G)^2}{\log \Delta} \lesssim \lambda_2^*(G) \le 2\psi(G)$

- Analogue of "Cheeger generalizations" using $\lambda_k^*(G)$
- 0/1 polytope with torpid fastest mixing

Review: Proof Flow of Cheeger's Inequality

Abstracting the Proof Flow

$$\phi(S) \stackrel{(2)}{\leq} \xi \stackrel{(1)}{\leq} \sqrt{2\lambda_2}$$

Dual program [Roch '05]

Proof Flow of KLT22

Higher Reweighted Eigenvalues

- λ_k^* defined as $\max_P \lambda_k(I P)$, not convex
- Idea: Consider $\sigma_k^*(I P) = \max_P \sum_{i \le k} \lambda_i(I P)$

Alias	References	Informal Statement
"Bipartite"	[Trevisan '09]	λ_n is close to 2 \Leftrightarrow G has an (almost) bipartite sparse cut
"Higher-Order"	[Lee, Oveis Gharan, Trevisan '12] [Louis, Raghavendra, Tetali, Vempala '12]	λ_k is small $\Leftrightarrow G$ has $O(k)$ disjoint sparse cuts
"Improved"	[Kwok, Lau, Lee, Oveis Gharan, Trevisan '13]	$\lambda_{O(1)}$ is large \Rightarrow spectral partitioning algorithm output <i>S</i> has conductance $O(\phi(G))$ instead of $O(\sqrt{\phi(G)})$
"Bipartite"	[Kwok, Lau, T. '22]	λ_n^* is close to 2 \Leftrightarrow G has an (almost) bipartite small- ψ cut
"Higher-Order"	[Kwok, Lau, T. '22]	λ_k^* is small \Leftrightarrow G has $O(k)$ disjoint small- ψ cuts
"Improved"	[Kwok, Lau, T. '22]	$\lambda_{O(1)}^*$ is large \Rightarrow spectral partitioning algorithm output <i>S</i> has $\psi(S) \leq O(\psi(G) \cdot \log \Delta)$ instead of $O(\sqrt{\psi(G) \cdot \log \Delta})$

0/1 Polytope Conjecture

- A 0/1 polytope is a polytope whose vertex set is a subset of $\{0,1\}^d$
- Graph = (vertex of polytope, edge of polytope)

<u>Conjecture</u> (0/1 polytope conjecture) [Mihail, Vazirani] The edge expansion of the graph of a 0/1 polytope is at least 1.

- Proven true in several important subclasses, notably matroid polytopes [Anari, Liu, Oveis Gharan, Vinzant '19]
- We gave a 0/1 polytope with small vertex expansion
- Consequence: fast uniform sampling is impossible on some 0/1 polytopes

Summary

- Took the definition of Fastest Mixing Markov Chain
- Developed a new spectral graph theory for vertex expansion
 - Optimal Cheeger's inequality relating λ_2^* and ψ

- Cheeger-type inequalities involving λ_k^* and vertex expansion-type quantity
- Implications about 0/1 polytope conjecture

Cheeger Inequalities for Directed Graphs and Hypergraphs using Reweighted Eigenvalues

Joint work with Lap Chi Lau and Robert Wang

Expansion Quantities for Directed Graphs

• Directed edge conductance

 $\vec{\phi}(S) \coloneqq \frac{\min(\# \text{outgoing edges}, \# \text{incoming edges})}{\min(\operatorname{vol}(S), \operatorname{vol}(S^c))}$

• Directed vertex expansion

$$\vec{\psi}(S) \coloneqq \frac{\min(\# \text{out_neighbors}, \# \text{in_neighbors})}{\min(|S|, |S^c|)}$$

Spectrum of Directed Graphs...?

• No real eigenvalues in general

Laplacian eigenvalues are $1 - e^{2\pi i k/n}$

- Some remedies:
 - Consider associated Hermitian matrices (e.g. sum and product matrices [Fill '91], [Chung '05])
 - Nonlinear Laplacian [Yoshida '16]

A New Remedy: Eulerian Reweighting

Find the "best" Eulerian reweighting A

Reweighted Eigenvalues for Directed Graphs

Our Results

<u>Theorem</u> (Cheeger's Inequality for Directed Vertex Expansion) [Lau, T., Wang '23] $\frac{\vec{\psi}(G)^2}{\log(\Delta/\vec{\psi}(G))} \lesssim \lambda_2^{\nu*}(G) \le 2\vec{\psi}(G)$

• Main application: fastest mixing general Markov chain

<u>Theorem</u> (Cheeger's Inequality for Directed Edge Conductance) [Lau, T., Wang '23] $\frac{\vec{\phi}(G)^2}{\log(1/\vec{\phi}(G))} \lesssim \lambda_2^{e*}(G) \le 2\vec{\phi}(G)$

• Main application: certification of directed expander graphs

30

 $\vec{\phi}(G) = \Theta(1)$ iff $\lambda_2^{e*}(G) = \Theta(1)$

Proof Flow (same as KLT22!)

Asymmetric Ratio and Large Optimal Property

 Compare the optimal reweighting objective with the trivial upper bound

- Projection loss is log K. K related to asymmetric ratio for digraphs
- Alternative proof of log Δ projection loss for vertex expansion program [Jain, Pham, Vuong '22]

Summary

- Developed a spectral theory for directed graphs
 - Easily applied to hypergraphs
- Key idea: SDP to find "optimal" Eulerian reweighting

Main applications:

- Certification of directed expander graphs
- FMMC for non-reversible chains

Can we extend this spectral theory to a vastly more general setting?

We can define reweighted eigenvalues for directed hypergraphs and obtain a Cheeger-type inequality :)

Submodular Transformations: Negative!

- Cut function of a directed hyperedge is *submodular*
- There is a Cheeger inequality for submodular transformations by relaxing the nonlinear Laplacian [Li, Milenkovic '18], [Yoshida '19]
- Unfortunately, reweighted eigenvalues does not seem to extend to submodular transformations well :(

Summary

- Cheeger inequality for directed hypergraphs: common generalization of all graph-like settings so far!
- Need new ideas to capture submodular transformations

Reweighted Eigenvalue Upper Bounds for Special Families of Graphs

Primer: Planar Separation Theorem

- Balanced separator: S ⊆ V s.t. each connected component in G[V\S] is of size ≤ 2n/3
- Planar graphs admit $O(\sqrt{n})$ -sized separators [Lipton, Tarjan '79]
- Spectral partitioning applied recursively gives $O(\sqrt{\Delta \cdot n})$ -sized separators
 - By showing that $\lambda_2' \leq O(\Delta/n)$ [Spielman, Teng '96]

Bounded Genus and *K_h*-minor free Graphs

- Genus g: G admits a non-crossing embedding in genus g surface
- K_h -minor free: G cannot become K_h after edge/node removal and edge contraction

 \bigcirc 8 \approx

- There are linear-time, non-spectral algorithms that find balanced separators *given explicit embedding* [Gilbert, Hutchinson, Tarjan '84]
- Spectral partitioning works too [Biswal, Lee, Rao '08]
 - By upper bounding λ_2'

Our Results

• Biswal, Lee, Rao:
$$\lambda'_2 \leq O\left(\frac{\Delta g \log^2 g}{n}\right), \lambda'_2 \leq O\left(\frac{\Delta h^6 \log h}{n}\right)$$

• Implies separator size of $O(\sqrt{n \lambda'_2})$
• T.: $\lambda_2^* \leq O\left(\frac{g \log^2 g}{n}\right), \lambda_2^* \leq O\left(\frac{h^6 \log h}{n}\right)$
• Implies separator size of $O(\sqrt{n \lambda_2^*} \cdot \log \Delta)$ By vertex Cheeger's inequality

Corollary: recursive spectral partitioning using reweighted eigenvalues produces smaller-sized separators

Planar Graphs

- For planar graphs, we can do better than the separator size of $O(\sqrt{n \log \Delta})$ from the previous analysis!
- Idea: Use the Koebe-Andreev-Thurston kissing circle embedding to construct a solution to the 3-dim dual program $\gamma^{(3)}$ with small objective

$$\psi(S) \le \xi \le \sqrt{\gamma^{(1)}} \lesssim \sqrt{\gamma^{(3)}} \lesssim \sqrt{\frac{1}{n}}$$

$$(0)$$

$$O(\sqrt{n})$$
-sized separator!

Summary

- First spectral algorithm for $O(\sqrt{n})$ -sized planar separator
- Upper bounds on λ_2^* for vertex expansion imply balanced separator algorithms with better guarantees
- Upper bounds on λ_k^* (applications?)

$O(\sqrt{\log n})$ Approximation of Expansion Quantities by adding ℓ_2^2 Triangle Inequalities to λ_2^* , and Beyond

Joint work with Lap Chi Lau and Robert Wang

Background: Arora-Rao-Vazirani

•
$$\lambda_2 = \min_{f \perp deg} \frac{\sum_{uv \in E} (f(u) - f(v))^2}{\sum_{v \in V} \deg(v) f(v)^2}$$

• $\lambda_2^{\Delta} = \min_{F \perp deg} \frac{\sum_{uv \in E} \|F(u) - F(v)\|^2}{\sum_{v \in V} \deg(v) \|F(v)\|^2}$
s.t. $\|F(u) - F(u')\|^2 + \|F(u') - F(v)\|^2 \ge \|F(u) - F(v)\|^2$
Theorem (ARV for edge conductance) [Arora, Rao, Vazirani '09]

For graphs G,

$$\frac{\phi(G)}{\sqrt{\log n}} \lesssim \lambda_2^{\Delta}(G) \lesssim \phi(G)$$

Our Results

• By adding ℓ_2^2 triangle inequalities to λ_2^* , we obtain λ_2^{Δ}

<u>Theorem</u> (ARV for generalized expansions) [Lau, T., Wang '24] For directed hypergraphs *H*,

$$\frac{\phi(H)}{\sqrt{\log n}} \lesssim \lambda_2^{\Delta}(H) \lesssim \phi(H)$$

- Proof is adapted from ARV
- Unifies [Feige, Hajiaghayi, Lee '08], [Agarwal, Charikar, Macharychev, Macharychev '05], [Chan, Sun '18] using one single formulation!

Background: Orthogonal Separators

- Given some set $X \subseteq \mathbb{R}^d$ of "normalized" vectors that satisfy the ℓ_2^2 triangle inequalities
- Orthogonal separator is a random subset $S \subseteq X$ such that:
 - $\Pr[x \in S] \propto ||x||^2$
 - If x and y are "far away", then probability that both are included is "exceptionally" small
 - If x and y are "close", then probability that one is in S while the other is not (i.e. xy cut by S) is small
- Used to approximate unique games [Chlamtac, Makarychev, Makarychev '06] and various expansion problems [Bansal et al. '14], [Louis, Makarychev '14a]
- "Hypergraph" orthogonal separator [Louis, Makarychev '14b]

Our Results

- Let $\phi_k(H)$ be k-way expansion of hypergraph H
- By adding ℓ_2^2 triangle inequalities to σ_k^* , we obtain λ_k^{Δ}

 $\begin{array}{l} \underline{\text{Theorem}} \ (\text{LM for } k \text{-way expansion}) \ [\textbf{T., unpublished}] \\ \text{For hypergraphs } H, \lambda_k^{\Delta}(H) \lesssim \phi_k(H) \ \text{and} \\ \phi_{(1-\epsilon)k}(H) \lesssim_{\epsilon} k \log k \log \log k \cdot \sqrt{\log n} \cdot \lambda_k^{\Delta}(H). \end{array}$

- Proof is adapted from [Louis, Makarychev '14b]
- First true approximation of k-way expansions without square-root loss

Summary

• By adding ℓ_2^2 triangle inequalities to λ_2^* and σ_k^* , we can adapt existing techniques to obtain approximation algorithms for expansion quantities

Concluding Remarks

- We developed the reweighted eigenvalue framework
- Obtained a spectral theory for a general class of expansion problems, with many nice applications
- Higher reweighted eigenvalues also useful
- Some concrete open problems about the theory
- Future research directions: local algorithms, applications of optimal primal reweighting, fast algorithms, ...

THANK YOU!

Questioning Period