Steurer's Conjecture and Sparsest Cut (II)

Reading Group Spring '22

Alex Tung 16 August 2022

Agenda

- Recall
- More on local distribution
- Correlation rounding
- Sparsest cut *for low-rank graphs*
- Technical discussions

Before start…

- I couldn't yet figure out how Steurer's conjecture implies subexponential sparsest cut, after a month
- There's some technical difficulties that we will discuss in the end

• Today we will follow [BRS] and deal with low-rank case

Agenda

• Recall

-
-
-
-

SDP hierarchy: setup

- Combinatorial optimization
- Objective function $g: \{0, 1\}^n \to \mathbb{R}$, extensible to $g: [0, 1]^n \to \mathbb{R}$
	- We are minimizing $g(x)$ over $x \in \{0,1\}^n$, g convex
- Subject to linear constraints: $x \in K := \{x': Ax' \ge b\}$

Lasserre hierarchy

Definition 1. Let $K = \{x \in \mathbb{R}^n \mid Ax \geq b\}$. We define the *t*-th level of the Lasserre hierarchy LAS_t(K) as the set of vectors $y \in \mathbb{R}^{2^{[n]}}$ that satisfy

$$
M_t(y) := (y_{I \cup J})_{|I|,|J| \le t} \ge 0; \qquad M_t^{\ell}(y) := \left(\sum_{i=1}^n A_{\ell i} y_{I \cup J \cup \{i\}} - b_{\ell} y_{I \cup J}\right)_{|I|,|J| \le t} \ge 0 \quad \forall \ell \in [m]; \qquad y_{\emptyset} = 1.
$$

 $\mathbb{Y}_{\mathcal{I}} = \mathbb{P}r[X_{\mathcal{I}} = 1] = \mathbb{Y}_{r}[N_{\mathcal{I}} = 1]$

The matrix $M_t(y)$ is called the *moment matrix of* y and the second type $M^t_{\ell}(y)$ is called *moment matrix of slacks.* Furthermore, let $\text{Las}_{t}^{\text{proj}}(K) := \{(y_{\{1\}}, \ldots, y_{\{n\}}) \mid y \in \text{Las}_{t}(K)\}\$ be the projection on the original variables.

- Increasingly tight relaxations of the integer program
- y_I $(I \subseteq [n])$ as joint probabilities

Geometric interpretation of $M_t(y)$

- We have $M_t(y) \coloneqq \big(y_{I \cup J}\big)_{|I|,|J| \leq t}$ ≽ 0
- Meaning: there exists vectors $\{v_I\}_{|I|\leq t}\subseteq\mathbb{R}^{2^n}$ such that $\langle v_I, v_J \rangle =$ $y_{I\cup I}$
- These vector solutions are useful in (i) interpreting rounding algorithm and (ii) relating Steurer's conjecture and sparsest cut

Projecting Lasserre solutions

Lemma 2. For $t \ge 1$, let $y \in \text{Las}_t(K)$ and $i \in [n]$ be a variable with $0 < y_i < 1$. If we define

$$
z_I^{(1)} := \frac{y_{I \cup \{i\}}}{y_i} \quad \text{and} \quad z_I^{(0)} := \frac{y_I - y_{I \cup \{i\}}}{1 - y_i}
$$

then we have $y = y_i \cdot z^{(1)} + (1 - y_i) \cdot z^{(0)}$ with $z^{(0)}$, $z^{(1)} \in \text{Las}_{t-1}(K)$ and $z_i^{(0)} = 0$, $z_i^{(1)} = 1$.

Corresponding vector solution: $v_I^{(1)} \coloneqq$ $v_{I \cup \{i\}}$ v_i , $v_I^{\scriptscriptstyle (}$ 0 ≔ $v_I - v_{I \cup \{i\}}$ $||v_{\emptyset} - v_i||$

Goals of today

- Study local distribution in more detail
- State and prove key results relating global and local correlations
- Discuss how to apply Lasserre hierarchy to sparsest cut

Agenda

• More on local distribution

-
-
-

Local assignments

- We mentioned that Lasserre variables $y_I = Pr[\Lambda_{i \in I} X_i = 1]$
- They are enough to give probabilities on different assignments (to variables in I) $\{j: f(j)=1\}$
- Given level-*t* Lasserre solution (y_I) , for $|I| \le t$ and $f: I \to \{0, 1\}$ define $y_I(f) := \sum_{I':f^{-1}(1) \subseteq I' \subseteq I} (-1)^{|I'\setminus f^{-1}(1)|}$ $\cdot y_{I}$ $\mathcal{Y}_{\mathbb{I}}(f) = \overbrace{Pr\left[\bigwedge_{\substack{1 \leq \tilde{i} \leq \tilde{j} \\ 1 \leq \tilde{i} \leq \tilde{k} \end{array}} \chi_{\tilde{i}} = f(i) \right]}^{\mathcal{Y}_{\mathbb{I}}(f)}$ • This is the language used in [BRS] and [GS]
-

Explanation

- Definition: $y_I(f) := \sum_{I':f^{-1}(1) \subseteq I' \subseteq I} (-1)^{|I' \setminus f^{-1}(1)|}$ $\cdot y_{I}$
- Interpret as $y_i(f) = Pr[\Lambda_{i \in I} X_i = f(i)]$
- Based on inclusion-exclusion. Example: $y_{\{1,2,3\}}(010)$

$$
y_{123}^{(a_{1}a_{1}a)^{-2}}(-1)^{1-1} \cdot y_{2} + (-1)^{2-1} \cdot y_{12} + (-1)^{2-1} \cdot y_{23} + (-1)^{3-1} \cdot y_{13}
$$
\n
$$
(1^{2} \cdot 2^{2} \cdot 1) \qquad (1^{2} \cdot 1_{1} \cdot 1) \qquad 1
$$
\n
$$
= y_{2} - y_{12} - y_{23} + y_{123}
$$
\n
$$
\geq 1
$$

Vector solutions

• For each subset $|I| \le t$ and assignment $f: I \to \{0, 1\}$, define a vector $v_I(f)$ accordingly:

$$
\nu_I(f) := \sum_{I':f^{-1}(1) \subseteq I'} \subseteq I^{(-1)}^{|I'\setminus f^{-1}(1)|} \cdot \nu_{I'}
$$

Properties

- We can derive properties of $y_I(f)$ and $v_I(f)$ from properties of y_I and v_I :
	- (a) $\langle v_I(f), v_I(g) \rangle = 0$ if f and g are inconsistent $\langle v_I, v_I \rangle$ ² yus
	- (b) $\langle v_I(f), v_J(g) \rangle = \langle v_{I'}(f'), v_{J'}(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$
	- (c) (Marginals) $||v_i(0)||^2 + ||v_i(1)||^2 = 1$
	- (d) (Marginals) $v_I(f \cup (i \mapsto 0)) + v_I(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f)$ for $f: I \setminus I$ $\{i\} \rightarrow \{0, 1\}$

Properties

- We can derive properties of $y_I(f)$ and $v_I(f)$ from properties of y_I and v_I :
	- (e) $y_{I \cup I}(f \cup g) = \langle v_I(f), v_I(g) \rangle$ if $f: I \to \{0, 1\}$ and $g: J \to \{0, 1\}$ are consistent
	- (f) $0 \leq v_I(f) \leq 1$
	- (g) $y_I(f) \ge y_{I'}(f')$ if $I' \supseteq I$ and $f'|_I = f$
	- (h) (Marginals) $y_I(f \cup (i \mapsto 0)) + y_I(f \cup (i \mapsto 1)) = y_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \to \{0, 1\}$
{0, 1} $\sqrt[y]{\sqrt[k]{\sum_{i=1}^{k} y_i}} \sqrt[z]{\sqrt[3]{\sum_{i=1}^{k} y_i}} \sqrt[x]{\sum_{i=1}^{k} y_i} \sqrt[x]{\sum_{i=1}^{k} y_i} \sqrt[x]{\sum_{i=1}^{k} y_i}$ $\{0, 1\}$

 $=\mathcal{C}_{Y}\left[X_{\mathbf{L}}\right] \mathbf{y}_{\mathbf{i}\mathbf{\mathbf{y}}}=f\right]$

• (i) (Total probability) $\sum_{f:I\to\{0,1\}} y_I(f) = 1$

Selected proofs

We shall prove:

- (a) $\langle v_I(f), v_I(g) \rangle = 0$ if f and g are inconsistent
- (b) $\langle v_I(f), v_J(g) \rangle = \langle v_{I'}(f'), v_{J'}(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$
- (d) (Marginals) $v_I(f \cup (i \mapsto 0)) + v_I(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \rightarrow$ $\{0, 1\}$

(a) $\langle v_I(f), v_I(g) \rangle = 0$ if f and g are inconsistent

$$
i \in I \cap J
$$
 s.7, $f'(i) = 1$, $g'(i) = 0$,
\n $\sum_{T'} \sum_{(j) \in I' \in I} (-1)^{|I' \setminus f'(j)|} \cdot (-1)^{|J'| \cdot f''(j)|} \cdot (V_{I', Y_{J'}})$
\n $f'(i) \in I' \cap J'$
\nObserve: $i \in I'$ always, and for each $J' \circ f$, $i \notin J'$, there corresponds $J' \cup \{i\}$
\n $(-1)^{|I' \setminus f'(i)|} \cdot [1 + iU] \times V_{I', Y} + V_{J'} \cup J'$
\n $(\cdot S_{Nm} + 0.9)$
\n $\sum_{(i, j) \in I} \sum_{(i, j) \in J} \sum_{(j, j) \in J'} \sum_{(j$

(b) $\langle v_I(f), v_J(g) \rangle = \langle v_I(f'), v_J(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$

$$
\begin{array}{rcl}\n\big\{\nabla_{\mathbf{x}}(f),\nabla_{3}G_{3}\n\big\} > < \big\{\nabla_{\mathbf{x}U_{3}}(f^{V_{1}}),\nabla_{\mathbf{y}}\n\big\}.\n\big\}\n\big\{\nabla_{\mathbf{x}}\left(\nabla_{\mathbf{x}}\right)\n\big\}\n\big\}\n\big\{\nabla_{\mathbf{x}}\left(\nabla_{\mathbf{x}}\right)\n\big\}\n\big\}\n\big\{\nabla_{\mathbf{x}}\left(\nabla_{\mathbf{x}}\right)\n\big\}\n\big\}\n\big\}\n\big\{\nabla_{\mathbf{x}}\left(\nabla_{\mathbf{x}}\right)\n\big\}\n\big\}\n\big\}\n\big\{\nabla_{\mathbf{x}}\left(\nabla_{\mathbf{x}}\right)\n\big\}\n\big\}\n\big\}\n\big\{\n\mathbf{x}.\n\big\}\n\big\}\n\big\{\n\mathbf{y}.\n\big\}
$$
\n
$$
\big\{\nabla_{\mathbf{x}}\left(\nabla_{\mathbf{x}}\right)^{T}(\mathbf{y})\in K\in\mathbb{Z}^{T}\right\}\n\big\}\n\big\}\n\big\}\n\big\{\n\mathbf{y}.\n\big\}
$$
\n
$$
\big\{\n\mathbf{y}^{T}(\mathbf{y})^{T}(\mathbf{y})\in K\in\mathbb{Z}^{T}\big\}\n\big\}\n\big\}\n\big\{\n\mathbf{y}^{T}(\mathbf{y})^{T}(\mathbf{y})\n\big\}\n\big\}\n\big\}\n\big\{\n\mathbf{y}.\n\big\}
$$

(Almost) blank page

(d) (Marginals)
$$
v_I(f \cup (i \rightarrow 0)) + v_I(f \cup (i \rightarrow 1)) = v_{I \setminus \{i\}}(f)
$$
 for $f: I \setminus \{i\} \rightarrow$
\n $\{0, 1\}$
\n $\lfloor \frac{1}{5} \cdot \lfloor \frac{1}{5} \cdot \lfloor \frac{1}{5} \cdot \$

Dependency for the other parts

- $\mathcal{P} \bullet$ (a) $\langle v_I(f), v_I(g) \rangle = 0$ if f and g are inconsistent
- (b) $\langle v_I(f), v_J(g) \rangle = \langle v_{I'}(f'), v_{J'}(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$
- (c) (Marginals) $||v_i(0)||^2 + ||v_i(1)||^2 = 1$
	- (d) (Marginals) $v_I(f \cup (i \mapsto 0)) + v_I(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \rightarrow$ $\{0, 1\}$
	- $\{ \bullet \}$ (e) $y_{I \cup I}(f \cup g) = \langle v_I(f), v_I(g) \rangle$ if $f: I \to \{0, 1\}$ and $g: J \to \{0, 1\}$ are consistent (e) , (h) , (f) $0 \leq y_I(f) \leq 1$
		- (g) $y_I(f) \ge y_{I'}(f')$ if $I' \supseteq I$ and $f'|_I = f$
		- (h) (Marginals) $y_I(f \cup (i \mapsto 0)) + y_I(f \cup (i \mapsto 1)) = y_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \to$ ${0, 1}$
		- (h) (i) (Total probability) $\sum_{f:I\rightarrow\{0,1\}} y_I(f) = 1$

How projection affects $y_1(f)$ and $v_1(f)$

• Similar formula holds for $y_I^{(k)}(f)$ and $v_I^{(k)}(f)$ when conditioning on variable *i* taking value $k \in \{0, 1\}$. For example,

$$
y_l^{(1)}(f) = y_{l \cup \{i\}}(f \cup (i \mapsto 1)) / y_i
$$

$$
y_r[\chi_{\mathbf{1}} = f | \chi_{\mathbf{i}} = 1] = \Pr[\chi_{\mathbf{1}} = f \wedge \chi_{\mathbf{i}} = 1]
$$

• More generally, we can condition on a partial assignment $h: J \rightarrow$ $\{0,1\}$. For example,

$$
y_I^{(h)}(f) = y_{I \cup J}(f \cup h)/y_J(h)
$$

Summary

- For each partial assignment $f: I \rightarrow \{0, 1\}$, there corresponds marginal probability $y_I(f)$ and a vector $v_I(f)$
- Definition requires only y_i and v_i and uses inclusion-exclusion
- Has nice properties that justify the probability interpretation that $y_I(f) = Pr[X_I = f]$

Agenda

-
- Correlation rounding
-
-

Propagation Sampling

Recall that we round level-t Lasserre solutions as follows:

- (1) Pick variables i_t , i_{t-1} , ..., i_1 one by one and condition on their values. Conditioning according to local distribution $y_I(f)$
- (2) For other variables i', assign value independently, according to marginal y_i , (after conditioning)

Graphs

- Assume there is a given graph $G = (V, E)$, and the objective is a linear combination of y_i for $i \in V$ and $y_{i,j}$ for $(i,j) \in E$
- This captures all 2-CSP's (with two labels)
- ϵ -threshold rank of G (ran $k_{\geq \epsilon}(G)$) is defined as the number of eigenvalues of $A(G)$ that are $\geq \epsilon$ 4
normalized

Main Theorem

$$
r = rank_{z,BC4}(\xi) (G1)/\xi^{4}
$$
.

Theorem 5.7. Let $\varepsilon > 0$ and $r = O(k) \cdot \text{rank}_{\geqslant \Omega(\varepsilon/k)^2}(G)/\varepsilon^4$. Suppose that the r-round Lasserre value of the MAX 2-Csp instance \Im is($\widehat{\sigma}$.) Then, given an optimal r-round Lasserre solution, Algorithm 5.5 (Propagation Sampling) outputs an assignment with expected value at least $\sigma - \varepsilon$ for \mathfrak{I} .

- Section 5 of [BRS] works more generally for 2-CSP's with k labels
- You may assume $k = 2$ without loss

Intuition

- When threshold rank is low, the graph is not too badly connected
- Higher-order Cheeger says that the graph doesn't have a lot of disjoint sparse cuts
- Therefore, conditioning on enough vertices, the other vertices should be almost determined

Notations

- X_i denotes the i-th variable (distributed according to $\{y_I\}$)
- NOTE: X_i 's are not jointly distributed
- X_{iq} denotes the indicator variable $[X_i = a]$
- $\{X_L\}$ denotes the distribution over possible outcomes f: $I \rightarrow \{0,1\}$. $Pr[X_{I} = f(I)] = y_{I}(f).$

Broad outline of proof

- Use variance $\frac{1}{n}$ $\frac{1}{n}\sum_i y_i(1-y_i)$ as potential function
- To show: discrepancy $\mathbb{E}_{(i,j)\in E} \| \{X_iX_j\} \{X_i\}\{X_j\} \|_1$ small in the end
- Prove that large discrepancy -> large drop in potential
- $\int_{1}^{\infty} \int_{1}^{x} \cdot \frac{1}{2} \cdot \int_{1}^{x} \cdot \frac{1}{2} \cdot \int_{1}^{x} \cdot \frac{1}{2} \cdot$
	-
	- If $\mathbb{E}_{(i,j)\in E} \left\| \{X_i X_j | X_S\} \{X_i | X_S\} \{X_j | X_S\} \right\|_1 < \eta$, by independently sampling X_{V-S} we lose at most η in objective value

Variance drop and covariance

Lemma 5.2. For any two vertices $i, j \in V$,

$$
\text{Var}\,X_i - \underset{\{X_j\}}{\mathbb{E}} \text{Var}\left[X_i \mid X_j\right] \ge \frac{1}{k} \sum_{a,b \in [k]} \underset{\{X_i\}}{\text{Var}} \text{Cov}(X_{ia}, X_{jb})^2 / \text{Var}\,X_{jb}
$$

Proof:
$$
z_{1}, z_{2}, \{0,1\} \rightarrow \text{var}[\text{else } f\text{the}
$$

\n
$$
\rightarrow \text{Var}[\text{else } 1 - \text{Var}[\text{else } \text{Var}[\text{le } 1] \ge \text{Cov}(\text{le } 1, \text{le } 2)]
$$
\n
$$
\rightarrow \text{Var}[\text{le } 1 - \text{Var}[\text{le } 1, \text{Sum over } \text{Gell}[\text{le }])
$$
\n
$$
\text{Take } z_{1} = \text{Var}[x_{1}] - \text{Var}[x_{1}|\text{Y}_{1}b] = \sum_{a \in I(x)} \text{Cov}(x_{ia}x_{jb})^{2}
$$
\n
$$
\text{Take } t_{1} \text{ form } \text{Var}[x_{i}] - \text{Var}[x_{i}|\text{X}_{i}|\text{X}_{j}b] = \sum_{a \in I(x)} \text{Var}[x_{jb}]\text{Var}[x_{jb}].
$$

Covariance and "covariance vector"

Proposition. The matrix $\big(Cov\big(X_{ia},X_{jb}\big)\big)_{i,j\in V,a,b\in[k]}$ is PSD.

Proof: In fart we will show $Cov(X_{\tau}(f), X_{\tau}(q))$ is $P5D$
< $V_{\tau}(f)$, $V_{\tau}(q) > 0$ $V_{\tau}(f \vee q) = E(X_{\tau}(f) \wedge \tau(q))$ < VI(f), VJ(g) > = V_{JUJ}(fvg) = E(X_I(f) XJ(g))

(-yuJ(fvg)

(-yuJ(fvg)

(u_I(f), VJ(g) - ||VI(f)||². Vq,

(u_I(f), VJ(g) 7 = < V_I(f) - ||V_J(f)||². Vq, VJ(g) - ||VUJ)||². Vq, 7

(v_{J(g)}||²

(-yuJ(fvg) 7 $u_1(f):=V_1(f)-||v_1(f)||^2. v_q$

Covariance and "covariance vector"

Lemma 5.3. Suppose that the matrix $\left(\text{Cov}(X_{ia}, X_{jb})\right)_{i \in V, a \in [k]}$ is positive semidefinite. Then, there exists vectors $\widetilde{u}_1, \ldots, \widetilde{u}_n$ in the unit ball such that for all vertices $i, j \in V$,

$$
\frac{1}{k^2} \Big(\sum_{(a,b)\in[k]^2} \big| \operatorname{Cov}(X_{ia}, X_{jb}) \big| \Big)^2 \leq \langle \widetilde{\mathbf{v}}_i, \widetilde{\mathbf{v}}_j \rangle \leq \frac{1}{k} \sum_{(a,b)\in[k]^2} \frac{1}{2} \big(\frac{1}{\operatorname{Var} X_{ia}} + \frac{1}{\operatorname{Var} X_{jb}} \big) \operatorname{Cov}(X_{ia}, X_{jb})^2.
$$

What is the significance of this lemma?

Lemma 5.3. Suppose that the matrix
$$
(Cov(X_{ia}, X_{jb})_{i \in X_{i}} is positive semidefinite. Then,
\n
$$
\bigvee_{i \in X} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\}\bigvee_{i \in X_{ja}} \{|\zeta_{i}^{k_{j}}\}\bigvee_{i \in X_{ja
$$
$$

So far, we have:

$$
\bullet \text{ (Lemma 5.3)} \left\langle \tilde{u}_i, \tilde{u}_j \right\rangle \leq \frac{1}{2k} \sum_{a,b} \left(\frac{1}{Var X_{ia}} + \frac{1}{Var X_{jb}} \right) Cov(X_{ia}, X_{jb})^2
$$
\n
$$
\bullet \text{ (Lemma 5.2)} \frac{1}{k} \sum_{a,b} \frac{Cov(X_{ia}, X_{jb})^2}{Var X_{jb}} \leq Var[X_i] - \mathbb{E}_{\{X_j\}} Var[X_i | X_j]
$$

• We get $\mathbb{E}_{i,j}\langle \tilde{u}_i, \tilde{u}_j \rangle \leq \mathbb{E}_{i,j}[Var[X_i] - \mathbb{E}_{\{X_j\}}Var[X_i|X_j]]$

Global correlation of $\tilde{u}_i \leq$ Expected variance drop

So far, we have:

- (Lemma 5.3) $\frac{1}{12}$ $\frac{1}{k^2} \left(\sum_{a,b} \left| Cov(X_{ia}, X_{jb}) \right| \right)$ 2 $\leq \langle \tilde{u}_i, \tilde{u}_j \rangle$
- (Easy) $\|\{X_iX_j\} \{X_i\}\{X_j\}\|_1 = \sum_{a,b} |Cov(X_{ia}, X_{jb})|$

• We get
$$
\mathbb{E}_{(i,j)\in E} \langle \tilde{u}_i, \tilde{u}_j \rangle \ge \frac{1}{k^2} \left(\mathbb{E}_{(i,j)\in E} \left\| \{X_i X_j\} - \{X_i\} \{X_j\} \right\|_1 \right)^2
$$

Local correlation of $\tilde{u}_i \geq 0$ iscrepancy across edges

Global correlation of $\tilde{u}_i \leq$ Expected variance drop Local correlation of $\tilde{u}_i \geq 0$ iscrepancy across edges

• If it is true that local correlation \leq global correlation, then:

Discrepancy across edges \leq Expected variance drop

The following lemma shows that a violation of the local vs global correlation condition implies that the graph has high threshold rank.

Lemma 6.1. Suppose there exist vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

$$
\mathop{\mathbb{E}}_{ij \sim G} \langle v_i, v_j \rangle \ge 1 - \varepsilon \,, \quad \mathop{\mathbb{E}}_{i,j \in V} \langle v_i, v_j \rangle^2 \le \frac{1}{m} \,, \quad \mathop{\mathbb{E}}_{i \in V} \|v_i\|^2 = 1 \,.
$$

Then for all $C > 1$, $\lambda_{(1-1/C)m} \geq 1 - C \cdot \varepsilon$. In particular, $\lambda_{m/2} > 1 - 2\varepsilon$.

Lemma 6.1. Suppose there exist vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

Proof

Lemma 6.1. Suppose there exist vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

$\mathbb{E}_{i,j \sim G} \langle v_i, v_j \rangle \ge 1 - \varepsilon, \quad \mathbb{E}_{i,j \in V} \langle v_i, v_j \rangle^2 \le \frac{1}{m}, \quad \mathbb{E}_{i \in V} ||v_i||^2 = 1.$ Applying the LemmaThen for all $C > 1$, $\lambda_{(1-1/C)m} \geq 1 - C \cdot \varepsilon$. In particular, $\lambda_{m/2} > 1 - 2\varepsilon$.

Lemma 4.1. Let v_1, \ldots, v_n be vectors in the unit ball. Suppose that the vectors are correlated across the edges of a regular n-vertex graph G ,

 $\mathop{\mathbb{E}}_{ij \sim G} \langle v_i, v_j \rangle \geq \rho$.

Then, the global correlation of the vectors is lower bounded by

 $\mathbb{E}_{i} |v_i, v_j\rangle \geq \Omega(\rho) / \text{rank}_{\geq \Omega(\rho)}(G).$

where rank_{\geqslant} (G) is the number of eigenvalues of adjacency matrix of G that are larger than ρ .

Note that Lemma 4.1 follows directly from the previous lemma by picking $C = \frac{(1-\rho/100)}{(1-\rho)}$ and observing that $\mathbb{E}_{i,j\in V} |\langle v_i, v_j \rangle| \geq \mathbb{E}_{i,j\in V} |\langle v_i, v_j \rangle|^2$ since $|\langle v_i, v_j \rangle| \leq 1$ for all $i, j \in V$

Putting things together

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(\text{Cov}(X_{ia}, X_{jb} | X_s = x_s))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \le r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \text{rank}_{\Omega(\varepsilon/k)^2}(G)$,

 $\mathop{\mathbb{E}}_{ij \sim G} \left\| \{ X_i X_j \} - \{ X_i' X_j' \} \right\|_1 \leq \varepsilon.$

- r -local means any r -subset can be jointly sampled
- This implies (additive) integrality gap $\leq \epsilon$ for level-r Lasserre SDP

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(\text{Cov}(X_{ia}, X_{jb} | X_s = x_s))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \le r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \text{rank}_{\Omega(\varepsilon/k)^2}(G)$, Proof $\mathop{\mathbb{E}}_{ij \sim G} \left\| \{ X_i X_j \} - \{ X_i' X_j' \} \right\|_1 \leq \varepsilon.$ \bullet $4r52$ \leftarrow $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ · $\mathbb{E}_m := \mathbb{E}_{\begin{bmatrix} V \\ S \in \mathcal{L}_m \end{bmatrix}} \xrightarrow{\mathbb{E}} \mathbb{E}_{\begin{bmatrix} V \\ S \end{bmatrix}} \text{Var}(X_i | X_S).$ • If ϵ_m 3 ℓ_{12} , Then $\begin{cases} \rho_r \leq \frac{1}{2} \pi r \le$ 15 = m If discrepancy large, apply lemme 3.4,
If $(L^{2}k)$
Signal in [Var[xi]xs] - Vor[xi]xs, 3] $\frac{2}{4} \cdot \frac{2(L^{2}k)}{\text{rank}}$

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(\text{Cov}(X_{ia}, X_{jb} | X_s = x_s))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \le r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \text{rank}_{\Omega(\varepsilon/k)^2}(G)$,

 $\mathop{\mathbb{E}}_{ij \sim G} \left\| \{ X_i X_j \} - \{ X_i' X_j' \} \right\|_1 \leq \varepsilon.$

Proof

 $\Rightarrow \Phi_{m} - \Phi_{m+1}$ 7, $\frac{27}{m}$ (If $\epsilon_{m} Q 3 4 \kappa$) \Rightarrow At most $\left(\frac{1}{N}\left(\frac{c^{3}}{k}\right)/\gamma$ ank $_{3}g(c_{k})_{k}$ (G) ihdices m sit. $\frac{2m7.4/2}{\frac{(\frac{6}{12})}{16}}$
= If $\sqrt{7}$ $\frac{1}{(\frac{4}{2})}$ $\frac{1}{(\frac{3}{2})}$ $\frac{1}{\sqrt{9}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt$

Recap

Agenda

-
-
- Sparsest cut *for low-rank graphs*
-

Sparsest Cut

• Given graph $G = (V, E)$, define sparsest cut (aka edge expansion) as

$$
\phi(G) = \min_{S \subseteq V} \frac{|E(S, S^c)|}{|S| \cdot |S^c|}
$$

Setup

Integer
$$
\int
$$
rsrum : $\mathbb{Z} \min_{x \to i} \sum_{i=1}^{m} (x_i - x_j)^2$

\ns.t. $\sum_{i} x_i = \mu$

\nis $\forall i \in \{0, 1\}.$

Dealing with cardinality constraint

$$
\sum y_i = \mu
$$
, but also became if $M^{(l)}(y) \geq 0$
all *prig*lydual solutions will satisfy the linear-
constant.

\n- Independent
$$
\leq m p
$$
 by the right, $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$
\n- By Heelfdry, $\int_{0}^{\infty} \left[\sum_{i} x_{i}^{2} - \mu \right] \sin \pi x$ is large.
\n- Substituting $\int_{0}^{\infty} \int_{0}^{\infty} \int_{$

Conclusion

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(\text{Cov}(X_{ia}, X_{jb} | X_s = x_s))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \le r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \text{rank}_{\Omega(\varepsilon/k)^2}(G)$,

$$
\mathop{\mathbb{E}}_{ij \sim G} \left\| \{ X_i X_j \} - \{ X'_i X'_j \} \right\|_1 \leq \varepsilon.
$$

Agenda

-
-
-
- Technical discussions

Steurer's conjecture

Conjecture 9.2. For every $\varepsilon > 0$, there exists positive constants $\eta = \eta(\varepsilon)$ and $\delta =$ $\delta(\varepsilon)$ such that the following holds: For every collection of unit vectors $v_1, \ldots, v_n \in$ \mathbb{R}^n with $\mathbb{E}_{i,j\in[n]}(v_i,v_j)|\leq n^{-\varepsilon}$, there exists two sets $S,T\subseteq\{1,\ldots,n\}$ with $|S|,|T|\geq$ δn and $||v_i - v_j||^2 \ge \eta$ for all $i \in S$ and $j \in T$.

In words: if a set of vectors have very low *global correlation*, there are two large cores of constant distance from each other

Sparsest cut for general graphs

- [ABS] proved that SSE can be solved in subexponential time
- High threshold rank graph is the "easy case" and dealt with using random walks
- We cannot use local-to-global correlation when $rank(G)$ is high
- If we follow [BRS], want to do something simple when global correlation (of what?) is low
- There are several possibilities how this might proceed...

Attempt 1: look at v_i

- Corresponds to good embedding with $\sum_{(i,j)\in E} \lVert v_i v_j \rVert$ 2 $\leq O(OBI)$ and $\sum_i ||v_i||^2 = \mu$
- One way to map them to unit vectors, preserving objective:

$$
w_i := \begin{pmatrix} v_i \\ v_{\emptyset} - v_i \end{pmatrix} = \begin{pmatrix} v_i(1) \\ v_i(0) \end{pmatrix}
$$

• Not sure how to use $\mathbb{E}_{i,j}\langle w_i, w_j \rangle$ to lower bound variance drop

$\operatorname{Attempt} 2$: look at \tilde{u}_i

- Can lower bound variance drop using $\mathbb{E}_{i,j}\big\langle\tilde{u}_{i}, \tilde{u}_{j}\big\rangle$
- Not sure how to map to unit vectors while preserving objective
- $(u_i$ is akin to projecting to span $(v_\emptyset)^\perp$)

Comments

• I haven't figured out yet how Steurer's conjecture implies SUBEXP sparsest cut

- But we don't need to limit ourselves to the exact statement!
- Based on the proof flow today, can identify what needs to be true for Lasserre-based sparsest cut algorithm to work in SUBEXP

Summary

In this two-part talk, we have:

- Introduced the Lasserre hierarchy
	- Interplay between vector solutions v_I and probabilities y_I
	- Projecting Lasserre solutions via conditioning
	- Local distributions $y_I(f)$ from y_I
- Gone through [BRS] propagation rounding
	- Role of threshold rank of constraint graph
	- After conditioning, independent rounding \approx correlated rounding
- Discussed application of Lasserre to sparsest cut

Discussions and idle thoughts

- Geometric picture of projection
- Additional properties from structure of vector solution?
- Using entropy instead of variance
- CSP's on hypergraphs
- Can use SDP hierarchy to improve experimental design?

(Almost) blank page

 $\mathcal{L}(\mathcal{$

References

- David Steurer, "On the Complexity of Unique Games and Graph Expansion".
- Thomas Rothvoss, "The Lasserre hierarchy in Approximation algorithms".
- Lap Chi Lau, "Lasserre Hierarchy", Lecture 13 of CSCI5060.
- V. Guruswami and A.K. Sinop, "Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Quadratic Integer Programming with PSD Objectives".
- B. Barak, P. Raghavendra, and D. Steurer. "Rounding Semidefinite Programming Hierarchies via Global Correlation".