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* Classical Cheeger’s inequality



Cheeger’s inequality

#edges across S

* ¢ = (V,E) undirected |5()|V
. S
Conductance of graph: ¢(G) = vol(S)rélvlgll /2 50L(S)
A= D_% y D_% Total degree of S
~/

* Eigenvalues of Laplacian L :=1 —Aare0 =4, <1, < -+ <
Theorem [Cheeger '70, Alon, Milman "85, Alon '86]
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* Generalizations abound [Trevisan’09], [LOT '12], [LRTV "12], [KLLOT '13]




AZ and mIXIHg tlme Go to a random neighbor of

the current vertex u

e

e Let P be the canonical random walk on G

* Mixing time is roughly proportional to 1/1,:

time needed to 1 1 1
get (1/e)-closetos.d.m /1_2 S Tmix(P) S /1_2 ' log Tmin

* Summary of classical Cheeger: Conductance ¢

Eigenvalue 1, I I Mixing time T};,;,

Question: is there an analogous theory for vertex expansion?
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* Vertex expansion



Vertex expansion

#neighbors of S
* ¢ = (V,E) undirected ﬁ ors 0
* Vertex expansion of graph: ¥ (G) = srp%/n ) |N|§~T)|
SI=IVI/ ~— ‘ A
Size of §
* Past work on 1 include: WG = O(1)

« Unnormalized Laplacian A’, [Tanner ’84], [Alon, Milman '85]
Spectral quantity A, [Bobkov, Houdré, Tetali ’00]

SDP relaxation sdp, [Louis, Raghavendra, Vempala '13]
Extension of ARV [Feige, Hajiaghayi, Lee '08]

Spectral hypergraph theory [Louis '15], [CLTZ 18]

Lots of past work, but no nice spectral theory for ¥ :(



Outline

* Reweighted eigenvalues



Reweighting example
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Mixing time is ©O(n) Mixing time is ©(1)




Reweighted eigenvalue

* [BDX'04] “Fastest mixing Markov chain”

* Key idea: eigenvalue A, as proxy for mixing time

* Itis the following program:

A,(I — P)

A (G) = max 1 — as(P)

subject to  P(u,v) = P(v,u) =0

Z P(u,v) =1

veEV
m(u)P(u,v) = m(v) P(v, u)

Yuv ¢ E
VucV

Yuvw ¢ Iv.
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Cheeger’s inequality for y

 Relation between A5 and Y

Theorem [Olesker-Taylor, Zanetti’22] For 7 uniform,

P (G)*
log |V|

< 15(6) 2 Y(6).



A new vertex spectral theory

* Edge: Conductance ¢

‘ Eigenvalue 4, I I Mixing time Ty, ‘

* Vertex: _
‘ Vertex expansion ‘

/—\

Reweighted Fastest mixing
eigenvalue A4; time T,,,;,
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e Qur results



1) Cheeger’s inequality for y, v.2

Theorem [Olesker-Taylor, Zanetti’22] For 7 uniform,

P (G)*
log |V|

< 15(6) 2 Y(6).

* They left open the following questions:

 arbitrary distribution r?
* log |V]| replaced by logd? (|[LRV "13]: SSE-hard to go beyond)
B

d: max degree




1) Cheeger’s inequality for y, v.2

 We answered the questions in the affirmative:

Theorem |Kwok, Lau, T. 22| For arbitrary ,

P(G)?
logd

< 15(6) 2 9(6).

* Furthermore, the log-dependence on d is optimal (not just SSE-optimal)



2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)
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2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)

Bipartite Cheeger |Trevisan '09]
¢5(G)?

5 =27 M(6) = 2¢5(6)

Relates 2 — A,, to “bipartiteness”
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2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)

~ O Bipartite Cheeger |Trevisan '09] [Kwok, Lau, T. '22]
U (6)? Y56 _ .
¢Bz < 2 — 2,(G) < 2¢5(G) lE:)gd 3 ¢7(6) 3 ¥p(6)

Relates 2 — A, to “bipartiteness”  Relates “2 — A},” to “bipartite v. expn”
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2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)

Bipartite Cheeger |Trevisan '09] [Kwok, Lau, T. '22]
G)? > _
¢B(2 ) < 2 — 2,(G) < 2¢5(G) lpﬁ)gd 3 ¢7(6) 3 ¥p(6)
Relates 2 — A,, to “bipartiteness”  Relates “2 — A3,” to “bipartite v. expn”

Higher-order Cheeger [LOT 12, LRTV "12]

(G) 3 dp(G) S KA (G)
Relates 4, to “k-way conductance”
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2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)

Bipartite Cheeger |Trevisan '09] [Kwok, Lau, T. '22]
G)? Yp(G)? _
¢B(2 ) <2 —1,(G) < 2¢5(G) lE:)gd 3 ¢(6) 3 Yp(6)
Relates 2 — A,, to “bipartiteness”  Relates “2 — A3,” to “bipartite v. expn”
Higher-order Cheeger [LOT 12, LRTV "12] [Kwok, Lau, T, 22]
9
A (6) 3 ¢ (G) S K22 (6) 2:(6) 3 Yr(G) 3 kzlogk/logd - 4;(G)

Relates A, to “k-way conductance” Relates 4}, to “k-way v. expn”
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2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)

Bipartite Cheeger |Trevisan '09] [Kwok, Lau, T. '22]
be (26)2 < 2= 14(6) < 2¢5(6) l”lfng; 206 S s (6)
Relates 2 — A, to “bipartiteness”  Relates “2 — A},” to “bipartite v. expn”
Higher-order Cheeger [LOT "12, LRTV "12] [Kwok, Lau, T. '22]
1(6) 3 ¢ (6) 3 k2T (0) 2,(G) = Pu(G) < Kz logk /logd - (C)

Relates A, to “k-way conductance” Relates 4}, to “k-way v. expn”

Improved Cheeger |[KLLOT "13]
k A,(G
#(6) = 2249

VA (G)

Relates A, and 4, to ¢
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2) Generalizations of Cheeger’s inequalities

Eigenvalues (edge) Reweighted eigenvalues (vertex)

Bipartite Cheeger |Trevisan '09]

2
P < 2- 1@ < 205(0)

Relates 2 — A,, to “bipartiteness”

Higher-order Cheeger [LOT "12, LRTV "12]

(G) 3 dp(G) S KA (G)
Relates 4, to “k-way conductance”

Improved Cheeger |[KLLOT "13]
k A,(G
#(6) = 2249

VA (G)

Relates A, and 4, to ¢

[Kwok, Lau, T. '22]

G 2
B <) 3 45(®)

Relates “2 — A;,” to “bipartite v. expn”

[Kwok, Lau, T. '22]

2,(G) = Pu(G) < Kz logk /logd - (C)
Relates 1}, to “k-way v. expn”

[Kwok, Lau, T. '22] .
k2 - A5(G) - logd

(G) =
v JE©

Relates A5 and A}, to ¥
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3) 0/1 polytope with torpid mixing

A 0/1 polytope is a polytope with vertices in {0,1}¢ € R¢

Conjecture (0/1 polytope conjecture)
The graph of any 0/1 polytope has edge expansion > 1.

* If true implies fast sampling using random walks

* On the sampling side, we obtain the following negative evidence:

Theorem [Kwok, Lau, T.’22]

For fixed k and large enough n, there is a 0/1 polytope Q

with O(nk) vertices and Y(Q) < O (nkl_z).

e As a corollary, for all € > 0 there is a 0/1-polytope with fastest mixing time Q(|V|17¢)
to the uniform distribution



Outline

* Proofideas



Dual of A5, program [Roch '05]

Fractional matching

e Primal: M5(G) = max 1 — as(P) =
subject to  P(u,v) = Plv,u) =0 Vuv ¢
> Plu,v) =1 VucV
vEV
w(u)P(u,v) = 7w(v) P(v, u) Yuv € I¥.

! ‘ Rayleigh quotient + minimax + LP duality

e Dual: )‘[{? = f-.v_miflf.,f_-*v_m}n éﬂ{v}y{ﬂ} Fractional vertex cover
Oy ok | sbiectto 3 a() @) =1 =
yo@ifv - R p=ry Normalization
Z x(v)f(v) = 0 constraints
=l

g(u) + g(v) > || f(u) — f(v)|? Vuv € E. -



Easy direction

* Every vertex cut S can be realized as a two-point embedding

« Cover all crossing edges using g(u) = [u € N(S)] - (a — b)?
e Checkthat ), m(u)g(u) < 2yY(S)

26



Hard direction: overview

Theorem [Olesker-Taylor, Zanetti 22] For m uniform, Theorem 'Kwok, Lau, T. 22| For arbitrary ,

2
Y e (6) 3 (@), (dC)

< 25(6) 3 ¥(6).

log [V] logd
1. Take dual: y™(G) = 23(G) 1. Take dual: Y™ (G) = 13(G)
2.]-Llemma: yD(G) 3 log|V| -y (G) 2. Gaussian projection: YD (G) 3 logd - y™(G)

3 Round 1D solution to matching [Jain, Pham, Vuong '22] showed the same for m uniform

conductance 3. Round 1D solution to “directed vertex
expansion”

Key intermediary is “directed program”



Directed program

 Original “vertex cover” constraint:
g +g@ = If - fWII* Yuv e E

* Direct all edges “appropriately”
e Constraint changed to g(v) = ||f (w) — fW)||* Yu - v

Fact: Y0 (6) < y®(6) < 2y®(6)

g'(u)=2g(u) VvueVv

g +g@) = lIf ) — fWII? g =If@ - f@I*

g) = g(uw)

28



Better (analysis of) projection

I R" - RO(logn)
* Using J-L: 7
* We ensure all [[TIf (w) = If () |I* = |If (w) — fFW)II*
* Goto O(logn) dimensions, then “take the best coordinate”

* Using directed program:

* Objective written as ), w(u) vr_rggyllf(u) — fW)II? 2 TR - R

* Projected objective: Y, m(u) max (I1f (u) — I1f (v))?
vu—-v

* Expected max. of d squared standard Gaussians is O(logd)
» Linearity of expectations to conclude yV(G) < 0(logd) - y™(G)



Threshold rounding

* Take 1D solution f:V —- R

 Consider directed vertex boundary 0 (S)

 Define S, .= {v € V: f(v)? > t}

vV E&S;

v E S;

1 1
1 1
1 1
1 1
1 1
1 > 1
1 v 1

t
\
\

Fw2? ot f? fwy?

Pr[v € 9(S)] « max |fW)? ~ f(v)?|

f()?

30



Recap

Reweighted eigenvalue A5
l Strong duality

~
~

Dual program y™(G) =  Dir. program ¥ (G)
@ ‘ log d projection
1D dual program y 1 (G) <& 1D dir program ¥V (G)
u Postprocessing l, Threshold rounding

CutS, Y(S) 3 /2, -logd *®  cCuts,S; s/7 logd
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Proxy for A,

We don’t know how to write A, as a convex program!
Idea: consider gy, := (1, + A, + -+ A;)"

Dual looks like «(G) = min
F V=R, g:V—=Rsgo

subject to

Convex program! (Factor k loss)

Z w(v)g(v)

vel

Fractional vertex cover

=

g(u) + g(v) > | f(w) — f()|? Vuve E

Y w@)f(w)f)" <1y

vel

> @) [ f(@)° =k

veEV

Normalization
constraints
(but different)

32
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* Summary



[) Features of new spectral theory

* Classical spectral theory for ¢:

Conductance ¢

‘ Eigenvalue 1,

I Mixing time T,,;, ‘

* New spectral theory for :

‘ Vertex expansion ‘

/—\

Reweighted

. *
eigenvalue A5

Fastest mixing

. *
time T,,;,
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[I) Cheeger’s inequalities

Cheeger [Cheeger’70, Alon, Milman '85, Alon '86]  [Kwok, Lau, T. '22]
Relates 1, to ¢ Relates 45 to Y

Bipartite Cheeger [Trevisan '09] [Kwok, Lau, T. '22]
Relates 2 — A,, to “bipartiteness”  Relates “2 — A3,” to “bipartite v. expn”

Higher-order Cheeger [L.OT 12, LRTV "12] [Kwok, Lau, T.’22]
Relates A, to “k-way conductance” Relates 4}, to “k-way v. expn”

Improved Cheeger [KLLOT "13] [Kwok, Lau, T. '22]
Relates A, and A, to ¢ Relates A5 and 4}, to ¢

What about reweighted versions of other spectral results?
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Open questions

Extension of spectral theory

e Small-set vertex expansion

* Hypergraphs, directed graphs, etc.

Algorithms

 Fast(er) algorithms for approximating ¥ or computing A*
* Local algorithms for y

Reweighting & approximation

» Arora-Ge conjecture for graph coloring

 Steurer’s conjecture (true => SUBEXP sparsest cut)



Thank you!



