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Cheeger’s inequality

• 𝐺 = (𝑉, 𝐸) undirected

• Conductance of graph:   𝜙 𝐺 ≔ min
𝑣𝑜𝑙 𝑆 ≤𝑣𝑜𝑙 𝑉 /2

|𝛿 𝑆 |

𝑣𝑜𝑙(𝑆)

• Eigenvalues of Laplacian ℒ ≔ 𝐼 − 𝒜 are 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 ≤ 2

• Generalizations abound [Trevisan ’09], [LOT ’12], [LRTV ’12], [KLLOT ’13]
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Theorem [Cheeger ’70, Alon, Milman ’85, Alon ’86]

𝜆2

2
≤ 𝜙 ≤ 2 𝜆2

Total degree of 𝑆
𝒜 ≔ 𝐷−

1
2𝐴𝐷−

1
2

#edges across 𝑆

𝐾𝑛 𝐾𝑛

𝜙 𝐺 = Θ(
1

𝑛
)

𝜙 𝑆 =
3
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𝜆2 and mixing time

• Let 𝑃 be the canonical random walk on 𝐺

• Mixing time is roughly proportional to 1/𝜆2:

1

𝜆2
≾ 𝑇𝑚𝑖𝑥 𝑃 ≾

1

𝜆2
⋅ log

1

𝜋𝑚𝑖𝑛

• Summary of classical Cheeger:
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Go to a random neighbor of 
the current vertex 𝑢

time needed to 
get (1/𝑒)−close to s.d. 𝜋

Conductance 𝜙

Eigenvalue 𝜆2 Mixing time 𝑇𝑚𝑖𝑥

Question: Spectral theory for directed graphs? Hypergraphs?
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Directed quantities

• Directed edge conductance: 

𝜙 𝐺 ≔ min
𝑣𝑜𝑙(𝑆)≤𝑣𝑜𝑙(𝑉)/2

min(𝑤(𝐸 𝑆,𝑆𝑐 ), 𝑤(𝐸 𝑆𝑐,𝑆 ))

𝑣𝑜𝑙(𝑆)

• Directed vertex expansion:   𝜓 𝐺 ≔ min
𝜋(𝑆)≤𝜋(𝑉)/2

min(𝜋(𝑁(𝑆)),𝜋(𝑁 𝑆𝑐 ))

𝜋(𝑆)
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Edges from 𝑆 to 𝑆𝑐 Edges from 𝑆𝑐 to 𝑆

Sum of outdegrees in 𝑆

𝜙 𝑆 =
1
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(A sample of) past work

[Fill ‘94], [Chung ‘05] Cheeger constant ℎ(𝐺)

• The reweighted graph 𝐹 with 𝑓 𝑢, 𝑣 = 𝜋𝑠𝑑 𝑢 𝑃(𝑢, 𝑣) is Eulerian.

+ Cheeger Inequality: 
𝜆2 ෨𝐿

2
≤ ℎ 𝐺 ≤ 2𝜆2

෨𝐿

+ 𝜆2(෨𝐿) has relation to mixing time

− 𝜋𝑠𝑑 can be erratic. Not so useful for graph algorithms

[Yoshida ’19] Cheeger inequality for non-linear Laplacian

+ Cheeger Inequality:    
𝜆𝐺

2
≤ 𝜙 𝐺 ≤ 2 𝜆𝐺

− Not poly-time solvable
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Edge energies

Normalization

𝜆𝐺 = inf
𝑥: σ deg 𝑢 𝑥 𝑢 =0

σ𝑢𝑣∈𝐸 𝑤 𝑢,𝑣 𝑥 𝑢 −𝑥 𝑣
+ 2

σ𝑢∈𝑉 deg 𝑢 𝑥 𝑢 2

ℎ(𝐺): 𝜋𝑠𝑑-weighted conductance



Bottom line
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The nonlinearity/asymmetry (of the directed 
quantities and the associated Laplacians) makes 
spectral theory difficult!
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Reweighting example
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Mixing time is Θ(𝑛) Mixing time is Θ(1)

𝐾𝑛 𝐾𝑛 𝐾𝑛 𝐾𝑛



Reweighted eigenvalue

• [BDX ’04] “Fastest mixing Markov chain”

• Key idea: eigenvalue 𝜆2 as proxy for mixing time

• It is the following program:
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𝜆2(𝐼 − 𝑃)



Vertex expansion

• 𝐺 = (𝑉, 𝐸) undirected

• Vertex expansion of graph:   𝜓 𝐺 ≔ min
|𝑆|≤|𝑉|/2

|𝑁 𝑆 |

|𝑆|

• Can define 𝜋-weighted version

• This spectral theory encompasses: fastest mixing time, “generalizations”
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𝐾𝑛 𝐾𝑛

𝜓 𝐺 = Θ(1)

𝜓 𝑆 =
2

4
=

1

2
#neighbors of 𝑆

Size of 𝑆

Theorem [Olesker-Taylor, Zanetti ‘21, KLT ‘22]

𝜆2
∗

2
≤ 𝜓 ≾ 𝜆2

∗ ⋅ log Δ

Question: Reweighted eigenvalues for directed graphs? Hypergraphs?



Reweighting as “best” certificate

• In a feasible reweighting 𝑄 = Π𝑃, σ𝑗 𝑄(𝑖, 𝑗) = 𝜋 𝑖

• Amount of edge weight from 𝑆 to 𝑆𝑐 ≤ 𝜋(𝑁 𝑆 )

• 𝜆2 Π−
1

2 Π − 𝑄 Π−
1

2 ≾ 𝜙 𝑄 ≤ 𝜓(𝐺)
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y

x

𝜆2
∗ is a (computable) proxy for 𝜙∗ to lower bound 𝜓(𝐺)

regular Cheeger

reweighting
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Certificates for expansion

• Want a class of reweighted subgraphs as certificates

• Want the certificates to be computable
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Key idea: consider Eulerian reweightings



𝑆𝑐

𝜙 𝐺 𝑜𝑟 𝜓 𝐺 𝜙 𝐴 = 𝜙
𝐴 + 𝐴𝑇

2

𝑆 𝑆𝑐𝑆

≥



Reweighted eigenvalue for directed graphs

• Edge:

• Vertex:
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Eulerian constraints on A

Eulerian constraints on A

Edge capacity constraints

Vertex capacity constraints



Main results
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Theorem 1 [LTW ’22] For arbitrary 𝑤,

𝜆2
𝑒∗

2
≤ 𝜙 ≾ 𝜆2

𝑒∗ ⋅ log
1

𝜆2
𝑒∗

Theorem 2 [LTW ’22] For arbitrary 𝜋,

𝜆2
𝑣∗

2
≤ 𝜓 ≾ 𝜆2

𝑣∗ ⋅ log
Δ

𝜆2
𝑣∗



Some consequences

• Cheeger cuts
• O(SDP) time compute sparse cuts with these Cheeger-type guarantees

• Certifying constant 𝜙

• 𝜙 = Θ(1) iff 𝜆2
𝑒∗ = Θ(1) 

• Fastest mixing Markov chain on directed graphs

• 𝜓 is the only obstacle to fastest mixing
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Corollary 3 [LTW ’22] For arbitrary distribution 𝜋,
1

𝜓
⋅

1

log
1

𝜋𝑚𝑖𝑛

≾ 𝑇𝑚𝑖𝑥
∗ ≾

1

𝜓2
⋅ log

Δ

𝜓
⋅ log

1

𝜋𝑚𝑖𝑛



Hypergraphs

• Same spirit, reweight the “clique graph”:

• Recovers and improves some results of [Louis]
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Rewriting the program

• We will look at 𝜆2
𝑒∗. Rayleigh quotient + von Neumann minimax ⇒

22

Normalization constraints on f

Eulerian constraints on A

Edge capacity constraints



1D program
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• Define 𝜆𝑒
(𝑘)

to be

min
𝑓:𝑉→ℝ𝑘

max
𝐴

1

2
σ𝑖𝑗∈𝐸 𝐴(𝑖, 𝑗) 𝑓 𝑖 − 𝑓 𝑗 2

where A is the set of Eulerian reweightings subject to edge capacity constraints

• We would like to project the original n-dimensional solution for 𝜆2
𝑒∗ = 𝜆𝑒

(𝑛)
to 

a 1D solution for 𝜆𝑒
(1)

Proposition [JPV’22, LTW ’22] (Large optimal property)
If the original graph can be “covered” by 𝑀 reweightings, 
then random projection loses a factor of log 𝑂 𝑀

With capacity constraints



Asymmetric ratio and projection

• Intuition: if 𝐺 is Eulerian then 𝑀 = 1; if 𝐺 has very unbalanced cut then 𝑀
should be large.

• Define asymmetric ratio as 𝛼 ≔ max
𝑆

𝑤(𝐸 𝑆,𝑆𝑐 )

𝑤(𝐸 𝑆𝑐,𝑆 )

• Using Hoffman’s circulation lemma, can show 𝑀 = 𝑂 𝛼 for 𝜙

• Moreover, 𝛼 ≤
1

𝜙
≾

1

𝜆2
𝑒∗

• Therefore, projection loss is 𝑂 log
1

𝜆2
𝑒∗

• For directed vertex expansion: 𝑀 = 𝑂 Δ ⋅ 𝛼

• For undirected vertex expansion: M = 𝑂 Δ

• For hypergraph conductance: M = 𝑂(𝑟)
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ℓ1 program

• We prove that 𝜂𝑒 ≾ 𝜆𝑒
(1)

by constructing ℓ1 solutions from ℓ2 solutions

25

Now ℓ1 metric

Now ℓ1 normalization



Threshold rounding

• LP dual of the 1D ℓ1 program:

• Given a feasible solution (𝑓, 𝑟) to the ℓ1 program, with objective OBJ

• Use threshold rounding to obtain cut with 𝜙 𝑆 ≤ 𝑂(𝑂𝐵𝐽)
• Consider 𝑓 + 𝑟 +, 𝑓 + 𝑟 −, 𝑓 − 𝑟 +, 𝑓 − 𝑟 −
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Recap

27

Reweighted eigenvalue 𝜆2
𝑒∗

𝑛-dimensional program 𝜆𝑒
(𝑛)

1-dimensional program 𝜆𝑒
(1)

1D ℓ1 program 

Rayleigh + minimax

Large optimal property, 𝑀 = 𝑂 𝛼

Cut 𝑆, 𝜙 𝑆 ≾ 𝜆2
∗ ⋅ log 𝛼

Construct ℓ1 solution, sqrt loss

Threshold rounding



Table of content

• Classical Cheeger

• Past work

• Reweighted eigenvalues

• Our results

• Rounding algorithm

• Further discussions

• Summary



“Generalizations”

• “Bipartite Cheeger” [Trevisan ‘09] does not extend naturally

29

𝜆𝑛 and bipartiteness

2 − 𝜆𝑛
𝑒∗ = 𝑂(

1

𝑛2) but no 

near-bipartite sparse cut



“Generalizations”

• Higher-order Cheeger [LOT ‘12, LRTV ‘12] does not either…
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𝜆𝑘 and k-way conductance

3

2

1

n

…

𝜆𝑘
𝑒∗ = 0 but 𝜙𝑘 is large for 𝑘 ≥ 3



“Generalizations”

• But improved Cheeger [KLLOT ‘13] has a directed analogue
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𝜆2, 𝜆𝑘 and conductance

Theorem 3 [LTW ’22] (Informal)
If 𝜆𝑘

𝑒∗ is large for some small 𝑘, then (up to log factors) we 

can upper bound 𝜙 by  O(𝜆2
𝑒∗) instead of 𝑂( 𝜆2

𝑒∗).



An alternative viewpoint

32

Reweighted eigenvalue 𝜆2
𝑒∗

𝑛-dimensional program 𝜆𝑒
(𝑛)

1-dimensional program 𝜆𝑒
(1)

1D ℓ1 program 

Rayleigh + minimax

Large optimal property, 𝑀 = 𝑂 𝛼

Cut 𝑆, 𝜙 𝑆 ≾ 𝜆2
∗ ⋅ log 𝛼

Construct ℓ1 solution, sqrt loss

Threshold rounding

min
𝑆

𝜙(𝑆)

1D ℓ1 unreweighted program 

0, 1 𝑛 to 0, 1 𝑛; integral

1D ℓ1 reweighted program 

Lossless Symmetrization

1D ℓ2 reweighted program 

Lifting to ℓ2; sqrt loss

Convexify
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Takeaways

• A spectral theory based on Eulerian reweighting

• Unified theory for all graph/hypergraph settings -> all reduce to classical 
theory for edge conductance

• Exciting to see further developments!
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Some further questions

Applications:

• Fast (e.g. almost-linear time) algorithms?  [LTW ‘23]: Yes!

• Concrete practical applications?

Theory:

• How to formulate bipartite/higher-order Cheeger for directed graphs?

• Are the log terms in the Cheeger inequalities tight?

• Connections with submodular transformations (à la Yoshida)? 
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The end
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