
CS860 Winter 2022 Project Report

Topic: Flow Techniques for Graph Expansion

Kam Chuen (Alex) Tung

April 16, 2022

Contents

1 Introduction 2

2 Classical vertex expansion inequalities 4

3 Cut-matching game 6

4 Flows for upper bounds 9

5 Summary 20

A Deferred proofs of Section 2 22

B Deferred proofs of Section 3 23

C Deferred proofs of Section 4 26

1



1 Introduction

Flow techniques have been proven useful in approximating and upper bounding expansion parameters of
graphs, notably the edge expansion ϕ′(G). On the one hand, there is one fundamental and well-known
connection between flows and cuts, via the max flow/min cut theorem for s-t flows. On the other hand, this
connection alone does not seem to justify the success of flow-based algorithms and arguments, and surely
there are more reasons that flows appear everywhere.

In this project, we investigate instances that flow techniques were employed to approximate and upper bound
certain graph expansion parameters: edge expansion ϕ′(G), vertex expansion ψ(G), second eigenvalue λ′2(G)
of the unnormalized Laplacian, and second reweighted eigenvalue λ∗2(G). The hope is to identify recurring
themes that cement the role of flows in these instances of work, and to adapt the results for one parameter
to say something about another parameter (e.g. from ϕ′(G) to ψ(G), from λ′2(G) to λ

∗
2(G)).

The project consists of three main sections, which can be read independently:

• In Section 2, we prove an inequality relating the vertex expansion ψ(G) of a graph G and the second
smallest eigenvalue λ′2(G) of its unnormalized Laplacian. The proof, due to Alon [Alo86], considers an
s-t flow network with appropriate edge capacities and uses max flow/min cut duality.

• In Section 3, we introduce the cut-matching game for approximating edge expansion ϕ′(G). The
principle is that multicommodity flows can be used to certify the expansion of a graph. The new idea
of cut-matching game is that the flow demand graph is constructed iteratively, by taking unions of
perfect matchings. After describing the cut-matching game and showing how to use it to approximate
ϕ′(G), we show how to adapt the proof for approximating vertex expansion ψ(G). The adaptation is
simple and not unknown to the community (see e.g. [CS21]), but the strongest form of the result has
not been explicitly stated and proved.

• In Section 4, we see how flow-based techniques can be employed to upper-bound λ′2(G) of the un-
normalized Laplacian for special classes of graphs. In order of generality, these classes are: planar
graphs, graphs of bounded genus g, and graphs that excludes Kh as a minor. The bounds on λ′2(G)
are due to Biswal, Lee, and Rao [BLR10]. The main idea is to relate the eigenvalues to a metric
spreading quantity, then taking dual to obtain a multicommodity flow problem where the objective is
to minimize some measure of congestion. Then, we show how to adapt their approach to upper bound
the reweighted second eigenvalue λ∗2(G). We also include a proof of the planar separation theorem via
reweighted eigenvalues. These results are new to the best of our knowledge.

Notations. Given a graph G = (V,E). Unless otherwise specified, we use n := |V | for the number of
vertices and m := |E| for the number of edges.

For S, T ⊆ V , let N(S) := {v ∈ V \ S : (u, v) ∈ E for some u ∈ S} be the (outer) neighbourhood of S,
E(S, T ) := {(u, v) ∈ E : u ∈ S, v ∈ T} be the set of edges between S and T , and vol(S) :=

∑
u∈S deg(S) be

the volume (total degree) of S.

We use ϕ(G) for (edge) conductance, ϕ′(G) for edge expansion, and ψ(G) for vertex expansion of a graph
G.1Writing A = A(G) to be the adjacency matrix of G and D = D(G) to be the (diagonal) degree matrix
of G, we let 0 ≤ λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) be the eigenvalues of the normalized Laplacian L =
I −D−1/2AD−1/2 and 0 ≤ λ′1(G) ≤ λ′2(G) ≤ · · · ≤ λ′n(G) be the eigenvalues of the unnormalized Laplacian
L′ = D −A. When the context is clear, we drop the G and write ϕ, λ′2, etc.

1Recall that for S ⊆ V , ϕ(S) := |E(S, Sc)|/vol(S), ϕ′(S) := |E(S, Sc)|/|S|, and ψ(S) := |N(S)|/|S|. In the course notes Φ
is used instead of ϕ′ for edge expansion, but I prefer using ′ for the “unnormalized” quantities – hence ϕ′ and λ′k. (We never
take derivatives, so there is no ambiguity.)

2



X ≲ Y means X = O(Y ) and X ≳ Y means X = Ω(Y ).

Flow preliminaries. There are two ways to look at a flow problem: one of maximizing the amount of flow
sent, and one of minimizing congestion.

For an s-t flow problem, the first viewpoint corresponds to sending the maximum amount of flow possible
from s to t, while respecting the edge (resp. vertex) capacity constraints. That is, the total amount of flow
passing through each edge (resp. vertex) does not exceed the amount prescribed for that edge (resp. vertex).
Unless otherwise specified (e.g. in Section 3.3), edges have capacity constraints while vertices do not.

The second viewpoint corresponds to sending a prescribed amount of flow from s to t as given by the demand
D, while minimizing the maximum edge (resp. vertex) congestion, or some other measures of congestion. In
the context of this report, we assume that edges (resp. vertices) have unit capacity. Then, the congestion of
an edge (resp. a vertex) is just the total amount of flow passing through it. Again, by default we assume that
we are dealing with edge congestion instead of vertex congestion. (Vertex congestion features in Sections 3.3
and 4.4.)

For an s-t flow problem (with the first viewpoint), one of the most important results is the max flow/min
cut theorem, which states that the maximum amount of s-t flow that can be sent is equal to the minimum
total cost of edges to be cut so that s and t are disconnected. When we are looking at edge (resp. vertex)
cuts, the cost of the cut is the sum of capacities of the edges (resp. vertices) that are cut.

The s-t flow problem is sometimes called a single-commodity flow problem, to contrast with its generalization
– multicommodity flow problem (MFP). As the name suggests, an MFP may have many commodities: source-
sink pairs (si, ti) with demands D(si, ti). The task is to simultaneously send F ·D(si, ti) units of flow from
si to ti, while respecting the edge/vertex capacities. The maximum F such that this is possible is defined
as the max flow of the MFP. The corresponding congestion minimization problem is to simultaneously send
D(si, ti) units of flow from si to ti, while minimizing some measure of congestion.

Associated with an MFP is the demand graph H = H(D). It is a weighted, undirected graph. For each
commodity (si, ti), there is an edge connecting si and ti with weight D(si, ti). We say that H can be
embedded in G with edge (resp. vertex) congestion c > 0 if there is a flow solution that satisfies all the
demand pairs, and its maximum edge (resp. vertex) congestion is at most c.

A uniform MFP is when the demand graph is the complete graph Kn with D(u, v) = 1 for all u ̸= v ∈ V .
The max flow problem is then to maximize F , such that it is possible to simultaneously send F units of flow
between each pair of vertices, while respecting the edge capacity constraints.

In Section 3, we will use multicommodity flows to approximate ϕ′(G). The underlying principle is that the
demand graph H of the MFP serves as a certificate of expansion. We state it as a lemma:

Lemma 1.1 (Demand graph certifies ϕ′(G)). Let G be a graph, and let H be the demand graph of an MFP
which can be embedded in G with edge congestion c. Then, ϕ′(G) ≥ ϕ′(H)/c.

Proof. Let S ⊆ V such that |S| ≤ n/2. We want to show that ϕ′(S) ≥ ϕ′(H)/c.

From set S, H demands that we send at least ϕ′(H) · |S| units of flow out of S. Each outgoing flow path must
go through E(S, Sc), so the total congestion over all edges in E(S, Sc) is at least ϕ′(H) · |S|. The feasibility
of the flow problem when edge capacity is c implies that

|E(S, Sc)| · c ≥ ϕ′(H) · |S|.

Rearranging and minimizing over S, we are done.

3



2 Classical vertex expansion inequalities

Let us warm up with a classical result connecting ψ(G) and λ′2(G).

Theorem 2.1 ([Tan84], [AM85], [Alo86]). Let G = (V,E) be a graph with maximum degree d. Then,

ψ(G) ≥ 2λ′2(G)

d+ 2λ′2(G)
and λ′2(G) ≥

ψ(G)2

4 + 2ψ(G)2
.

The first inequality is the “easy” direction proved by Tanner [Tan84] and Alon and Milman [AM85], and the
second inequality is the “hard” direction proved by Alon [Alo86]. The proof strategy for the easy direction
is to construct an appropriate test vector given a vertex cut, and we will not delve into the detail. It is the
hard direction that is of interest here. We shall see how to round the second smallest eigenvector f to a
vertex cut using flows. The proof presented here follows that of [Alo86].

For presentation, we outline the steps here and defer some of the proofs to Appendix A.

Step 1: Truncating f

First, we need to truncate f so that | supp(f)| is at most n/2. This is to ensure that the cut produced, which
will be a subset of supp(f), will have size at most n/2. A standard strategy is to take either the positive
part or the negative part of f and show that the Rayleigh quotient remains small. Write

R′(f) :=

∑
(u,v)∈E(f(u)− f(v))2∑

u∈V f(u)
2

.

Lemma 2.2 (Truncation). Given a graph G = (V,E), if f is an eigenvector of the unnormalized Laplacian
L′(G) with eigenvalue λ′2(G), then letting f+ := max(f, 0) and f− := max(−f, 0), we have max(R′(f+), R

′(f−)) ≤
R′(f) = λ′2(G).

Step 2: Constructing flow network

Now we have a vector g = f+ or f− such that g ≥ 0, | supp(g)| ≤ n/2 and R′(g) ≤ λ′2. We construct the
following s-t flow problem:

• On the s side, let A ∼= supp(g). For each u ∈ A, connect s and u via an edge with capacity 1 + ψ,
where ψ = ψ(G) is the vertex expansion of G.

• On the t side, let B ∼= V . For each v ∈ B, connect v and t via a unit-capacity edge.

• If u ∈ A and v ∈ B, connect u and v via a unit-capacity edge iff u = v or (u, v) ∈ E.

As an example, Figure 1 shows a graph and the corresponding flow network for given supp(g).

The largest possible value of the flow problem is (1+ψ)|A|, because this is the total capacity of edges going
out of s. Indeed we shall prove that:

Lemma 2.3 (Full flow). The value of the flow problem defined above is exactly (1 + ψ)|A|.

Qualitatively we expect this to be true, because the amount of flow we wish to send depends on ψ, and the
larger ψ is, the more flow we should be able to send across.

4



Figure 1: The graph G is shown on the left. supp(g) = {1, 3, 5}, so A = {1, 3, 5} on the left side of the flow
network. The green edges are between u ∈ A and u ∈ B, and the purple edges are between u ∈ A and v ∈ B
for all (u, v) ∈ E.

Step 3: Relating Rayleigh quotient and flow solution

Our goal has been to lower bound R′(g), and to this end we shall use the flow network. Fix a solution to
the flow problem with value (1 + ψ)|A|. For (u, v) ∈ E, if u ∈ A and v ∈ B, let h(u, v) be the amount of
flow sent from u to v; otherwise let h(u, v) = 0. Note that 0 ≤ h(u, v) ≤ 1, and also

∀u ∈ A,
∑
v∈B

h(u, v) = 1 + ψ and ∀v ∈ B,
∑
u∈A

h(u, v) ≤ 1.

We need the following two lemmas. The desire to apply Cauchy-Schwarz might be the motivation for
introducing the expressions on the LHS’s.

Lemma 2.4 (Flow inequality I).
∑

(u,v)∈E h(u, v)
2(g(u) + g(v))2 ≤ (4 + 2ψ2)

∑
u∈V g(u)

2.

Lemma 2.5 (Flow inequality II).
∑

(u,v)∈E h(u, v)(g(u)
2 − g(v)2) ≥ ψ

∑
u∈V g(u)

2.

Now we are ready to prove the hard direction of Theorem 2.1. Piecing together everything we know,

λ′2 ≥ R′(g) (Lemma 2.2)

=

∑
(u,v)∈E(g(u)− g(v))2∑

u∈V g(u)
2

=

∑
(u,v)∈E(g(u)− g(v))2 ·

∑
(u,v)∈E h(u, v)

2(g(u) + g(v))2∑
u∈V g(u)

2 ·
∑

(u,v)∈E h(u, v)
2(g(u) + g(v))2

≥

[∑
(u,v)∈E h(u, v)(g(u)− g(v))(g(u) + g(v))

]2
∑

u∈V g(u)
2 ·
∑

(u,v)∈E h(u, v)
2(g(u) + g(v))2

(Cauchy-Schwarz)

≥
[
ψ
∑

u∈V g(u)
2
]2∑

u∈V g(u)
2 · (4 + 2ψ2)

∑
u∈V g(u)

2
(Lemmas 2.4 and 2.5)

=
ψ2

4 + 2ψ2
.

5



3 Cut-matching game

3.1 The cut-matching game framework

The cut-matching game is first devised by Khandekar, Rao, and Vazirani [KRV09] to obtain an O(log2 n)-
approximation algorithm of ϕ′(G), which is subsequently improved to O(log n) by Orecchia et al. [Ore+08].
The motivation for its conception is to obtain a fast algorithm for approximating ϕ′(G). As we have seen
in the preliminaries section, the demand graph H of a multicommodity flow problem (MFP) can be used to
certify expansion of G. In particular, if each edge of G has unit capacity, and the MFP has congestion c,
then ϕ′(G) ≥ ϕ′(H)/c.

In the cut-matching game, the goal is to build a demand graph that has good expansion. The demand graph
is built by taking the union of perfect matchings. Note that the edges of the matchings do not have to belong
in E. The matchings are constructed via a two-player game that involves a cut player and a matching player.
The game consists of T rounds, where T will be specified later. In each round i ≤ T , the cut player picks
a perfect bipartition Xi ⊔ Yi of the vertex set V (so that |Xi| = |Yi| = n/2) and sends it to the matching
player. Then, the matching player chooses a perfect matching Mi between Xi and Yi.

On the one hand, the task of the cut player is to ensure that, with decent probability, the union of the
matchings

HT := ⊔i≤TMi

has good edge expansion. (We count repeated edges, so HT should be regarded as a multigraph.) To this
end, he must choose his cuts carefully, so that no matter what the matching player does, HT will have
good expansion. In other words, he adopts a worst-case analysis that assumes adversarial behaviour of the
matching player.

On the other hand, the task of the matching player is to return a matching so that the associated flow
problem has low congestion: the congestion ci in each round i should be at most 1/ϕ′(G). We can reduce
it to checking whether or not the max flow of an s-t flow problem with prescribed edge capacities attains
a target value. In the end, the maximum congestion cmax := maxi≤T ci across all rounds will be used to
approximate ϕ′(G).

3.2 O(log2 n) and O(log n) approximations of ϕ′(G)

The bulk of the work in [KRV09] and [Ore+08] lies in devising a good cut player strategy and proving that
it works. Indeed, the difference between the approximation ratios of O(log2 n) and O(log n) is solely due to
different cut player strategies. We will however only provide a brief description of the cut player strategy,
treating the expansion guarantee of HT as a black-box, and instead focus on the matching player and on
how to connect everything to yield the desired approximation of ϕ′(G).

Cut player. The role of the cut player can be summarized in the following result:

Theorem 3.1 ([Ore+08, Theorem 3.2]). In T = O(log2 n) rounds of cut-matching game, where the cut
player follows strategy Cnat as detailed in the paper, and the matching player follows any strategy, returning
matchings Mi of size n/2 across the cut, the union of the matchings

HT := ⊔i≤TMi

satisfies ϕ′(HT ) ≥ Ω(log n) with constant probability.

6



In [KRV09], the number of rounds T is the same (T = O(log2 n)), but the expansion guarantee is weaker,
only that ϕ′(HT ) ≥ Ω(1). In their paper, the cut player generates the cuts as follows: in round i ≤ T , start
with a random vector f : V → R and do random walk M1,M2, . . . ,Mi−1 successively, where the walk Mj

has the effect of replacing f(u) and f(v) by their average, for all matching edges (u, v) ∈ Mj . In the end,
take Xi to be the n/2 vertices with the smallest f value and Yi to be the rest. The random walk can be
implemented in O(nT 2) time, and since T = O(log2 n) the overall runtime for the cut player is Õ(n).

In [Ore+08], a different cut player strategy improves the expansion guarantee of HT to ϕ′(HT ) ≥ Ω(log n).
Again, in round i ≤ T , the cut player starts with a random vector f : V → R. Let

Nk :=
T

T + 1
I +

1

T + 1
Mk and Ri := NiNi−1 · · ·N2N1N2 · · ·Ni−1Ni.

The cut player applies RT
i to the vector f , then takes Xi to be the n/2 vertices with the smallest f value

and Yi to be the rest.

The random walk Ri is closely related to the natural lazy random walk

Wi :=
I

2
+

1

2i

∑
j≤i

Mj ,

and the reason for introducing Ri is for ease of analysis. (In their paper, this strategy is denoted Cnat.
They propose another strategy, denoted Cexp, which uses matrix exponential to define the random walk. Re-

fer to Section 3 of the paper for more details.) Again, the runtime for the cut player can be shown to be Õ(n).

Matching player. In round i ≤ T , once he receives the bipartition V = Xi ⊔ Yi, the matching player
attempts to find a matching Mi, such that, if Mi is treated as the demand graph of a multicommodity flow
problem, then there is a way to send the flows such that the maximum edge congestion is “small”. We
describe the construction of the s-t flow network and state the congestion upper bound result. The proof is
deferred to Appendix B.

Formally, we build an s-t flow network Fi, where:

• There is a unit capacity edge (s, u) for each u ∈ Xi and (v, t) for each v ∈ Yi;

• The edges of the graph G are added to the network, each with capacity c, where c is yet to be specified.

Then, the edge congestion ci is defined to be the smallest c such that it is possible to send exactly n/2 units
of flow from s to t. Note that ci ≥ 1.

Lemma 3.2 (Edge cut and congestion). In each round i, we can find a set Si ⊆ V such that |Si| ≤ n/2 and
ϕ′(Si) ≤ 1/ci.

Let cmax := maxi∈T ci. An immediate corollary is that:

Corollary 3.3. ϕ′(G) ≤ 1/cmax.

Relating ϕ′(HT ) and ϕ′(G). The following lemma relates the edge expansion of the constructed graph HT

and the edge expansion of G. Namely,

Lemma 3.4 (Certifying edge expansion). ϕ′(HT )∑
i ci

≤ ϕ′(G).

7



Proof. Since the MFP with demand graph Mi can be embedded in G with congestion ci, adding up the
flow solutions, the MFP with demand graph HT := ⊔i≤TMi can be embedded in G with congestion at most∑

i ci. The result now follows from Lemma 1.1.

Piecing all together. Combining Lemma 3.1, Corollary 3.3, and Lemma 3.4, we have

ϕ′(HT )

T · cmax
≤ ϕ′(HT )∑

i ci
≤ ϕ′(G) ≤ 1

cmax
.

Since ϕ′(HT )
T ≳ logn

log2 n
= 1

logn , it follows that we have an O(log n)-approximation of ϕ′(G).

Runtime analysis. As we have seen, the cut player strategy can be implemented in Õ(n) time. The
matching player strategy consists of computing polylogarithmically many s-t flow problems2, so it takes
Õ(Tflow) time. Undirected flows can be approximated up to constant factor in O(m1+o(1)) time, due to Kelner
et al. [Kel+14]. Therefore, we arrive at an overall runtime of O(m1+o(1)) (we absorb the polylogarithmic
factor in the mo(1) term).

3.3 O(log n) approximation of ψ(G)

It turns out that, by using the cut player strategy in [Ore+08] and adapting their proof to the vertex setting,
we can obtain an O(log n) approximation of ψ(G), and the approximation algorithm needs only to compute
O(log2 n) vertex-capacitated s-t flows.

I thank Robert Wang for working out the details together and Yueheng Zhang and Lap Chi Lau for the
discussions. I thank also Thatchaphol Saranurak for confirming the correctness of the result.

Cut player. The cut player follows the same strategy as when approximating ϕ′(G).

Matching player. The change here is that we consider vertex congestion instead of edge congestion. The
s-t flow network Fi is constructed as follows:

• There is a unit capacity edge (s, u) for each u ∈ Xi and (v, t) for each v ∈ Yi;

• Each vertex u ∈ Xi ∪ Yi has capacity c, which is yet to be specified;

• The edges of the graph G are added to the network, with infinite capacity.

Then, the vertex congestion ci is defined to be the smallest c such that it is possible to send exactly n/2
units of flow from s to t. Note that ci ≥ 1.

The following lemma upper bounds ci in terms of vertex expansion. Its proof is deferred to Appendix B.

Lemma 3.5 (Vertex cut and congestion). In each round i, we can find a set Si ⊆ V such that |Si| ≤ n/2
and ψ(Si) ≤ 1/(ci − 1).

Let cmax := maxi≤T ci. As a corollary of Lemma 3.5 we have

Corollary 3.6. ψ(G) ≤ 1/(cmax − 1).

2There is a technical point about computing ci. Since 1 ≤ ci ≤ n/2, we can do binary search on ci to obtain a constant
factor approximation of ci, which suffices for our purpose. Therefore, each iteration the cut player computes O(logn) s-t flows.

8



Relating ϕ′(HT ) and ψ(G). The following lemma relates the edge expansion of the constructed graph HT

and the vertex expansion of ψ(G). Namely,

Lemma 3.7 (Certifying vertex expansion). ϕ′(HT )∑
i ci

≤ ψ(G).

The proof can be found in Appendix B.

Piecing all together. Combining Lemma 3.1, Corollary 3.6, and Lemma 3.7, we have

ϕ′(HT )

T · cmax
≤ ϕ′(HT )∑

i ci
≤ ψ(G) ≤ 1

cmax − 1
.

Since ϕ′(HT )
T ≥ 1

logn , this means we have an O(log n · cmax

cmax−1 )-approximation of ψ(G). If cmax ≥ 2, we have

an O(log n) approximation. If cmax < 2, this means

1

log n
≲

ϕ′(HT )

T · cmax
≤ ψ(G),

and since ψ(G) ≤ O(1), we still get an O(log n) approximation of ψ(G).

Runtime analysis. The cut player strategy can be implemented in Õ(n) time. The matching player
strategy consists of computing polylogarithmically many vertex-capacitated s-t flow problems. Since vertex-
capacitated s-t flows can be reduced to directed flows, they can be computed in O(m1+o(1)) time, for example
by using a recent result of Chen et al. [Che+22] about fast directed flow computations. The matching player
runtime, and hence the overall runtime of the algorithm, is thus O(m1+o(1)). We have finally proved that:

Theorem 3.8 (Cut matching game for ψ(G)). There exists a randomized algorithm with runtime O(m1+o(1))
that, given any graph G = (V,E), computes an O(log n)-approximation of ψ(G) with Ω(1) probability.

4 Flows for upper bounds

Now, let us switch gears and look at how flow techniques can be used to upper bound graph expansion
parameters. This section is longer than the others because we will be presenting a few new results.

4.1 Background

In 1996, Spielman and Teng [ST96] proved that:

Theorem 4.1 ([ST96, Theorem 3.3]). For any planar graph G with maximum degree d,

λ′2(G) ≤ O(d/n).

If the graph G is planar and has bounded degree, then their result combined with Cheeger’s inequality implies
that G has a balanced edge separator (i.e. a bipartition V = X ⊔ Y of the graph where |X|, |Y | ≥ Ω(n))
with O(

√
n) edges in between, hence a balanced vertex separator (i.e. a tripartition V = A ⊔ B ⊔ C of the

graph where |A|, |C| ≥ Ω(n) and E(A,C) = ∅) with O(
√
n) cut vertices, recovering the planar separator

theorem of Lipton and Tarjan [LT79] in the bounded-degree case. More importantly, their result explains
the success of spectral partitioning when the graph is planar.

9



In the paper, they conjectured that similar eigenvalue bounds hold for graphs with bounded genus g and
graphs which are Kh-minor free. The genus of a graph G is the smallest integer g ≥ 0 such that G can
be embedded in an orientable genus g surface (i.e. torus with g holes) without crossing edges. A graph G
contains another graph H as a minor if we can obtain H from G by (1) contracting edges, (2) deleting edges,
and (3) deleting vertices, otherwise we say that G is H-minor free. Kh is the complete graph on h vertices.

Kelner [Kel06] first proved the conjecture for graphs with bounded degree and bounded genus.

Theorem 4.2 ([Kel06, Theorem 2.3]). For any graph G with genus g ≥ 1 and maximum degree d,

λ′2(G) ≤ O(poly(d) · g/n).

(The exact dependence on maximum degree d is not mentioned in the paper.) Their proof relies on nontrivial
results in the theory of Riemann surfaces, and it is not clear how to generalize it to the Kh-minor free case.

4.2 Upper bounding λ′2(G)

It was Biswal, Lee, and Rao [BLR10] who successfully upper bounded λ′2(G) when G is Kh-minor free,
resolving the conjecture by Spielman and Teng. Their approach deviates from the sphere embedding approach
of previous works. Instead, they use results from l1 embeddings of metric spaces, the flow/metric duality,
and the relation between flow congestion and crossing number.

Theorem 4.3 (Upper bound on λ′2(G), [BLR10, Theorem 5.2, 5.3]). Let G = (V,E) be a graph with
maximum degree d. Then,

• If G is of genus g ≥ 1, then λ′2(G) ≤ O(g log2 g · d
n ).

3

• If G is Kh minor free, then λ′2(G) ≤ O(h6 log h · d
n ).

Step 1: Rayleigh quotient

First, we want to write the target quantity λ′2(G) as a Rayleigh quotient, then massage it so that all terms
involved are distances, i.e. consisting only of terms |f(u)− f(v)|.
The following proposition is useful and admits a nice short proof.

Proposition 4.4. If f : V → R has mean zero, then
∑

u |f(u)|2 = 1
2n

∑
u,v |f(u)− f(v)|2.

Proof. Let X,Y be i.i.d. copies of f (with uniform distribution on V ). Then E[X] = 0. It is easy to check
that

∑
u |f(u)|2 = nE[X2] and∑

u,v

|f(u)− f(v)|2 = n2E[(X − Y )2] = n2(E[X2] + E[Y 2]− 2E[XY ]) = 2n2E[X2].

3In [BLR10] a weaker statement is proved, that λ′2(G) ≤ O(g3 · d
n
). The bound in the theorem statement appears in [Kel+11]

and relies upon a stronger result in [LS10] concerning the decomposition of shortest path metric on genus g graphs.

10



From the proposition, we have

λ′2(G) = min
f⊥1

∑
(u,v)∈E |f(u)− f(v)|2∑

u∈V f(u)
2

= 2nmin
f

∑
(u,v)∈E |f(u)− f(v)|2∑
u,v∈V |f(u)− f(v)|2

,

where we drop the condition f ⊥ 1 in the last step because the quantity being minimized is translation

invariant. We will focus on upper bounding minf

∑
(u,v)∈E |f(u)−f(v)|2∑
u,v∈V |f(u)−f(v)|2 from now on.

Step 2: From l1 metric to shortest path metric

Next, we want to relax the minimization problem. We can write

min
f

∑
(u,v)∈E |f(u)− f(v)|2∑
u,v∈V |f(u)− f(v)|2

= min
ρ∈M1(V )

∑
(u,v)∈E ρ(u, v)

2∑
u,v∈V ρ(u, v)

2
=: min

ρ∈M1(V )
R(ρ).

where the minimization is over all ρ ∈M1(V ), M1(V ) denoting the set of all metrics on V induced by the l1
distance on R. The relaxation is by replacing M1(V ) with Msp(V ), the set of all vertex-weighted shortest
path metrics on V . To see that the objective does not drop too much, it suffices to prove that, for any metric
ρs ∈Msp(V ) there is a corresponding ρ ∈M1(V ), such that R(ρ) is not too much larger than R(ρs).

The theory of metric decomposition is useful here. We abstract out the theory and extract only the statement
that we need. For details of the theory, refer to Section 4 of [BLR10].

For any s : V → R>0, the vertex-weighted shortest path metric ρs induced by s is defined as

ρs(u, v) := min

{∑
w∈p

s(w) | p is a path from u to v

}
.

Lemma 4.5 (Average distortion [BLR10, Theorem 4.4]). For any graph G = (V,E), there exists α(G) > 0
such that the following holds: for any p ≥ 1, and for any shortest path metric ρs ∈ Msp(V ) there is a l1
metric ρ ∈M1(V ), where ρ(u, v) ≤ ρs(u, v) for all u, v ∈ V and∑

u,v∈V

ρs(u, v)
p ≤ Op(1) · α(G)p ·

∑
u,v∈V

ρ(u, v)p.

Furthermore,

• (Bartal [Bar96]) For any graph G, α(G) = O(log n);

• (Lee, Sidiropoulos [LS10]) If G has genus g ≥ 1, then α(G) = O(log2 g);

• (Klein, Plotkin, Rao [KPR93]) If G is Kh-minor free, then α(G) = O(h2).

Equipped with Lemma 4.5 and after a series of calculations, we sum up the work done in step 2 as follows:

Proposition 4.6 (λ′2 and metric spread). For any graph G = (V,E), let α(G) be as defined in Lemma 4.5.
Then,

λ′2(G) = 2n min
ρ∈M0(V )

R(ρ) ≲ dn3 · α(G)2 ·

[
max

s:V→R>0

∑
u,v∈V ρs(u, v)√∑

u∈V s(u)
2

]−2

.

11



The objective being maximized on RHS can be regarded as a concavification of∑
u,v∈V ρs(u, v)

2∑
u∈V s(u)

2

and will be useful in the next step. The proof is deferred to Appendix C.

Step 3: Metric spread and flow congestion

In this step, we relate the quantity

max
s:V→R>0

∑
u,v∈V ρs(u, v)√∑

u∈V s(u)
2

=: max
s:V→R

Λs(G)

to a multicommodity flow problem (MFP) where the goal is to minimize some measure of congestion.

Given a flow solution F to a MFP, the congestion cF (u) at vertex u ∈ V is the total amount of flow in F
passing through u. The vertex p-congestion of F is defined as

conp(F ) :=

(∑
u∈V

cF (u)
p

)1/p

.

It turns out that metric spread maximization is strongly dual to flow 2-congestion minimization.

Lemma 4.7 (Flow/metric duality, [BLR10, Theorem 2.2]). For any graph G = (V,E),

min
F

con2(F ) = max
s:V→R>0

Λs(G),

where the minimum is taken over all flow solutions F on the uniform demand graph Kn (so that D(u, v) = 1
for all u ̸= v ∈ V ).

The proof is by writing out the Lagrangian of the minimum congestion program, simplifying it to obtain
Λs(G), and lastly establishing a Slater point. Lemma 4.7 combined with Proposition 4.6 implies

λ′2(G) ≲ dn3 · α(G)2 ·
(
min
F

con2(F )
)−2

.

Step 4: Flow congestion and crossing number

It remains to lower bound the minimum 2-congestion minF con2(F ), which will yield an upper bound on
λ′2(G). The bounds obtained in [BLR10] are summarized below.

Lemma 4.8 (Congestion lower bound, [BLR10, Theorem 3.1, 3.11]). Let G = (V,E) be a graph and let F
be a flow solution to the MFP with uniform demand graph Kn on G. Then,

• If G is of genus g ≥ 1, and n ≳
√
g, then con2(F ) ≳ n2/

√
g;

• If G is Kh-minor free, and n ≳ h
√
log h+ 1, then con2(G) ≳ n2/(h

√
log h).

12



The idea of proof for the genus g case is that, if con2(F ) is too small, then we can round it to an integral
flow F ′ with con2(F

′) as well, where F ′ being integral means each flow path carries an integral amount of
flow. As the demand graph is Kn, this turns out to induce a drawing of Kn in a genus g surface S with
few pairs of crossing edges (the graph G is embedded in S, and edges of Kn are only allowed to cross at
vertices of G), and contradict known lower bounds on the number of edge crossings when Kn is embedded
in a genus g surface. The proof for the Kh-minor free case has the same spirit, but it proceeds by lower
bounding the so-called intersection number instead of the crossing number. We will not delve into the details
of the proof here, and remark that flow solutions can be rounded to integral flow solutions and relate to the
combinatorial aspect of the graph.

Now we have all the ingredients for proving Theorem 4.3. Recall that at the end of step 3 we arrived at

λ′2(G) ≲ dn3 · α(G)2 ·
(
min
F

con2(F )
)−2

where the minimum of F is taken over all flow solutions F on demand graph Kn. Applying Lemma 4.17 and
Lemma 4.8, we have:

• When G is of genus g, α(G) ≤ O(log g) and minF con2(F ) ≥ n2/
√
g.

Plugging these bounds in, we obtain

λ′2(G) ≤ O(g log2 g · d/n).

• When G is Kh-minor free, α(G) ≤ O(h2) and minF con2(F ) ≥ n2/(h
√
log h).

Plugging these bounds in, we obtain

λ′2(G) ≤ O(h6 log h · d/n).

This completes the proof of Theorem 4.3.

4.3 Reweighted eigenvalues

Before explaining how to obtain upper bounds on the reweighted eigenvalues λ∗2(G) and λ∗k(G), let us
recall the definition of reweighted eigenvalues and state relevant results. Given a graph G = (V,E) and a
distribution π : V → R, the k-th reweighted eigenvalue can be regarded as an optimization problem: assign
non-negative weights to the edges of G, so that the natural random walk P on the reweighted graph is
π-reversible and the k-th eigenvalue of I − P is maximized. We temporarily add self loops to the graph to
ensure feasibility. Formally,

λ∗k(G, π) := maxP≥0 λk(I − P )

subject to
∑
v

P (u, v) = 1 ∀u ∈ V

P (u, v) = 0 ∀(u, v) ̸∈ E

π(u)P (u, v) = π(v)P (v, u) ∀u, v ∈ V.

The λ∗2(G, π) program is convex – indeed it is a semidefinite program, and Roch [Roc05] showed that strong

13



duality holds with an appropriately defined dual program. Define the k-dimensional dual program as

γ(k)(G, π) := min
f :V→Rk

g:V→R≥0

∑
u∈V

π(u)g(u)

subject to g(u) + g(v) ≥ ∥f(u)− f(v)∥2 ∀(u, v) ∈ E∑
u∈V

π(u)f(u) = 0⃗∑
u∈V

π(u) ∥f(u)∥2 = 1.

Theorem 4.9 (Strong duality, [Roc05]). For any graph G = (V,E) and any distribution π : V → R,
λ∗2(G, π) and γ

(n)(G, π) are strongly dual to one another.

Define the π-weighted vertex expansion as

ψ(G, π) := min
S⊆V,0<π(S)≤1/2

π(N(S))

π(S)
,

where for T ⊆ V , π(T ) :=
∑

u∈T π(u). (Remark on notation: if we write λ∗k(G), γ
(k)(G), ψ(G) without the π

parameter, we are considering the uniform distribution.) Recently, Olesker-Taylor and Zanetti [OZ22] proved
a vertex Cheeger’s inequality relating vertex expansion and reweighted second eigenvalue. The result has
been subsequently improved by Kwok, Lau, and Tung [KLT22] and also Jain, Phong, and Vuong [JPV22],
and we state the strongest form here.

Theorem 4.10 (Vertex Cheeger’s inequality, [OZ22; KLT22; JPV22]). For any graph G = (V,E) with
maximum degree d, and for any distribution π : V → R, if ψ(G, π) ≤ O(1) then

ψ(G, π)2

log d
≲ λ∗2(G, π) ≲ ψ(G, π).

The proof in [KLT22] consists of a projection step and a threshold rounding step. Refer to Section 3 of the
paper for details.

Lemma 4.11 (Projection). For any graph G = (V,E) with maximum degree d, and for any distribution
π : V → R,

γ(n)(G, π) ≤ γ(1)(G, π) ≲ log d · γ(n)(G, π).

Lemma 4.12 (Threshold rounding). For any graph G = (V,E) and any distribution π : V → R,

min(1, ψ(G, π))2 ≲ γ(1)(G).

4.4 Upper bounding λ∗2(G, π)

It turns out that straight-forward adaptations of proofs from [ST96] and [BLR10] suffice to obtain analogous
upper bounds on λ∗2(G).

14



4.4.1 Recovering the planar separation theorem

The planar separation theorem states that every planar graph has a balanced vertex separator of size O(
√
n).

We will apply a result from [ST96] on spherical cap embeddings of planar graphs, to recover the planar
separation theorem in its full generality. A (closed) spherical cap C ⊆ S2 with center z ∈ S2 and radius
r > 0 is the set of all points with geodesic distance at most r from the point z. Its area is Θ(r2).

Lemma 4.13 (Spherical cap embedding of planar graphs, [ST96, Theorem 3.2, 4.2]). For any planar graph
G = (V,E), there is a mapping u 7→ C(u) from u ∈ V to spherical caps C(u) ⊂ S2 with center z(u) and
radius r(u), such that:

• the interiors of the spherical caps do not overlap;

• C(u) is tangent to C(v) iff (u, v) ∈ E;

•
∑

u z(u) = 0⃗.

The observation is that the spherical cap embedding from Lemma 4.13 gives us a good solution to the γ(3)(G)
program. Refer to Appendix C for the proof.

Lemma 4.14 (Dual objective upper bound). For any graph G = (V,E), γ(3)(G) ≤ O(1/n).

Using the simple relaxation γ(n)(G) ≤ γ(3)(G) and applying Theorem 4.10 (vertex Cheeger’s inequality),
we would obtain ψ(G) ≤ O(

√
(log d)/n), where d is the maximum degree of the graph. However, we can

do better. Project the γ(3)(G) solution to a γ(1)(G) solution by taking the best of the three coordinates,
and we obtain γ(1)(G) ≤ 3 · γ(3)(G). Now, applying Lemma 4.12 (threshold rounding), and noting that
ψ(G) ≤ O(1), it follows that ψ(G) ≤ O(1/

√
n).

Any subgraph G[V ′], V ′ ⊆ V , of a planar graph G = (V,E) is also planar, and the vertex expansion bound
holds: ψ(G[V ′]) ≤ O(1/

√
|V ′|). By repeatedly removing vertex cuts S′ ⊆ V ′ with ψ(S′) ≤ O(1/

√
|V ′|), we

obtain a balanced vertex cut of size O(
√
n), and the planar separation theorem follows.

4.4.2 Adaptation of [BLR10] to upper bound λ∗2(G)

The proof in [BLR10] can be modified to upper bound λ∗2(G) for special classes of graphs G. Starting with
the proof presented in Section 4.2, the main changes needed are to work with a different Rayleigh quotient
and to use π-weighted versions of various intermediate results.

Theorem 4.15 (Upper bound on λ∗2(G, π)). Let G = (V,E) be a graph and π be any distribution on V . Let
πmax := maxu∈V π(u). Then,

• If G is of genus g ≥ 1, then λ∗2(G, π) ≤ O(πmax · g log2 g).

• If G is Kh-minor free, then λ∗2(G, π) ≤ O(πmax · h6 log h).

In particular, if π is the uniform distribution, then we obtain λ∗2(G) ≤ O(g log2 g/n) in the genus g case and
λ∗2(G) ≤ O(h6 log h/n) in the Kh-minor free case. They are similar in form to the bounds on λ′2(G), except
that there is no dependence on maximum degree d. The proof is as follows:

15



I. Modifications to steps 1-3 of Section 4.2

In step 1, we need to generalize Proposition 4.4 to arbitrary distribution π:

Proposition 4.16 (Generalization of Proposition 4.4). Let π : V → R be a distribution on V . If f : V → R
satisfies

∑
u∈V π(u)f(u) = 0, then∑

u

π(u)|f(u)|2 =
1

2

∑
u,v

π(u)π(v)|f(u)− f(v)|2.

The proof is identical to that of Proposition 4.4.

In step 2, the result about average distortion of l1 line embeddings in fact works for arbitrary distribution
π. The interested reader can look up [FHL08, Appendix A.2] and [LS10, Theorem 4.2]. (The keyword is
“product weight”, weights of the form ω(u, v) = π(u)π(v).)

Lemma 4.17 (Generalization of Lemma 4.5, [FHL08; LS10]). Under the same assumptions as Lemma 4.5,
for any shortest path metric ρs ∈ Msp(V ) there is a l1 metric ρ ∈ M1(V ), where ρ(u, v) ≤ ρs(u, v) for all
u, v ∈ V and ∑

u,v∈V

π(u)π(v)ρs(u, v)
p ≤ Op(1) · α(G)p ·

∑
u,v∈V

π(u)π(v)ρ(u, v)p.

Furthermore, we have the same upper bounds on α(G) as in Lemma 4.5.

Combining Proposition 4.16 and Lemma 4.17, and after some calculations which are deferred to Appendix
C, we arrive at this checkpoint:

Proposition 4.18 (λ∗2 and metric spread). For any graph G = (V,E) and distribution π on V , let α(G) be
as defined in Lemma 4.17. Then, for any π-reversible reweighting P of G (i.e. P satisfies the constraints of
the λ∗2(G, π) program as defined in Section 4.3),

λ2(I − P ) = 2 min
ρ∈M0(V )

∑
(u,v)∈E π(u)P (u, v)ρ(u, v)

2∑
u∈V π(u)π(v)ρ(u, v)

2
≲ α(G)2 ·

[
max

s:V→R>0

∑
u,v∈V π(u)π(v)ρs(u, v)√∑

u∈V π(u)s(u)
2

]−2

.

As a consequence,

λ∗2(G, π) ≲ α(G)2 ·

[
max

s:V→R>0

∑
u,v∈V π(u)π(v)ρs(u, v)√∑

u∈V π(u)s(u)
2

]−2

.

Compared with Proposition 4.6 (λ′2 and metric spread), the most notable feature is that this upper bound
has no dependence on d. This is reflected in the lack of d-dependence in Theorem 4.15 (upper bound on
λ∗2(G)). The apparent lack of polynomial dependence on n on the RHS is due to the π coefficients. Indeed,
if we substitute π(u) = 1/n and pull out the n terms from the fraction, the n3 dependence resurfaces.

The next modification needed is a π-weighted flow/metric duality in step 3. Define π-weighted vertex p-
congestion of a flow solution F as

conp(F, π) :=

(∑
u∈V

π(u)−1cF (u)
p

)1/p

,

16



and define4

Λs(G, π) :=

∑
u,v∈V π(u)π(v)ρs(u, v)√∑

u∈V π(u)s(u)
2

.

This time, the corresponding flow problem is no longer uniform. The demand between u and v should
be π(u)π(v) instead of 1. We use (Kn, π × π) to denote the π-product demand graph, where the demand
between u and v ̸= u is D(u, v) = π(u)π(v). Roughly speaking, if π(u) is small, we need to send fewer
units of flow from u to other vertices, and so we may be inclined to lower the capacity of u, and weight the
congestion (which is amount of flow per unit of capacity) at u by π(u)−1. This partly explains the slightly
odd-looking form that conp(F, π) takes, although the most accurate explanation would be by taking the dual
of maxs Λs(G, π).

The proof of the following result is almost identical to that of Lemma 4.7 and will be omitted.

Lemma 4.19 (Generalization of Lemma 4.7). For any graph G = (V,E) and distribution π on V ,

min
F

con2(F, π) = max
s:V→R>0

Λs(G, π),

where the minimum is taken over all flow solutions on the π-product demand graph (Kn, π × π).

Let πmax := maxu∈V π(u). Lower bounding each π(u)−1 by π−1
max in the expression con2(F, π), we arrive at

λ∗2(G) ≲ α(G)2 ·
(
min
F

con2(F, π)
)−2

≲ πmax · α(G)2 ·
(
min
F

con2(F )
)−2

,

where again minF is over all flow solutions on the demand graph (Kn, π × π). We remind the reader that

con2(F ) =

(∑
u∈V

cF (u)
2

)1/2

is an expression with no π-dependence, although F depends on π.

II. Congestion lower bound for product demand

Finally, in step 4, we need a lower bound on the 2-congestion con2(F ) for π-product demand graphs. This
part is the most interesting. First of all, note that if πmax ≥ 1/2 then the result of Theorem 4.15 trivially
holds; so, assume πmax < 1/2. We also assume WLOG that π(u) > 0 for all u ∈ V , because if π(u) = 0 we
can drop u from the graph without affecting anything.

The idea is to round our given weight function π to a rational weight function πq (we emphasize that the
entries of a weight function may no longer sum to 1), then to an integral weight function πz. Then, we
consider an auxiliary graph G′ = (V ′, E′), such that the congestion of solution F ′ to the MFP with unit
demand graph Kn′ on G′ is closely related to the congestion of solution F to the MFP with πz-product
demand graph (Kn, πz × πz) on G. This enables us to apply the results of [BLR10] and wrap up the proof.

A weight function π : V → R>0 is said to be rational if π(u) ∈ Q>0 for all u ∈ V . In other words, there
exists M ∈ Z>0 such that Mπ(u) is a positive integer for all u ∈ V . π is said to be integral if π(u) ∈ Z>0

for all u ∈ V .

4Note that when π is the uniform distribution, Λs(G, π) is off by a factor of n3/2 from Λs(G) defined in Section 4.2.

17



Proposition 4.20 (Rounding to rational weight function). Given any weight function π : V → R>0, there
exists a weight function πq : V → Q>0 such that π(u) ≤ πq(u) ≤ 2π(u) for all u ∈ V .

The proof is deferred to Appendix C.

The implication is that we can replace the π-product demand graph (Kn, π × π) by a rational πq-product
demand graph (Kn, πq × πq). For a flow solution F to (Kn, π × π), 4F is a flow solution to (Kn, πq × πq),
and so it suffices to lower bound the 2-congestion con2(Fq) over flow solutions Fq to (Kn, πq × πq).

Now, fix M ∈ Z>0 such that Mπq(u) is a positive integer for all u ∈ V . Let πz := Mπq. Then πz is an
integral weight function. It is clear that there is a 1-1 correspondence between flow solutions to (Kn, πq×πq)
and solutions to (Kn, πz × πz), via Fq ↔ Fz := M2 · Fq. Moreover, con2(Fz) = M · con2(Fq). Hence, it
suffices to lower bound the 2-congestion con2(Fz) over flow solutions Fz to (Kn, πz × πz), where πz is an
integral weight function.

We now describe the key construction.

Definition 4.21 (Spike graph). Given a graph G = (V,E) and an integral weight function πz : V → Z>0,
the spike graph5 G′ = G′(G, πz) = (V ′, E′) of G with respect to πz is constructed as follows:

• For each u ∈ V , there are πz(u) copies of u in V ′: u0, u1, . . . , uπz(u)−1. u0 can be considered the
original/central vertex;

• For each (u, v) ∈ E, there is an edge (u0, v0) ∈ E′;

• For each u ∈ V and 1 ≤ i < πz(u), there is an edge (u0, ui) ∈ E′.

Refer to Figure 2 for an example.

Figure 2: On the left is a graph G = (V,E) equipped with an integral weight function πz on V . On the right
is the associated spike graph G′.

We now relate the flow problem Kn′ on the spike graph G′ with the flow problem (Kn, πz × πz) on G. The
proof is deferred to Appendix C.

Lemma 4.22 (Spike graph congestion). There exists universal constants A,B > 0 such that

A ·min
F ′

con2(F
′) ≤ min

Fz

con2(Fz) ≤ B ·min
F ′

con2(F
′),

where the minimum of Fz is taken over all flow solutions Fz with demand graph (Kz, πz × πz) and the
minimum of F ′ is taken over all flow solutions F ′ with demand graph Kn′ on the spike graph G′ of G with
respect to πz.

5We are not sure if this construction has already been named in the literature. We call it spike graph because it looks like
at each vertex there are spikes growing out of it.

18



Before we apply the flow congestion lower bound in Lemma 4.8, we must check that the topological properties
(genus g, Kh-minor free) of G′ are the same as that of G. Again, the proof can be found in Appendix C.

Lemma 4.23 (Spike graph topology). Given a graph G = (V,E) and an integral weight function πz : V →
Z>0, let G

′ be the spike graph G′ = (V ′, E′) of G with respect to πz. Then,

• If G has genus g, then G′ has genus g;

• If G is Kh-minor free (for h ≥ 3), then G′ is Kh-minor free.

Now we are ready to prove Theorem 4.15. Recall that we have shown

λ∗2(G) ≲ πmax · α(G)2 ·
(
min
F

con2(F )
)−2

,

where the minimum of F is taken over all flow solutions F on demand graph (Kn, π×π). By the π 7→ πq 7→ πz
transformation, we know that

min
F

con2(F ) ≥
1

4M2
min
Fz

con2(Fz),

where the minimum of Fz is taken over all flow solutions Fz on demand graph (Kn, πz × πz).

The number of vertices n′ of the spike graph G′ is at least

n′ =
∑
u∈V

πz(u) =
∑
u∈V

⌈Mπ(u)⌉ ≥M.

Applying Lemma 4.17 and Lemma 4.8, (note that n′ ≥ M ≥ n/2, so whenever n satisfies the conditions
n ≳

√
g or n ≳ h

√
log h+ 1, so does n′), we have:

• When G is of genus g, α(G) ≤ O(log g) and

min
F

con2(F ) ≥
1

4M2
min
Fz

con2(Fz) ≳
1

M2
min
F ′

con2(F
′) ≳

1

M2
· (n

′)2
√
g

≥ 1/
√
g.

Plugging these bounds in, we obtain

λ∗2(G, π) ≤ O(πmax · g log2 g).

• When G is Kh-minor free, α(G) ≤ O(h2) and

min
F

con2(F ) ≥
1

4M2
min
Fz

con2(Fz) ≳
1

M2
· (n′)2

h log h
≥ 1/(h

√
log h).

Plugging these bounds in, we obtain

λ∗2(G, π) ≤ O(πmax · h6 log h).

This completes the proof of Theorem 4.15.

Immediately by applying Theorem 4.10 (vertex Cheeger’s inequality), we obtain the following bounds on
ψ(G, π) for the same classes of graph G:

19



Corollary 4.24 (Upper bounds on ψ(G, π)). Let G = (V,E) be a graph of maximum degree d. Let π be a
distribution on V and let πmax := maxu∈V π(u). Then,

• If G is of genus g ≥ 1, then ψ(G, π) ≤ O(
√

log d · πmax · g log2 g).

• If G is Kh-minor free, then ψ(G, π) ≤ O(
√
log d · πmax · h6 log h).

Note that when π is uniform, these bounds are not the best obtained so far. In fact, in [BLR10] they used
their approach to provide direct bounds on ψ(G). The bounds they obtained are better than the ones in
Corollary 4.24 by a factor of

√
log d. Refer to Theorem 5.5 of their paper for more details.

5 Summary

There are several results presented in this report that are new to the best of our knowledge:

• Theorem 3.8 (cut matching game for ψ(G)) which gives an O(log n)-approximation of ψ(G) with
runtime O(m1+o(1));

• Lemma 4.14 which upper bounds γ(3)(G) by O(1/n) and hence ψ(G) by O(1/
√
n) for planar graphs

G, providing an alternative proof of the planar separation theorem;

• Theorem 4.15 which upper bounds λ∗2(G, π) for G of genus g ≥ 1 and for G being Kh-minor free.
The lower bound on con2(F ) for π-product demand graphs generalizes 4.8 and may be of independent
interest.

There are some unfortunate omissions in this project pertaining to the theme of using flows in graph expansion
parameters. They are no less important than the results presented in the report, but they had to be excluded
due to time and space constraint as well as a change of focus on presenting the new results. Nevertheless,
we feel compelled to do them justice by mentioning them here, near the end of the report:

• O(log n)-approximation of ϕ′(G) by Leighton and Rao [LR99]. Their idea is to prove an approximate
max flow/min cut theorem for uniform MFP’s: C/ log n ≲ F ≤ C. Since min cut for the uniform MFP
is exactly the sparsest cut, which is essentially the same as edge expansion ϕ′(G), computing max flow
for uniform MFP can yield an O(log n) approximation of ϕ′(G).

• O(
√
log n)-approximation of ϕ′(G) by Arora, Rao, and Vezirani [ARV09]. The second approach in their

paper is called “expander flows” and the idea is to consider MFP’s where the demand graph could be
an expander, instead of Kn as in [LR99].

• Upper bounds on λ′k(G) for G planar, genus g, Kh-minor free. These are the results by Kelner et al.
[Kel+11]. While similar in large to the approach in [BLR10], they introduced a new concept called
“subset flows” to deal with k-partitions of metric spaces. It looks promising to extend their approach
to give upper bounds on λ∗k(G), or even λ

∗
k(G, π), for these same classes of graphs. In fact, we already

know that their approach to upper bound λ′k(G) (i.e. uniform distribution) can be easily modified to
obtain an upper bound on λ∗k(G), indeed a bound of the same form except with the maximum degree
dependence removed.

To sum up, we have seen how flow techniques were used in approximating and upper bounding graph
expansion parameters. There are a few recurring themes:

20



• Max flow/min cut duality. We have seen how the classical (single commodity) max flow/min cut
duality has been used time and time again to construct, from a flow solution, a cut with matching
value – for example, in the proofs of Lemma 2.3 and Lemma 3.2. The results by [LR99] and [ARV09]
can also be interpreted as an approximate max flow/min cut result for multicommodity flows.

• Expansion certification using demand graph of MFP. We have seen that, if a demand graph H of a
MFP has good expansion and can be embedded in a graph G with low congestion, then G must have
good expansion as well. Many approximation algorithms, for example the cut-matching game, are
based on this theme.

• Efficiency of flow computations. It has been said that flow computations are the “golden standard”
of approximation algorithms. If an approximation algorithm has runtime dominated by few s-t flow
computations, then it is truly fast. The cut-matching game is devised with this principle in mind.
Some other follow-up work of [ARV09], for example [AHK10] and [She09], improved the runtime of
[ARV09] using approximate multicommodity flow computations and s-t flow computations, both of
which are very efficient.

• Flow/metric duality. We have seen the theme of flow/metric duality in Section 4, specifically that
the maximization of Λs(G, π) – the spread of vertex weighted shortest-path metrics – is dual to the
minimization of the 2-congestion of π-product MFP’s. This duality is the bridge between the spectrum
and the combinatorics of the graph. Although not mentioned here, already in [LR99] is this theme
utilized in approximating ϕ′(G). They take the dual of the max flow (of the uniform MFP) and
obtain a shortest-path metric program where the goal is to maximize the total distance between the
commodities. The expander flow approach in [ARV09] also has a similar dual interpretation, and
indeed the dual corresponds to the first approach in their paper of SDP rounding.

Once again, for Theorem 3.8 (Cut matching agme for ψ(G)), I thank Robert Wang for working out the details
together and Yueheng Zhang and Lap Chi Lau for the discussions. I thank also Thatchaphol Saranurak for
confirming the correctness of the result.

Thank you for reading the report and hope you enjoyed it! :)

21



A Deferred proofs of Section 2

Proof of Lemma 2.2 (Truncation). Let’s prove R′(f+) ≤ λ′2; the result about R′(f−) is analogous.

By definition, f satisfies L′f = λ′2f , and when written out explicitly we get∑
v:(u,v)∈E

(f(u)− f(v)) = λ′2f(u) ∀u ∈ V.

Let V + := {u ∈ V : f(u) > 0}. Multiplying each equation by f(u) and summing over u ∈ V +, we get∑
u∈V +

∑
v:(u,v)∈E

f(u)(f(u)− f(v)) = λ′2
∑

u∈V +

f(u)2.

For each edge (u, v) appearing in LHS, if u, v ∈ V + then there is a f(u)(f(u)−f(v)) term and a f(v)(f(v)−
f(u)) term, and they sum to (f(u) − f(v))2. Otherwise, if u ∈ V + and v ̸∈ V +, then there is only a
f(u)(f(u)− f(v)) term which is greater than f(u)2 = (f(u)− 0)2. Therefore,

∑
(u,v)∈E

(f+(u)− f+(v))
2 ≤

∑
u∈V +

∑
v:(u,v)∈E

f(u)(f(u)− f(v)) = λ′2
∑

u∈V +

f(u)2 = λ′2
∑
u∈V

f+(u)
2,

and we are done after rearranging.

Proof of Lemma 2.3 (Full flow). We want to prove that the flow problem has value (1+ψ)|A|. Suppose not.
Then by max flow/min cut theorem, we can find an s-t edge cut with total cost less than (1 + ψ)|A|. In
particular, some edges from s to u ∈ A are not cut.

Let S ⊆ A be the set of vertices in A that remain directly connected from u. Note that 0 < |S| ≤ |A| ≤ n/2.
We want to show that ψ(S) < ψ which contradicts the definition of ψ = ψ(G). In order to disconnect s
from t, we need to disconnect S from t. Check that the vertices in B (on the t side) directly connected to
S are precisely those vertices in S ∪N(S) ⊆ B. For each v ∈ S ∪N(S), we need to delete at least one edge
incident to it, each of which has cost 1. Remember also that we have cut the edges from s to u for u ∈ A\S,
and each has cost (1 + ψ). Therefore, the value of the cut is at least

(1 + ψ)(|A| − |S|) + 1 · |S ∪N(S)| = (1 + ψ)(|A| − |S|) + (|S|+ ψ(S) · |S|) = (1 + ψ)|A|+ (ψ(S)− ψ)|S|,

and for it to be strictly less than (1+ψ)|A|, we must have ψ(S) < ψ, and the desired contradiction follows.

Proof of Lemma 2.4 (Flow inequality I). It suffices to show that∑
(u,v)∈E

h(u, v)2(g(u)2 + g(v)2) ≤ (2 + ψ2)
∑
u∈V

g(u)2.

The coefficient of g(u)2 on the LHS is∑
v:(u,v)∈E

h(u, v)2 +
∑

v:(v,u)∈E

h(v, u)2.

22



We just need to show that this is at most (2 + ψ2). Since 0 ≤ h ≤ 1,
∑

v:(u,v)∈E h(u, v) ≤ 1 + ψ, and∑
v:(v,u)∈E h(v, u) ≤ 1, we conclude that∑

v:(u,v)∈E

h(u, v)2 +
∑

v:(v,u)∈E

h(v, u)2 ≤ (1 + ψ2) + 1 = 2 + ψ2,

and the proof is complete.

Proof of Lemma 2.5 (Flow inequality II). We can write∑
(u,v)∈E

h(u, v)(g(u)2 − g(v)2) =
∑
u∈A

∑
v∈B

h(u, v)(g(u)2 − g(v)2),

by adding the terms h(u, u)(g(u)2 − g(u)2) to LHS. Then,

∑
u∈A

∑
v∈B

h(u, v)(g(u)2 − g(v)2) = (1 + ψ)
∑
u∈A

g(u)2 −
∑
v∈B

(∑
u∈A

h(u, v)

)
g(v)2 ≥ ψ

∑
u∈V

g(u)2.

The last inequality holds because
∑

u∈A h(u, v) ≤ 1 and g(v)2 = 0 for v ̸∈ A.

B Deferred proofs of Section 3

Proof of Lemma 3.2 (Edge cut and congestion). The proof largely follows that presented in [KRV09]. For
convenience let’s drop the subscripts i.

Let ε > 0. Consider the s-t flow problem with vertex capacity (c− ε). Then, we can only send f < n/2 units
of flow from s to t. Let’s find a cut (of edges) with cut value f .

Define the following vertex subsets:

• Let Xe ⊆ X be the set of vertices u on the X side such that (s, u) gets cut; similar for Y e;

• Let Xr ⊆ X be the remaining vertices in X, i.e. Xr = X −Xe; similar for Y r;

• Let X+ be the set of vertices connected to s after the cut; similar for Y +.

Figure 3 shows a sample flow network with the corresponding subsets Xe, Y e, X+, Y +.

(We crucially need f < n/2 to make sure neither X+ nor Y + is empty, hence the ε trick.)

One of the sets X+ and Y + will be chosen as Si in the end. Note that:

• Xr ⊆ X+ and Y r ⊆ Y +;

• X+ and Y + are disjoint;

• We can WLOG assume X+ ∪ Y + = V . This is because if there is a vertex u that is disconnected from
both s and t, then either the graph is disconnected (in which case ϕ′(G) = 0), or we can add back
some edge incident to u. The cut value decreases, and t remains disconnected from s.

23



Figure 3: A flow network with the corresponding subsets Xe, Y e, X+, Y +.

Because of the final observation, all the cut edges are either between u and Xe, between v and Y e, or between
X+ and Y +.

Now let’s bound ϕ′(X+). Cut value being equal to f means

(c− ε) · |E(X+, Y +)|+ (|Xe|+ |Y e|) = f ≤ n/2.

Since |X+| ≥ |Xr| = n/2− |Xe|, we have

Therefore,

ϕ′(X+) =
|E(X+, Y +)|

|X+|
≤ (c− ε)−1 · (n/2− (|Xe|+ |Y e|))

n/2− |Xe|

≤ (c− ε)−1 · (n/2− |Xe| − |Y e|)
n/2− |Xe| − |Y e|

= 1/(c− ε).

Similarly we get ϕ′(Y +) ≤ 1/(c− ε). Since X+ and Y + are disjoint, one of them will have size ≤ n/2, and
letting Si to be that set, we have |Si| ≤ n/2 and ϕ′(Si) ≤ 1/(ci − ε). Finish by letting ε→ 0.

Proof of Lemma 3.5 (Vertex cut and congestion). The proof is quite similar to that of Lemma 3.2. For
convenience let’s drop the subscripts i.

Let ε > 0. Consider the s-t flow problem with vertex capacity (c− ε). Then, we can only send f < n/2 units
of flow from s to t. Let’s find a cut (of edges (s, u), (v, t) and of vertices) with cut value f .

Define the following vertex subsets:

• let Xv ⊆ X be the set of vertices on the X side that gets cut; similar for Y v;

24



• let Xe ⊆ X be the set of vertices u on the X side such that (s, u) gets cut; similar for Y e;

• let Xr ⊆ X be the remaining vertices in X, i.e. Xr = X −Xv −Xe; similar for Y r;

• let X+ be the set of vertices connected to s after the cut; similar for Y +.

(We crucially need f < n/2 to make sure neither X+ nor Y + is empty, hence the ε trick.)

One of the sets X+ and Y + will be chosen as Si in the end. Note that:

• Xr ⊆ X+ and Y r ⊆ Y +;

• N(X+) ⊆ Xv ∪Y v and N(Y +) ⊆ Xv ∪Y v. This is because, once Xv and Y v are removed, there is no
more path from Xr to Y r, and as X+ is reachable from Xr and Y + is reachable from Y r, this means
there is no more path from X+ to Y +;

• X+ and Y + are disjoint.

Now let’s bound ψ(X+). Cut value being equal to f means

(c− ε)(|Xv|+ |Y v|) + (|Xe|+ |Y e|) = f ≤ n/2.

Rearranging and from N(X+) ⊆ Xv ∪ Y v we get

|N(X+)| ≤ |Xv|+ |Y v| ≤ 1

(c− ε)
(n/2− (|Xe|+ |Y e|)).

Now let’s lower bound |X+|. We have:

|X+| ≥ |Xr| = n/2− |Xv| − |Xe| ≥ n/2− (|Xv|+ |Y v|)− (|Xe|+ |Y e|).

It will actually be a bit more convenient to lower bound ψ(X+)−1:

ψ(X+)−1 =
|X+|

|N(X+)|
≥ (c− ε) · n/2− (|Xv|+ |Y v|)− (|Xe|+ |Y e|)

n/2− (|Xe|+ |Y e|)

≥ (c− ε) ·
(
1− |Xv|+ |Y v|

n/2− (|Xe|+ |Y e|)

)
≥ c− ε− 1(

∵ |Xv|+ |Y v| ≤ 1

(c− ε)
(n/2− (|Xe|+ |Y e|))

)
.

Similarly we get ψ(Y +)−1 ≥ c− ε− 1. Since X+ and Y + are disjoint, one of them will have size ≤ n/2, and
letting Si to be that set, we have |Si| ≤ n/2 and ψ(Si) ≤ 1/(ci − 1− ε). Finish by letting ε→ 0.

Proof of Lemma 3.7 (Certifying vertex expansion). Since the MFP with demand graphMi can be embedded
in G with vertex congestion ci, adding up the flow solutions, the MFP with demand graph HT := ⊔i∈TMi

can be embedded in G with vertex congestion at most
∑

i ci.

Now, let S ⊆ V such that |S| ≤ n/2. We want to show that

ψ(S) ≥ ϕ′(HT )/
∑
i

ci.

25



From set S, HT demands that we send at least ϕ′(HT ) · |S| units of flow out of S. Each outgoing flow
path must go through N(S), so the total congestion over all vertices in N(S) is at least ϕ′(HT ) · |S|. The
feasibility of the flow problem when vertex capacity is

∑
i ci implies that

|N(S)| ·
∑
i

ci ≥ ϕ′(HT ) · |S|.

Rearranging and minimizing over S, we are done.

C Deferred proofs of Section 4

Proof of Proposition 4.6 (λ′2 and metric spread). The equality directly follows from 4.4. The inequality fol-
lows from a series of calculations:

min
ρ∈M1(V )

R(ρ) = min
ρ∈M1(V )

∑
(u,v)∈E ρ(u, v)

2∑
u,v∈V ρ(u, v)

2

≲ min
s:V→R>0

α(G)2
∑

(u,v)∈E ρs(u, v)
2∑

u,v∈V ρs(u, v)
2

(Lemma 4.5)

= α(G)2 · min
s:V→R>0

∑
(u,v)∈E(s(u) + s(v))2∑

u,v∈V ρs(u, v)
2

≤ α(G)2 · min
s:V→R>0

∑
u∈V 2d · s(u)2∑
u,v∈V ρs(u, v)

2

≤ 2dn2 · α(G)2 · min
s:V→R>0

∑
u∈V s(u)

2

(
∑

u,v∈V ρs(u, v))
2

(Cauchy-Schwarz)

≲ dn2 · α(G)2 ·

[
max

s:V→R>0

∑
u,v∈V ρs(u, v)√∑

u∈V s(u)
2

]−2

.

Proof of Lemma 4.14 (Dual objective upper bound). Take the spherical cap embedding u 7→ C(u), the cap
C(u) having center z(u) and radius r(u), from Lemma 4.13. Let A(u) be the area of C(u); recall that
A(u) = Θ(r(u)2). We construct a feasible solution to the γ(3)(G) program based on the embedding.

Take f(u) := z(u) and g(u) := 2r(u)2. Check that
∑

u∈V
1
nf(u) = 0⃗,

∑
u∈V

1
n ∥f(u)∥2 = 1, and

g(u) + g(v) = 2(r(u)2 + r(v)2) ≥ (r(u) + r(v))2 ≥ ∥f(u)− f(v)∥2 ∀(u, v) ∈ E.

Therefore, (f, g) is a feasible solution, and its objective is∑
u∈V

1

n
g(u) =

2

n

∑
u∈V

r(u)2 ≲
1

n

∑
u∈V

A(u) ≤ 1

n
(Area of S2) ≤ O(1/n).

26



Proof of Proposition 4.18 (λ∗2 and metric spread). The equality directly follows from Proposition 4.16. The
inequality follows from a series of calculations:

min
ρ∈M1(V )

∑
(u,v)∈E π(u)P (u, v)ρ(u, v)

2∑
u,v∈V ρ(u, v)

2

≲ min
s:V→R>0

α(G)2
∑

(u,v)∈E π(u)P (u, v)ρs(u, v)
2∑

u,v π(u)π(v)ρs(u, v)
2

(Lemma 4.17)

= α(G)2 · min
s:V→R>0

∑
(u,v)∈E π(u)P (u, v)(s(u) + s(v))2∑

u,v π(u)π(v)ρs(u, v)
2

≤ α(G)2 · min
s:V→R>0

2
∑

(u,v)∈E π(u)P (u, v)(s(u)
2 + s(v)2)∑

u,v π(u)π(v)ρs(u, v)
2

= α(G)2 · min
s:V→R>0

2
∑

u π(u)(
∑

v P (u, v))s(u)
2∑

u,v π(u)π(v)ρs(u, v)
2

(π-reversibility of P )

= α(G)2 · min
s:V→R>0

2
∑

u π(u)s(u)
2∑

u,v π(u)π(v)ρs(u, v)
2

(Since
∑
v

P (u, v) = 1)

≤ α(G)2 · min
s:V→R>0

2
∑

u π(u)s(u)
2

(
∑

u,v π(u)π(v)ρs(u, v))
2

(Cauchy-Schwarz)

≲ α(G)2 ·

[
max

s:V→R>0

∑
u,v π(u)π(v)ρs(u, v)√∑

u π(u)s(u)
2

]−2

.

Proof of Proposition 4.20 (Rounding to rational weight function). LetM ∈ Z be such thatMπ(u) ≥ 1/2 for
all u ∈ V . Then, set

π′(u) := ⌈Mπ(u)⌉ /M.

It is easy to see that π′(u) ∈ Q>0 and π′(u) ≥ π(u) for all u ∈ V . Moreover, since Mπ(u) ≥ 1/2 we have
⌈Mπ(u)⌉ ≤ 2Mπ(u), and so π′(u) ≤ 2π(u) for all u ∈ V .

Proof of Lemma 4.22 (Spike graph congestion). First, we prove the easier side, that there exists B > 0 such
that

min
Fz

con2(Fz) ≤ Bmin
F ′

con2(F
′).

In fact, we can take B = 1. The idea is simple: from a solution F ′ to the MFP with demand graph Kn′ on
the spike graph G′, we construct a solution Fz to the MFP with demand graph (Kn, πz × πz) on G, with
smaller congestion.

For any flow path p from ui to vj carrying some amount of flow, if u = v we cancel the flow, else we shorten
the two ends of the flow path (if needed) to make it go from u0 to v0. We do this to all flow paths in F ′,
obtaining Fz. Refer to Figure 4 for an example. Observe that the operations only decrease the congestion
of F ′, and in the end all flow paths go from u0 to v0 for some u, v ∈ V . By the canonical identification
u0 ∈ V ′ ↔ u ∈ V , we end up with a flow solution on G. Moreover, the amount of flow between u and v ̸= u
in F is exactly πz(u)× πz(v). Therefore, the flow Fz satisfies the demand (Kn, πz × πz) and its congestion
is no larger than that of F ′. Hence,

min
Fz

con2(Fz) ≤ min
F ′

con2(F
′).

27



Figure 4: An illustration of the flow trimming procedure. For example, the flow path c1 → c0 → b0 → b1 in
purple gets trimmed to c0 → b0.

Now, we prove the more difficult side, that there exists A > 0 such that

Amin
F ′

con2(F
′) ≤ min

Fz

con2(Fz).

We take A = 1/6. The proof proceeds by showing that the flow trimming procedure described above does
not decrease con2(F

′) by too much. Let cF ′(ui) denote the congestion of vertex ui with respect to flow
solution F ′.

First, we show that the congestion at u0 dominates that at the other vertices ui for i ̸= 0:∑
i ̸=0

cF ′(ui) ≤ 2cF ′(u0).

This is because, for any i ̸= 0, (i) any flow path that passes through ui must also pass through u0 and (ii)
in an optimal solution, any flow path that does not have ui as an endpoint should not pass through ui.
Therefore, for any flow path, the contribution to u0 is at least half of the contribution to the rest of ui’s,
with equality case occurring when the flow path goes from ui to uj for some other j ̸∈ {0, i}.
Therefore, if we let F ′′ be the flow solution obtained from F ′ by shortening flow paths ui → vj to u0 → v0
(note that the flow paths ui → uj get shortened to u0 → u0, which adds congestion to u0), we have

9con2(F
′′)2 =

∑
u∈V

(3cF ′(u0))
2 ≥

∑
u∈V

 ∑
i<πz(u)

cF ′(ui)

2

≥
∑

ui∈V ′

cF ′(ui)
2 = con2(F

′)2.

Next, we show that the flow paths u0 → u0 in F ′′ can all be discarded without decreasing the 2-congestion
of the flow solution by too much. The total amount of congestion at u0 due to the paths u0 → u0 is∑

0≤i<j<πz(u)

1 =
πz(u)(πz(u)− 1)

2
< πz(u)

2.

We only need to show that this is upper bounded by the total amount of congestion at u0 due to other paths.
Here we (finally) use the assumption that πmax < 1/2. Check that this implies

πz(u) ≤
1

2

∑
v∈V

πz(v)

for all u ∈ V . The congestion at u0 due to other paths is at least the total amount of flow in F ′′ from u0 to
other vertices v0, which is at least

πz(u)

 ∑
v∈V \{u}

πz(v)

 ≥ πz(u)
2.

28



Therefore, if we let Fz to be the flow solution obtained by dropping all u0 → u0 flow paths from F ′′, we
obtain

4con2(Fz)
2 =

∑
u∈V

(2cFz
(u0))

2 ≥
∑
u∈V

(cF ′′(u0))
2 = con2(F

′′)2.

To sum up, the flow trimming procedure, which starts with a flow solution F ′ to the MFP with demand graph
Kn′ on the spike graph G′ and ends with a flow solution Fz to the MFP with demand graph (Kn, πz × πz)
on G, satisfies

con2(Fz) ≥
1

2
con2(F

′′) ≥ 1

6
con2(F

′).

Since all flow solutions Fz to (Kn, πz × πz) can be obtained by applying such procedure to a flow solution
F ′ to Kn′ , taking minimum on both sides we have

min
Fz

con2(Fz) ≥
1

6
min
F ′

con2(F
′),

and the proof is complete.

Proof of Lemma 4.23 (Spike graph topology). For the first part, given a genus g graph G = (V,E), we can
embed G in a genus g surface. We can then embed the spike graph G′ in the same surface by attaching
degree 1 vertices to G.

For the second part, we use contrapositive argument. Suppose the spike graph G′ contains Kh as a minor,
for some h ≥ 3. Then, we can obtain Kh from G′ by some sequence of edge deletion, vertex deletion, and
edge contraction. The claim is that all vertices ui, i ≥ 1, eventually gets deleted. This is because contraction
of edge (u0, ui) is the same as deleting ui, deletion of edge (u0, ui) must be followed by deleting ui (otherwise
it becomes an isolated vertex), and Kh cannot contain any degree 1 vertex as h ≥ 3. Furthermore, deletion
of vertices ui, i ≥ 1, can be done in the very beginning of the sequence of operations.

Therefore, applying the sequence of operations on G′, at some point we obtain G, then we end up with Kh.
This implies that G contains Kh as a minor.

29



References

[AHK10] Sanjeev Arora, Elad Hazan, and Satyen Kale. “O(log n) Approximation to SPARSEST CUT in
Õ(n2) Time”. In: SIAM Journal on Computing 39.5 (2010), pp. 1748–1771.

[Alo86] Noga Alon. “Eigenvalues and expanders”. In: Combinatorica 6.2 (1986), pp. 83–96.

[AM85] Noga Alon and Vitali D Milman. “λ, isoperimetric inequalities for graphs, and superconcentra-
tors”. In: Journal of Combinatorial Theory, Series B 38.1 (1985), pp. 73–88.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. “Expander flows, geometric embeddings and
graph partitioning”. In: Journal of the ACM (JACM) 56.2 (2009), pp. 1–37.

[Bar96] Yair Bartal. “Probabilistic approximation of metric spaces and its algorithmic applications”. In:
Proceedings of 37th Conference on Foundations of Computer Science. IEEE. 1996, pp. 184–193.

[BLR10] Punyashloka Biswal, James R Lee, and Satish Rao. “Eigenvalue bounds, spectral partitioning,
and metrical deformations via flows”. In: Journal of the ACM (JACM) 57.3 (2010), pp. 1–23.

[Che+22] Li Chen et al. “Maximum flow and minimum-cost flow in almost-linear time”. In:
arXiv preprint arXiv:2203.00671 (2022).

[CS21] Julia Chuzhoy and Thatchaphol Saranurak. “Deterministic algorithms
for decremental shortest paths via layered core decomposition”. In:
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM.
2021, pp. 2478–2496.

[FHL08] Uriel Feige, MohammadTaghi Hajiaghayi, and James R Lee. “Improved approximation algo-
rithms for minimum weight vertex separators”. In: SIAM Journal on Computing 38.2 (2008),
pp. 629–657.

[JPV22] Vishesh Jain, Huy Tuan Pham, and Thuy-Duong Vuong. “Dimension reduction for maximum
matchings and the Fastest Mixing Markov Chain”. In: arXiv preprint arXiv:2203.03858 (2022).

[Kel+11] Jonathan A Kelner et al. “Metric uniformization and spectral bounds for graphs”. In:
Geometric and Functional Analysis 21.5 (2011), pp. 1117–1143.

[Kel+14] Jonathan A Kelner et al. “An almost-linear-time algorithm for approximate
max flow in undirected graphs, and its multicommodity generalizations”. In:
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms. SIAM.
2014, pp. 217–226.

[Kel06] Jonathan A Kelner. “Spectral partitioning, eigenvalue bounds, and circle packings for graphs of
bounded genus”. In: SIAM Journal on Computing 35.4 (2006), pp. 882–902.

[KLT22] Tsz Chiu Kwok, Lap Chi Lau, and Kam Chuen Tung. “Cheeger Inequalities for Vertex Expansion
and Reweighted Eigenvalues”. In: arXiv preprint arXiv:2203.06168 (2022).

[KPR93] Philip Klein, Serge A Plotkin, and Satish Rao. “Excluded mi-
nors, network decomposition, and multicommodity flow”. In:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. 1993,
pp. 682–690.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh Vazirani. “Graph partitioning using single commodity
flows”. In: Journal of the ACM (JACM) 56.4 (2009), pp. 1–15.

[LR99] Tom Leighton and Satish Rao. “Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms”. In: Journal of the ACM (JACM) 46.6 (1999), pp. 787–832.

[LS10] James R Lee and Anastasios Sidiropoulos. “Genus and the geometry of the cut graph”. In:
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM.
2010, pp. 193–201.

30



[LT79] Richard J Lipton and Robert Endre Tarjan. “A separator theorem for planar graphs”. In:
SIAM Journal on Applied Mathematics 36.2 (1979), pp. 177–189.

[Ore+08] Lorenzo Orecchia et al. “On partitioning graphs via single commodity flows”. In:
Proceedings of the fortieth annual ACM symposium on Theory of computing. 2008, pp. 461–
470.

[OZ22] Sam Olesker-Taylor and Luca Zanetti. “Geometric Bounds on the Fastest Mixing Markov
Chain”. In: 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2022.

[Roc05] Sébastien Roch. “Bounding fastest mixing”. In: Electronic Communications in Probability 10
(2005), pp. 282–296.

[She09] Jonah Sherman. “Breaking the multicommodity flow barrier for O(
√
log n)-approximations

to sparsest cut”. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
IEEE. 2009, pp. 363–372.

[ST96] Daniel A Spielman and Shang-Hua Teng. “Spectral partitioning works: Planar graphs and fi-
nite element meshes”. In: Proceedings of 37th Conference on Foundations of Computer Science.
IEEE. 1996, pp. 96–105.

[Tan84] R Michael Tanner. “Explicit concentrators from generalized N-gons”. In:
SIAM Journal on Algebraic Discrete Methods 5.3 (1984), pp. 287–293.

31


	Introduction
	Classical vertex expansion inequalities
	Cut-matching game
	Flows for upper bounds
	Summary
	Deferred proofs of Section 2
	Deferred proofs of Section 3
	Deferred proofs of Section 4

