Cheeger Inequalities for Directed Graphs and Hypergraphs Using Reweighted Eigenvalues

Kam Chuen (Alex) Tung PhD Candidate, University of Waterloo 11 October 2023 @ U Waterloo

Joint work with Lap Chi Lau (U Waterloo) and Robert Wang (U Waterloo)

Table of Content

- Classical Cheeger
- Past work
- Reweighted eigenvalues
- Our results
- Rounding algorithm
- Further discussions
- Summary

• Generalizations abound [Trevisan '09], [LOT '12], [LRTV '12], [KLLOT '13]

λ_2 and mixing time

Go to a random neighbor of the current vertex *u*

- Let *P* be the canonical random walk on *G*
- Mixing time is roughly proportional to $1/\lambda_2$:

Question: Spectral theory for directed graphs? Hypergraphs?

Table of content

- Classical Cheeger
- Past work
- Reweighted eigenvalues
- Our results
- Rounding algorithm
- Further discussions
- Summary

Directed quantities

• Directed *edge conductance*:

• Directed vertex expansion: $\vec{\psi}(G) \coloneqq \min_{\pi(S) \le \pi(V)/2} \frac{\min(\pi(N(S)), \pi(N(S^{c})))}{\pi(S)}$

 $=\frac{1}{0}$

(A sample of) past work

[Fill '94], [Chung '05] Cheeger constant h(G)

h(G): π_{sd} -weighted conductance

• The reweighted graph *F* with $f(u, v) = \pi_{sd}(u)P(u, v)$ is Eulerian.

+ Cheeger Inequality:
$$\frac{\lambda_2(\tilde{L})}{2} \le h(G) \le \sqrt{2\lambda_2(\tilde{L})}$$

 $+ \lambda_2(\tilde{L})$ has relation to mixing time

 $-\pi_{sd}$ can be erratic. Not so useful for graph algorithms

Bottom line

The *nonlinearity/asymmetry* (of the directed quantities and the associated Laplacians) makes spectral theory difficult!

Table of content

- Classical Cheeger
- Past work
- Reweighted eigenvalues
- Our results
- Rounding algorithm
- Further discussions
- Summary

Reweighting example

Mixing time is $\Theta(n)$

Mixing time is $\Theta(1)$

Reweighted eigenvalue

- [BDX '04] "Fastest mixing Markov chain"
- Key idea: eigenvalue λ_2 as proxy for mixing time
- It is the following program: $\lambda_2(G) := \max_{P \ge 0} \quad 1 - \alpha_2(P)$ subject to $P(u, v) = P(v, u) = 0 \qquad \forall uv \notin E$ $\sum_{v \in V} P(u, v) = 1 \qquad \forall u \in V$ $\pi(u)P(u, v) = \pi(v)P(v, u) \qquad \forall uv \in E.$

• This spectral theory encompasses: fastest mixing time, "generalizations"

Question: Reweighted eigenvalues for directed graphs? Hypergraphs?

Reweighting as "best" certificate

- In a feasible reweighting $Q = \prod P, \sum_{j} Q(i, j) = \pi(i)$
- Amount of edge weight from *S* to $S^c \leq \pi(N(S))$

λ_2^* is a (computable) proxy for ϕ^* to lower bound $\psi(G)$

Table of content

- Classical Cheeger
- Past work
- Reweighted eigenvalues

• Our results

- Rounding algorithm
- Further discussions
- Summary

Certificates for expansion

- Want a class of reweighted subgraphs as certificates
- Want the certificates to be *computable*

Key idea: consider Eulerian reweightings

Reweighted eigenvalue for directed graphs

• Edge:

$$\begin{array}{cccc}
\lambda_{2}^{e*}(G) &:= \max_{A \ge 0} \lambda_{2} \left(D^{-\frac{1}{2}} \left(D_{A} - \frac{A + A^{T}}{2} \right) D^{-\frac{1}{2}} \right) \\
& \text{subject to } A(u, v) = 0 & \forall uv \notin E \\
\hline
\text{Eulerian constraints on A} & \sum_{v \in V} A(u, v) = \sum_{v \in V} A(v, u) & \forall u \in V \\
& A(u, v) \le w(uv) & \forall uv \in E \\
\hline
\text{Edge capacity constraints} & & & & \\
\hline
\text{Vertex:} & \lambda_{2}^{v*}(G) &:= \max_{A \ge 0} \lambda_{2} \left(I - \Pi^{-\frac{1}{2}} \left(\frac{A + A^{T}}{2} \right) \Pi^{-\frac{1}{2}} \right) \\
& & \text{subject to } A(u, v) = 0 & \forall uv \notin E \\
\hline
\text{Eulerian constraints on A} & & & \\
\hline
\text{Eulerian constraints on A} & & & & \\
\hline
\text{Vertex capacity constraints} & & & & & \\
\hline
\text{Vertex capacity constraints} & & & & & \\
\hline
\text{Vertex capacity constraints} & & & & \\
\hline
\text{Vertex capacity constraints} & & & & \\
\hline
\text{Vertex capacity constraints} & & & & \\
\hline
\text{Vertex capacity constraints} & & \\
\hline
\text{Vertex capacity con$$

17

Main results

<u>Theorem 1</u> [LTW '22] For arbitrary *w*,

$$\frac{\lambda_2^{e*}}{2} \le \vec{\phi} \preccurlyeq \sqrt{\lambda_2^{e*} \cdot \log \frac{1}{\lambda_2^{e*}}}$$

<u>Theorem 2</u> [LTW'22] For arbitrary π , $\frac{\lambda_2^{\nu*}}{2} \le \vec{\psi} \le \sqrt{\lambda_2^{\nu*} \cdot \log \frac{\Delta}{\lambda_2^{\nu*}}}$

Some consequences

- Cheeger cuts
 - O(SDP) time compute sparse cuts with these Cheeger-type guarantees
- Certifying constant $\vec{\phi}$
 - $\vec{\phi} = \Theta(1)$ iff $\lambda_2^{e*} = \Theta(1)$
- Fastest mixing Markov chain on directed graphs
 - $\vec{\psi}$ is the only obstacle to fastest mixing

$$\frac{\text{Corollary 3}}{\frac{1}{\overrightarrow{\psi}} \cdot \frac{1}{\log\left(\frac{1}{\pi_{\min}}\right)}} \lesssim T^*_{mix} \lesssim \frac{1}{\overrightarrow{\psi}^2} \cdot \log\frac{\Delta}{\overrightarrow{\psi}} \cdot \log\frac{1}{\pi_{\min}}$$

Hypergraphs

• Same spirit, reweight the "clique graph":

• Recovers and improves some results of [Louis]

Table of content

- Classical Cheeger
- Past work
- Reweighted eigenvalues
- Our results
- Rounding algorithm
- Further discussions
- Summary

Rewriting the program

• We will look at λ_2^{e*} . Rayleigh quotient + von Neumann minimax \Rightarrow

1D program

• Define $\lambda_e^{(k)}$ to be

$$\min_{f:V \to \mathbb{R}^k} \max_{A} \frac{1}{2} \sum_{ij \in E} A(i,j) \|f(i) - f(j)\|^2$$

where A is the set of Eulerian reweightings subject to edge capacity constraints

• We would like to project the original n-dimensional solution for $\lambda_2^{e*} = \lambda_e^{(n)}$ to a 1D solution for $\lambda_e^{(1)}$

With capacity constraints

<u>Proposition</u> [JPV'22, LTW '22] (Large optimal property) If the original graph can be "covered" by M reweightings, then random projection loses a factor of log O(M)

Asymmetric ratio and projection

- Intuition: if *G* is Eulerian then *M* = 1; if *G* has very unbalanced cut then *M* should be large.
- Define asymmetric ratio as $\alpha \coloneqq \max_{S} \frac{w(E(S,S^{c}))}{w(E(S^{c},S))}$
 - Using Hoffman's circulation lemma, can show $M = O(\alpha)$ for $\vec{\phi}$
 - Moreover, $\alpha \leq \frac{1}{\overrightarrow{\phi}} \lesssim \frac{1}{\lambda_2^{e*}}$
 - Therefore, projection loss is $O\left(\log \frac{1}{\lambda_2^{e*}}\right)$
- For directed vertex expansion: $M = O(\Delta \cdot \alpha)$
- For undirected vertex expansion: $M = O(\Delta)$
- For hypergraph conductance: M = O(r)

ℓ_1 program

Definition 3.19 (ℓ_1 Version of $\vec{\lambda}_e^{(1)}$). Given an edge-weighted directed graph G = (V, E, w), let

$$\begin{split} \eta_{e}(G) &\coloneqq \min_{f:V \to \mathbb{R}} \max_{A \geq 0} & \frac{1}{2} \sum_{uv \in E} A(u, v) \cdot |f(u) - f(v)| & \bigvee \text{Now } \ell_1 \text{ metric} \\ &\text{subject to} & A(u, v) = 0 & \forall uv \notin E \\ & \sum_{v \in V} A(u, v) = \sum_{v \in V} A(v, u) & \forall u \in V \\ & A(u, u) \leq w(uv) & \forall uv \in E \\ & \sum_{v \in V} d_w(v) \cdot f(v) = 0 \\ & \sum_{v \in V} d_w(v) \cdot |f(v)| = 1. & \bigvee \text{Now } \ell_1 \text{ normalization} \end{split}$$

• We prove that $\eta_e \preccurlyeq \sqrt{\lambda_e^{(1)}}$ by constructing ℓ_1 solutions from ℓ_2 solutions

Threshold rounding

• LP dual of the 1D ℓ_1 program:

$$\begin{split} \xi_e(G) &:= \min_{f: V \to \mathbb{R}} \min_{\substack{q: E \to \mathbb{R}_{\geq 0} \\ r: V \to \mathbb{R}}} \sum_{uv \in E} w(uv) \cdot q(uv) \\ &\text{subject to} \quad q(uv) \geq |f(u) - f(v)| - r(u) + r(v) \quad \forall uv \in E \\ &\sum_{v \in V} d_w(v) \cdot f(v) = 0 \\ &\sum_{v \in V} d_w(v) \cdot |f(v)| = 1. \end{split}$$

- Given a feasible solution (f, r) to the ℓ_1 program, with objective OBJ
- Use threshold rounding to obtain cut with $\vec{\phi}(S) \leq O(OBJ)$
 - Consider $(f + r)^+, (f + r)^-, (f r)^+, (f r)^-$

Recap

Reweighted eigenvalue λ_2^{e*} \prod Rayleigh + minimax *n*-dimensional program $\lambda_{e}^{(n)}$ \prod Large optimal property, $M = O(\alpha)$ 1-dimensional program $\lambda_{e}^{(1)}$ \prod Construct ℓ_1 solution, sqrt loss 1D ℓ_1 program Threshold rounding Cut *S*, $\vec{\phi}(S) \preceq \sqrt{\lambda_2^* \cdot \log \alpha}$

Table of content

- Classical Cheeger
- Past work
- Reweighted eigenvalues
- Our results
- Rounding algorithm
- Further discussions
- Summary

"Generalizations"

• "Bipartite Cheeger" [Trevisan '09] does not extend naturally λ_n and bipartiteness

$$2 - \lambda_n^{e*} = O(\frac{1}{n^2})$$
 but no near-bipartite sparse cut

"Generalizations"

• Higher-order Cheeger [LOT '12, LRTV '12] does not either... λ_k and k-way conductance

"Generalizations"

 λ_2 , λ_k and conductance

• But improved Cheeger [KLLOT '13] has a directed analogue

<u>Theorem 3</u> [LTW'22] (Informal) If λ_k^{e*} is large for some small k, then (up to log factors) we can upper bound $\vec{\phi}$ by $O(\lambda_2^{e*})$ instead of $O(\sqrt{\lambda_2^{e*}})$.

An alternative viewpoint

Reweighted eigenvalue λ_2^{e*}

 $\mathbf{\prod}$ Rayleigh + minimax

n-dimensional program $\lambda_e^{(n)}$

 \prod Large optimal property, $M = O(\alpha)$

1-dimensional program $\lambda_e^{(1)}$ \prod Construct ℓ_1 solution, sqrt loss

1D ℓ_1 program

Threshold rounding

Cut *S*, $\vec{\phi}(S) \preceq \sqrt{\lambda_2^* \cdot \log \alpha}$

1D ℓ_2 reweighted program Lifting to ℓ_2 ; sqrt loss 1D ℓ_1 reweighted program Lossless Symmetrization 1D ℓ_1 unreweighted program $\{0, 1\}^n$ to $[0, 1]^n$; integral $\min_{S} \vec{\phi}(S)$

Convexify

Table of content

- Classical Cheeger
- Past work
- Reweighted eigenvalues
- Our results
- Rounding algorithm
- Further discussions
- Summary

Takeaways

- A spectral theory based on *Eulerian reweighting*
- Unified theory for all graph/hypergraph settings -> all reduce to classical theory for edge conductance
- Exciting to see further developments!

Some further questions

Applications:

- Fast (e.g. almost-linear time) algorithms? ← [LTW '23]: Yes!
- Concrete practical applications?

Theory:

- How to formulate bipartite/higher-order Cheeger for directed graphs?
- Are the log terms in the Cheeger inequalities tight?
- Connections with submodular transformations (à la Yoshida)? \leftarrow

The end