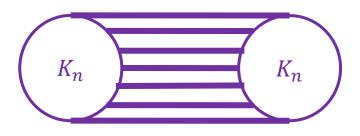
Cheeger Inequalities for Vertex Expansion and Reweighted Eigenvalues

Kam Chuen (Alex) Tung
PhD Candidate, University of Waterloo
2nd November @ FOCS 2022



Joint work with:

Tsz Chiu Kwok (Shanghai U of Finance and Economics)
Lap Chi Lau (U Waterloo)

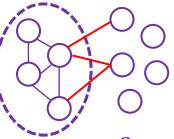
Outline

- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

Outline

- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

Cheeger's inequality

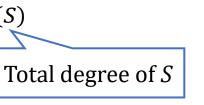


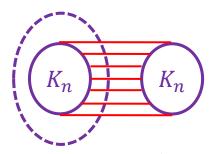
$$\phi(S) = \frac{3}{13}$$

- G = (V, E) undirected
- Conductance of graph: $\phi(G) \coloneqq \min_{vol(S) \le vol(V)/2} \frac{|\delta(S)|}{vol(S)}$

$$\mathcal{A} \coloneqq D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$$

#edges across S





$$\phi(G) = \Theta(\frac{1}{n})$$

• Eigenvalues of Laplacian $\mathcal{L}\coloneqq I-\mathcal{A}$ are $0=\lambda_1\leq \lambda_2\leq \cdots \leq \lambda_n\leq 2$

Theorem [Cheeger '70, Alon, Milman '85, Alon '86]

$$\frac{\phi^2}{2} \le \lambda_2 \le 2 \ \phi$$

• Generalizations abound [Trevisan '09], [LOT '12], [LRTV '12], [KLLOT '13]

λ_2 and mixing time

Go to a random neighbor of the current vertex *u*

- Let P be the canonical random walk on G
- Mixing time is roughly proportional to $1/\lambda_2$:

time needed to get (1/e)-close to s.d. π

$$\frac{1}{\lambda_2} \lesssim T_{mix}(P) \lesssim \frac{1}{\lambda_2} \cdot \log \frac{1}{\pi_{min}}$$

• Summary of classical Cheeger:

Conductance ϕ

Eigenvalue λ_2

Mixing time T_{mix}

Question: is there an analogous theory for vertex expansion?

Outline

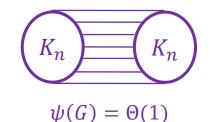
- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

Vertex expansion

- #neighbors of *S*
- $\psi(S) = \frac{2}{4} = \frac{1}{2}$

- G = (V, E) undirected
- Vertex expansion of graph: $\psi(G) \coloneqq \min_{|S| \le |V|/2} \frac{|N(S)|}{|S|}$

Size of *S*



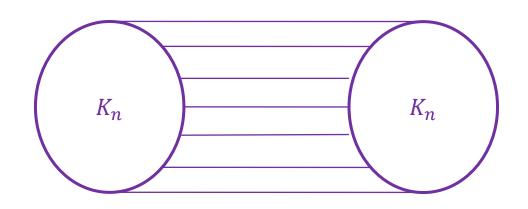
- Past work on ψ include:
 - Unnormalized Laplacian λ_2' [Tanner '84], [Alon, Milman '85]
 - Spectral quantity λ_{∞} [Bobkov, Houdré, Tetali '00]
 - SDP relaxation sdp_{∞} [Louis, Raghavendra, Vempala '13]
 - Extension of ARV [Feige, Hajiaghayi, Lee '08]
 - Spectral hypergraph theory [Louis '15], [CLTZ '18]

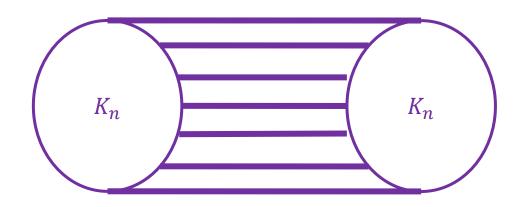
Lots of past work, but no nice spectral theory for ψ :(

Outline

- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

Reweighting example





Mixing time is $\Theta(n)$

Mixing time is $\Theta(1)$

Reweighted eigenvalue

- [BDX '04] "Fastest mixing Markov chain"
- Key idea: eigenvalue λ_2 as proxy for mixing time

• It is the following program:

$$\lambda_2(I-P)$$

$$\lambda_2^*(G) := \max_{P \geq 0} \quad 1-\alpha_2(P)$$

$$\text{subject to} \quad P(u,v) = P(v,u) = 0 \qquad \qquad \forall uv \notin E$$

$$\sum_{v \in V} P(u,v) = 1 \qquad \qquad \forall u \in V$$

$$\pi(u)P(u,v) = \pi(v)P(v,u) \qquad \forall uv \in E.$$

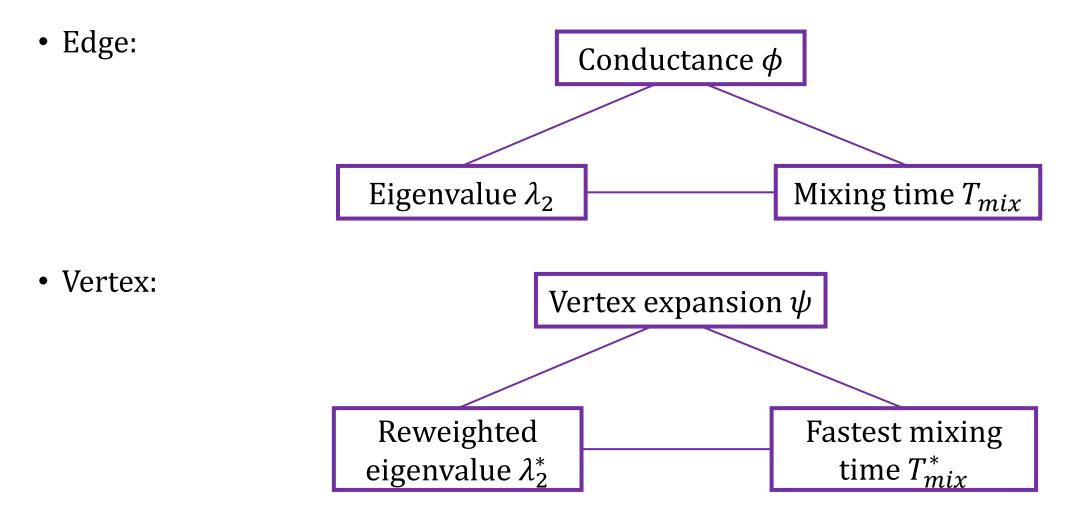
Cheeger's inequality for ψ

• Relation between λ_2^* and ψ

Theorem [Olesker-Taylor, Zanetti '22] For π uniform,

$$\frac{\psi(G)^2}{\log |V|} \lesssim \lambda_2^*(G) \lesssim \psi(G).$$

A new vertex spectral theory



Outline

- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

1) Cheeger's inequality for ψ , v.2

Theorem [Olesker-Taylor, Zanetti '22] For π uniform,

$$\frac{\psi(G)^2}{\log|V|} \lesssim \lambda_2^*(G) \lesssim \psi(G).$$

- They left open the following questions:
 - arbitrary distribution π ?
 - $\log |V|$ replaced by $\log d$? ([LRV '13]: SSE-hard to go beyond)

d: max degree

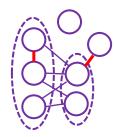
1) Cheeger's inequality for ψ , v.2

• We answered the questions in the affirmative:

Theorem [Kwok, Lau, T. '22] For arbitrary
$$\pi$$
,
$$\frac{\psi(G)^2}{\log d} \lesssim \lambda_2^*(G) \lesssim \psi(G).$$

• Furthermore, the log-dependence on *d* is optimal (not just SSE-optimal)

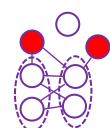
Eigenvalues (edge)	Reweighted eigenvalues (vertex)



	Eigenvalues (edge)	Reweighted eigenvalues (vertex)
)	Bipartite Cheeger [Trevisan '09] $\frac{\phi_B(G)^2}{2} \le 2 - \lambda_n(G) \le 2\phi_B(G)$ Relates $2 - \lambda_n$ to "bipartiteness"	
	Relates 2 – n_n to bipartiteliess	

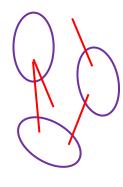
00	7
00	<u>ر</u>
10PO	

	Eigenvalues (edge)	Reweighted eigenvalues (vertex)
)	Bipartite Cheeger [Trevisan '09] $\frac{\phi_B(G)^2}{2} \le 2 - \lambda_n(G) \le 2\phi_B(G)$ Relates $2 - \lambda_n$ to "bipartiteness"	[Kwok, Lau, T. '22] $\frac{\psi_B(G)^2}{\log d} \lesssim \zeta^*(G) \lesssim \psi_B(G)$ Relates "2 $-\lambda_n^*$ " to "bipartite v. expn"



Eigenvalues (edge)	Reweighted eigenvalues (vertex)
Bipartite Cheeger [Trevisan '09]	[Kwok, Lau, T . '22]
$\frac{\phi_B(G)^2}{2} \le 2 - \lambda_n(G) \le 2\phi_B(G)$	$\frac{\psi_B(G)^2}{\log d} \lesssim \zeta^*(G) \lesssim \psi_B(G)$ Relates "2 — λ_n^* " to "bipartite v. expn"
Relates $2 - \lambda_n$ to "bipartiteness"	Relates "2 $-\lambda_n^*$ " to "bipartite v. expn"
Higher-order Cheeger [LOT '12, LRTV '12]	
$\lambda_k(G) \lesssim \phi_k(G) \lesssim \mathrm{k}^2 \sqrt{\lambda_k(G)}$	
Relates λ_k to " k -way conductance"	

Eigenvalues (edge)	Reweighted eigenvalues (vertex)
Bipartite Cheeger [Trevisan '09] $\frac{\phi_B(G)^2}{2} \le 2 - \lambda_n(G) \le 2\phi_B(G)$ Relates $2 - \lambda_n$ to "bipartiteness"	[Kwok, Lau, T. '22] $\frac{\psi_B(G)^2}{\log d} \lesssim \zeta^*(G) \lesssim \psi_B(G)$ Relates "2 $-\lambda_n^*$ " to "bipartite v. expn"
Higher-order Cheeger [LOT '12, LRTV '12] $\lambda_k(G) \lesssim \phi_k(G) \lesssim \mathrm{k}^2 \sqrt{\lambda_k(G)}$ Relates λ_k to " k -way conductance"	[Kwok, Lau, T. '22] $\lambda_k^*(G) \lesssim \psi_k(G) \lesssim k^{\frac{9}{2}} \log k \sqrt{\log d \cdot \lambda_k^*(G)}$ Relates λ_k^* to " k -way v. expn"



Eigenvalues (edge)	Reweighted eigenvalues (vertex)
Bipartite Cheeger [Trevisan '09] $\frac{\phi_B(G)^2}{2} \le 2 - \lambda_n(G) \le 2\phi_B(G)$ Relates $2 - \lambda_n$ to "bipartiteness"	[Kwok, Lau, T. '22] $\frac{\psi_B(G)^2}{\log d} \lesssim \zeta^*(G) \lesssim \psi_B(G)$ Relates "2 $-\lambda_n^*$ " to "bipartite v. expn"
Higher-order Cheeger [LOT '12, LRTV '12]	[Kwok, Lau, T. '22] $\lambda_k^*(G) \lesssim \psi_k(G) \lesssim k^{\frac{9}{2}} \log k \sqrt{\log d \cdot \lambda_k^*(G)}$
$\lambda_k(G) \lesssim \phi_k(G) \lesssim \mathrm{k}^2 \sqrt{\lambda_k(G)}$ Relates λ_k to " k -way conductance"	$ \lambda_k(G) \lesssim \psi_k(G) \lesssim \aleph^2 \log \kappa \sqrt{\log u} \cdot \lambda_k(G) $ Relates λ_k^* to " k -way v. expn"
Improved Cheeger [KLLOT '13] $\phi(G) \lesssim \frac{k \ \lambda_2(G)}{\sqrt{\lambda_k(G)}}$ Relates λ_2 and λ_k to ϕ	

Eigenvalues (edge)	Reweighted eigenvalues (vertex)
Bipartite Cheeger [Trevisan '09] $\frac{\phi_B(G)^2}{2} \le 2 - \lambda_n(G) \le 2\phi_B(G)$	[Kwok, Lau, T. '22] $\frac{\psi_B(G)^2}{\log d} \lesssim \zeta^*(G) \lesssim \psi_B(G)$ Relates "2 $-\lambda_n^*$ " to "bipartite v. expn"
Relates $2 - \lambda_n$ to "bipartiteness"	Relates "2 – λ_n^* " to "bipartite v. expn"
Higher-order Cheeger [LOT '12, LRTV '12]	[Kwok, Lau, T. '22]
$\lambda_k(G) \lesssim \phi_k(G) \lesssim \mathrm{k}^2 \sqrt{\lambda_k(G)}$	$\lambda_k^*(G) \lesssim \psi_k(G) \lesssim k^{\frac{9}{2}} \log k \sqrt{\log d \cdot \lambda_k^*(G)}$
Relates λ_k to " k -way conductance"	Relates λ_k^* to " k -way v. expn"
Improved Cheeger [KLLOT '13] $\phi(G) \lesssim \frac{k \ \lambda_2(G)}{\sqrt{\lambda_k(G)}}$ Relates λ_2 and λ_k to ϕ	[Kwok, Lau, T. '22] $\psi(G) \lesssim \frac{k^{\frac{3}{2}} \cdot \lambda_2^*(G) \cdot \log d}{\sqrt{\lambda_k^*(G)}}$ Relates λ_2^* and λ_k^* to ψ

3) 0/1 polytope with torpid mixing

• A 0/1 polytope is a polytope with vertices in $\{0,1\}^d \subseteq \mathbb{R}^d$

Conjecture (0/1 polytope conjecture) The graph of any 0/1 polytope has edge expansion ≥ 1 .

- If true implies fast sampling using random walks
- On the sampling side, we obtain the following negative evidence:

Theorem [Kwok, Lau, T. '22]
For fixed k and large enough n, there is a 0/1 polytope Q with $O(n^k)$ vertices and $\psi(Q) \lesssim O_k(\frac{1}{n^{k-2}})$.

• As a corollary, for all $\epsilon > 0$ there is a 0/1-polytope with *fastest* mixing time $\Omega(|V|^{1-\epsilon})$ to the uniform distribution

Outline

- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

Dual of λ_2^* program [Roch '05]

• Primal: $\lambda_2^*(G) := \max_{P>0} 1 - \alpha_2(P)$

subject to
$$P(u,v) = P(v,u) = 0$$

$$\sum_{v} P(u,v) = 1$$

$$\pi(u)P(u,v) = \pi(v)P(v,u)$$

$$\forall uv \notin E$$

$$\forall u \in V$$

$$\forall uv \in E$$
.

Rayleigh quotient + minimax + LP duality

 $\gamma(G) := \min_{f:V \to \mathbb{R}^n, \ g:V \to \mathbb{R}_{\geq 0}} \qquad \sum_{v \in V} \pi(v)g(v)$ • Dual:

$$\gamma^{(k)}(G)$$
 if $f: V \to \mathbb{R}^k$

subject to
$$\sum_{v \in V} \pi(v) \|f(v)\|^2 = 1$$

$$\sum_{v \in V} \pi(v) f(v) = \vec{0}$$

Normalization constraints

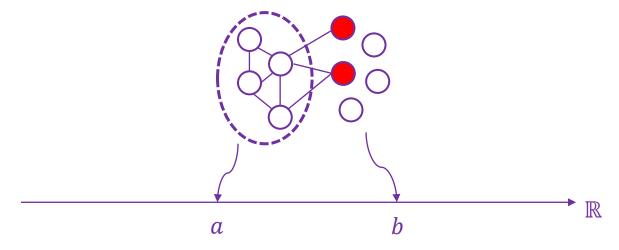
$$g(u) + g(v) \ge ||f(u) - f(v)||^2 \quad \forall uv \in E.$$

Fractional vertex cover

Fractional matching

Easy direction

• Every vertex cut *S* can be realized as a two-point embedding



- Cover all crossing edges using $g(u) = [u \in N(S)] \cdot (a b)^2$
- Check that $\sum_{u} \pi(u) g(u) \le 2 \psi(S)$

Hard direction: overview

Theorem [Olesker-Taylor, Zanetti '22] For π uniform,

$$\frac{\psi(G)^2}{\log|V|} \lesssim \lambda_2^*(G) \lesssim \psi(G).$$

- 1. Take dual: $\gamma^{(n)}(G) = \lambda_2^*(G)$
- 2. J-L lemma: $\gamma^{(1)}(G) \lesssim \log |V| \cdot \gamma^{(n)}(G)$
- 3. Round 1D solution to matching conductance

Theorem [Kwok, Lau, T. '22] For arbitrary π ,

$$\frac{\psi(G)^2}{\log d} \lesssim \lambda_2^*(G) \lesssim \psi(G).$$

- 1. Take dual: $\gamma^{(n)}(G) = \lambda_2^*(G)$
- 2. Gaussian projection: $\gamma^{(1)}(G) \lesssim \log d \cdot \gamma^{(n)}(G)$ [Jain, Pham, Vuong '22] showed the same for π uniform
- 3. Round 1D solution to "directed vertex expansion"

Key intermediary is "directed program"

Directed program

• Original "vertex cover" constraint:

$$g(u) + g(v) \ge ||f(u) - f(v)||^2 \ \forall uv \in E$$

- Direct all edges "appropriately"
- Constraint changed to $g(v) \ge ||f(u) f(v)||^2 \ \forall u \to v$

Fact:
$$\gamma^{(k)}(G) \le \vec{\gamma}^{(k)}(G) \le 2\gamma^{(k)}(G)$$

$$g(v) \ge g(u)$$

$$u$$

$$g'(u) \coloneqq 2g(u) \quad \forall u \in V$$

$$g(u) + g(v) \ge ||f(u) - f(v)||^2$$

$$g'(v) \ge ||f(u) - f(v)||^2$$

Better (analysis of) projection

 $\Pi: \mathbb{R}^n \to \mathbb{R}^{O(\log n)}$

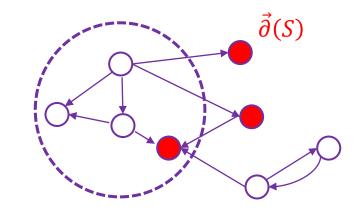
- Using J-L:
 - We ensure all $\|\Pi f(u) \Pi f(v)\|^2 \approx \|f(u) f(v)\|^2$
 - Go to $O(\log n)$ dimensions, then "take the best coordinate"

- Using directed program:
 - Objective written as $\sum_{u} \pi(u) \max_{v:u \to v} ||f(u) f(v)||^2$
 - Projected objective: $\sum_{u} \pi(u) \max_{v:u \to v} (\Pi f(u) \Pi f(v))^2$
 - Expected max. of d squared standard Gaussians is $O(\log d)$
 - Linearity of expectations to conclude $\gamma^{(1)}(G) \leq O(\log d) \cdot \gamma^{(n)}(G)$

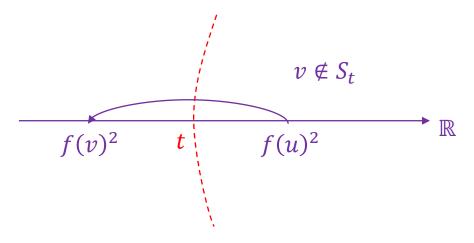
 $\Pi: \mathbb{R}^n \to \mathbb{R}$

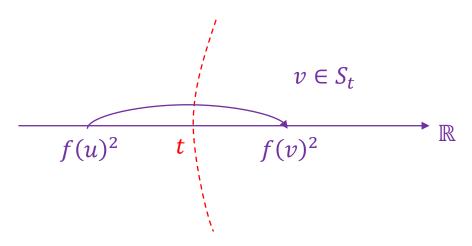
Threshold rounding

- Take 1D solution $f: V \to \mathbb{R}$
- Consider directed vertex boundary $\vec{\partial}(S)$



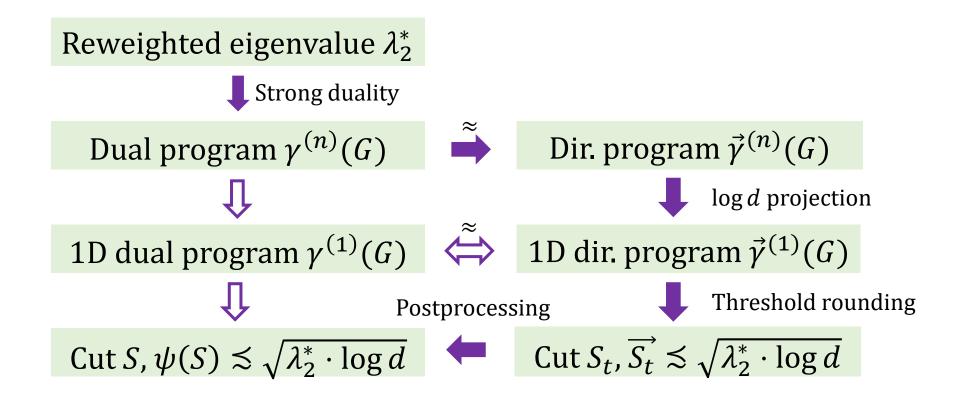
• Define
$$S_t := \{v \in V : f(v)^2 > t\}$$





$$\Pr[v \in \vec{\partial}(S_t)] \propto \max_{u:u \to v} |f(u)^2 - f(v)^2|$$

Recap



Proxy for λ_k^*

- We don't know how to write λ_k^* as a convex program!
- Idea: consider $\sigma_k^* \coloneqq (\lambda_1 + \lambda_2 + \dots + \lambda_k)^*$
- Dual looks like $\kappa(G) := \min_{f:V \to \mathbb{R}^n, \ g:V \to \mathbb{R}_{\geq 0}} \sum_{v \in V} \pi(v)g(v)$ Fractional vertex cover subject to $g(u) + g(v) \geq \|f(u) f(v)\|^2 \quad \forall uv \in E$ $\sum_{v \in V} \pi(v)f(v)f(v)^T \preccurlyeq I_n$ Normalization

 $\sum \pi(v) \|f(v)\|^2 = k.$

• Convex program! (Factor *k* loss)

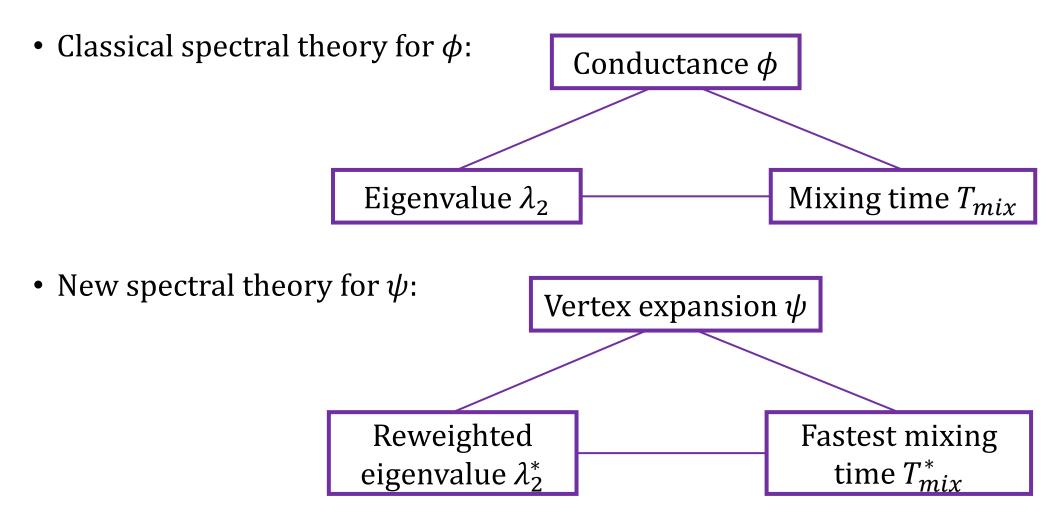
constraints

(but different)

Outline

- Classical Cheeger's inequality
- Vertex expansion
- Reweighted eigenvalues
- Our results
- Proof ideas
- Summary

I) Features of new spectral theory



II) Cheeger's inequalities

Eigenvalues	Reweighted eigenvalues
Cheeger [Cheeger '70, Alon, Milman '85, Alon '86] Relates λ_2 to ϕ	[Kwok, Lau, T. '22] Relates λ_2^* to ψ
Bipartite Cheeger [Trevisan '09] Relates $2 - \lambda_n$ to "bipartiteness"	[Kwok, Lau, T. '22] Relates " $2 - \lambda_n^*$ " to "bipartite v. expn"
Higher-order Cheeger [LOT '12, LRTV '12] Relates λ_k to " k -way conductance"	[Kwok, Lau, T. '22] Relates λ_k^* to " k -way v. expn"
Improved Cheeger [KLLOT '13] Relates λ_2 and λ_k to ϕ	[Kwok, Lau, T. '22] Relates λ_2^* and λ_k^* to ψ

What about reweighted versions of other spectral results?

Open questions

Extension of spectral theory

- Small-set vertex expansion
- Hypergraphs, directed graphs, etc.

Algorithms

- Fast(er) algorithms for approximating ψ or computing λ^*
- Local algorithms for ψ

Reweighting & approximation

- Arora-Ge conjecture for graph coloring
- Steurer's conjecture (true => SUBEXP sparsest cut)

Thank you!