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* Classical Cheeger



Cheeger’s inequality

#edges across S

* ¢ = (V,E) undirected |5()|V
. S
Conductance of graph: ¢(G) = vol(S)rélvlgll /2 50L(S)
A= D_% y D_% Total degree of S
~/

* Eigenvalues of Laplacian L:=] —Aare0 =1, <1, < - <

Theorem [Cheeger '70, Alon, Milman "85, Alon '86]
Az R

* Generalizations abound [Trevisan’09], [LOT '12], [LRTV "12], [KLLOT '13]




AZ and mIXIHg tlme Go to a random neighbor of

the current vertex u

e

e Let P be the canonical random walk on G

* Mixing time is roughly proportional to 1/1,:

time needed to 1 1 1
get (1/e)-closetos.d.m /1_2 S Tmix(P) S /1_2 ' log Tmin

* Summary of classical Cheeger: Conductance ¢

Eigenvalue 1, I I Mixing time T};,;,

Question: Spectral theory for directed graphs? Hypergraphs?
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Directed quantities

 Directed edge conductance:

Edges from S to S§°¢ Edges from S€ to S
T V
(]?(G) o min min(w(E(S,5)), w(E(S€,S)))

vol(S)svol(V)/2 UOl(S)h

Sum of outdegrees in §

+ Directed vertex expansion: Y(G) = _ min mIn(r(N(E)TNS)))
n(S)sm(V)/2 (S)



(A sample of) past work

:|-| h(G): mg4-weighted conductance

[Fill ‘94], [Chung ‘05] Cheeger constant h(G)
» The reweighted graph F with f(u, v) = myy(u)P(u, v) is Eulerian.

+ Cheeger Inequality: '122@) < h(G) < /2/12 (Z)

+ A, (L) has relation to mixing time

— Tyq can be erratic. Not so useful for graph algorithms

|Yoshida '19] Cheeger inequality for non-linear Laplacian Edge energies

- h K
+ Cheeger Inequality: %G < p(G) <2,/

2
| L > Y uveE W(u,v)((x(u)—x(v))+)
— Not poly-time solvable G = 23 degu)x(w)=0 ey deg(w)x(w)?

]

Normalization




Bottom line

The nonlinearity/asymmetry (of the directed
quantities and the associated Laplacians) makes
spectral theory difficult!
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* Reweighted eigenvalues



Reweighting example

N7
. \) [ ——
/ \\ J—\

Mixing time is ©O(n) Mixing time is ©(1)
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Reweighted eigenvalue

* [BDX'04] “Fastest mixing Markov chain”

* Key idea: eigenvalue A, as proxy for mixing time

* Itis the following program:

A,(I — P)

A (G) = max 1 — as(P)

subject to  P(u,v) = P(v,u) =0

Z P(u,v) =1

veEV
m(u)P(u,v) = m(v) P(v, u)

Yuv ¢ E
VucV

Yuvw ¢ Iv.
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Vertex expansion

* ¢ = (V,E) undirected #neighbors of
 Vertex expansion of graph: Y (G) := min lng)l

SI=|V]/2 ~— K, K,
* Can define m-weighted version Size of S

Y(6) =0(1)
Theorem [Olesker-Taylor, Zanetti ‘21, KLT 22]

Sl/JS\//l’E-logA

A5
2

 This spectral theory encompasses: fastest mixing time, “generalizations”

Question: Reweighted eigenvalues for directed graphs? Hypergraphs?
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Reweighting as “best” certificate

* In a feasible reweighting @ = I1P, »; Q(i,j) = (i)

« Amount of edge weight from S to S¢ < (N (S)) //-\‘ ®
| QT 90
\ O/ O

regular Cheeger N

1 N
- 2, (M72( = Q)172) = $(Q) < Y(6)
X—

reweighting

A5 is a (computable) proxy for ¢ to lower bound ¥ (G)
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e Our results



Certificates for expansion

 Want a class of reweighted subgraphs as certificates

» Want the certificates to be computable

Key idea: consider Eulerian reweightings



CE (6

6 (G) or ¥(G) > $(4)




Reweighted eigenvalue for directed graphs

A=0 2
subject to A(u,v) =0

o . — 1 T 1
Edge: J¢*(G) = max AZ(D‘?(DA— St )D‘E)

A(u,0) = ) A(v,u)
Eulerian constraints on A % Z;, Z;,

A(u,v) < w(uv)
Edge capacity constraints %

* Vertex: G _1(A+AT )
A5 (G) := max /12(1—(1 z( )H 2
A>0 2

subject to A(u,v) =0

A(u,0) = ) A(v,u)
Eulerian constraints on A % ;, L;

A(u,v) = m(u
Vertex capacity constraints % Z (4, 0) (u)

veV

Yuov ¢ E
YueV

Yuv € E

Yuv ¢ E
YueV

YueV

17



Main results

Theorem 1 [LTW 22] For arbitrary w,

* 5 1
<¢$p= |AY -log/le*
2

\

A

N ®

|

Theorem 2 \LTW 22| For arbitrary m,

o

V*
2

2

<y = A" - log
\

V*
/12



Some consequences

* Cheeger cuts

* O(SDP) time compute sparse cuts with these Cheeger-type guarantees
* Certifying constant ¢

. ¢ =0(1)iff 15" = 0(1)

 Fastest mixing Markov chain on directed graphs

. 1/_; is the only obstacle to fastest mixing

Corollary 3 [LTW ’22] For arbitrary distribution TT,
1 1

i log(

< E3
2 _)"'Tmm"'r log-log—



Hypergraphs

* Same spirit, reweight the “clique graph™:

/////

C —
"o o/ ﬁ

—————

* Recovers and improves some results of [Louis]

20
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* Rounding algorithm



Rewriting the program

« We will look at A5*. Rayleigh quotient + von Neumann minimax =
1

A¢*(G) :== min max — A(u,v) u 0)||%
(O} i e 2 Nf(w) - f(o)]
subject to A(u,0) =0 Yuv ¢ E
A(u,v) = Ao, u) YueV
Eulerian constraints on A % ;f z;
Al(u,u) < w(uo Yuv € E
Edge capacity constraints % ( ) (uo) ~
> dw(v) - f(v) =0
veV

D dw@) - If@I* =1,

veV ﬁ Normalization constraints on f
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1D program

* Define Agk) to be
. 1 .. . 112
(min, max: 2.ijep AGL DI = FO)I
where A is the set of Eulerian reweightings subject to edge capacity constraints

* We would like to project the original n-dimensional solution for A5* = Agn) to

a 1D solution for /121)

With capacity constraints

Proposition [jpv'22, LTw 22| (Large optimal property) —~——
If the original graph can be “covered” by M reweightings,
then random projection loses a factor of log O (M)

23



Asymmetric ratio and projection

Intuition: if G is Eulerian then M = 1; if ¢ has very unbalanced cut then M
should be large.

w(E(S,S9))

w(E(S¢€,S))

 Using Hoffman'’s circulation lemma, can show M = O(a) for q_5

1 _ 1
* Moreover,a <= =< —;
¢ A

* Define asymmetric ratio as a = mSax

 Therefore, projection loss is O (log /1%)
2

For directed vertex expansion: M = O(A - a)

For undirected vertex expansion: M = 0(A)

* For hypergraph conductance: M = 0(7)



£, program

Definition 3.19 (#; Version of ):E._l}}. Given an edge-weighted directed graph G = (V, E,w), let

Ne(G) := min max % E A(u,v) - |f(u) — f(v)] 4 Now ¢; metric

FiV R A0 =
subject to  A(u,v) =10 Vuv & E
> Au,v) =) A(v,u) VueV
vel’ el
A(u,u) < w(uv) Yuv €
> du(v)- flv) =0
vel
D du(v) - |f(v)] = 1. % Now £, normalization
el

* We prove thatn, < //121) by constructing £, solutions from £, solutions
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Threshold rounding

e LP dual of the 1D #; program:

eff:{(:} = In min Z w(u'ﬁ} . t_.‘[m.:}

VR qglE—=R., )
rVoR unic F

subject to  q(uv) = |f(u) — f(v)| —r(u) + r(v) Vuv € K
Y dw(v)- f(v) =0
eV
> dy(@)-|f(w)] = 1.
vel

* Given a feasible solution (f, r) to the £; program, with objective OB]J

» Use threshold rounding to obtain cut with ¢(S) < 0(0B))
« Consider (f +nr)*,(f+r)~,(f =)', (f —1r)~



Recap

Reweighted eigenvalue A5
@Rayleigh + minimax

. . n
n-dimensional program /'lg )
@ Large optimal property, M = O(a)

. . 1
1-dimensional program /12 )
@ Construct #; solution, sqrt loss

1D #; program
@ Threshold rounding

CutS, q_b)(S) < \//13 -log a
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 Further discussions



“Generalizations”

» “Bipartite Cheeger” [Trevisan ‘09] does not extend naturally
1

A, and bipartiteness

2 — %" = 0(=3) but no

near-bipartite sparse cut
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“Generalizations”

e Higher-order Cheeger [LOT ‘12, LRTV “12] does not either...
__—1

A, and k-way conductance

*" = 0but b, is large for k = 3

30



“Generalizations”

% A,, A, and conductance

* Butimproved Cheeger [KLLOT ‘13] has a directed analogue

Theorem 3 [LTw22] (Informal)
If 17" is large for some small k, then (up to log factors) we

can upper bound q_5 by 0(A5%) instead of O (y/A5").

31



An alternative viewpoint

Reweighted eigenvalue A5
@Rayleigh + minimax

. - n
n-dimensional program /lg ) Convexify
@ Large optimal property, M = O(a)

1-dimensional program 13" 1D £, reweighted program
u Construct ¢4 solution, sqrt loss ﬁ Lifting to #,; sqrt loss
1D £, program 1D £, reweighted program

ﬁ Lossless Symmetrization
ﬂ Threshold rounding 1D £, unreweighted program
ﬁ {0,1}™ to [0, 1]™; integral

Cut S, $(S) 3 /2 - loga min b (S)




Table of content

* Summary



Takeaways

* A spectral theory based on Eulerian reweighting

* Unified theory for all graph/hypergraph settings -> all reduce to classical
theory for edge conductance

* Exciting to see further developments!



Some further questions

Applications:

* Fast (e.g. almost-linear time) algorithms? €< [LTW 23]: Yes!
* Concrete practical applications?

Theory:
* How to formulate bipartite /higher-order Cheeger for directed graphs?
* Are the log terms in the Cheeger inequalities tight?

* Connections with submodular transformations (a la Yoshida)? <



The end
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