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Agenda

• Recall

• More on local distribution

• Correlation rounding

• Sparsest cut for low-rank graphs

• Technical discussions



Before start…

• I couldn’t yet figure out how Steurer’s conjecture implies 
subexponential sparsest cut, after a month

• There’s some technical difficulties that we will discuss in the end

• Today we will follow [BRS] and deal with low-rank case
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SDP hierarchy: setup

• Combinatorial optimization

• Objective function 𝑔: 0, 1 𝑛 → ℝ, extensible to 𝑔: 0, 1 𝑛 → ℝ
• We are minimizing 𝑔 𝑥 over 𝑥 ∈ 0,1 𝑛, 𝑔 convex

• Subject to linear constraints: 𝑥 ∈ 𝐾 ≔ {𝑥′: 𝐴𝑥′ ≥ 𝑏}



Lasserre hierarchy

• Increasingly tight relaxations of the integer program

• 𝑦𝐼 (𝐼 ⊆ [𝑛]) as joint probabilities



Geometric interpretation of 𝑀𝑡(𝑦)

• We have 𝑀𝑡 𝑦 ≔ 𝑦𝐼∪𝐽 𝐼 , 𝐽 ≤𝑡
≽ 0

• Meaning: there exists vectors 𝑣𝐼 𝐼 ≤𝑡 ⊆ ℝ2𝑛 such that 𝑣𝐼 , 𝑣𝐽 =
𝑦𝐼∪𝐽

• These vector solutions are useful in (i) interpreting rounding 
algorithm and (ii) relating Steurer’s conjecture and sparsest cut



Projecting Lasserre solutions

Corresponding vector solution:

𝑣𝐼
(1)

≔
𝑣𝐼∪ 𝑖

𝑣𝑖
, 𝑣𝐼

0
≔

𝑣𝐼 − 𝑣𝐼∪{𝑖}

‖𝑣∅ − 𝑣𝑖‖



Goals of today

• Study local distribution in more detail

• State and prove key results relating global and local correlations

• Discuss how to apply Lasserre hierarchy to sparsest cut
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Local assignments

• We mentioned that Lasserre variables 𝑦𝐼 = Pr[∧𝑖∈𝐼 𝑋𝑖 = 1]

• They are enough to give probabilities on different assignments (to 
variables in 𝐼)

• Given level-𝑡 Lasserre solution 𝑦𝐼 , for 𝐼 ≤ 𝑡 and 𝑓: 𝐼 → {0, 1}

define 𝑦𝐼 𝑓 ≔ σ𝐼′:𝑓−1 1 ⊆𝐼′⊆𝐼 −1
|𝐼′\f−1 1 | ⋅ 𝑦𝐼′

• This is the language used in [BRS] and [GS]



Explanation

• Definition:  𝑦𝐼 𝑓 ≔ σ𝐼′:𝑓−1 1 ⊆𝐼′⊆𝐼 −1
|𝐼′\f−1 1 | ⋅ 𝑦𝐼′

• Interpret as 𝑦𝐼 𝑓 = Pr[∧𝑖∈𝐼 𝑋𝑖 = 𝑓 𝑖 ]

• Based on inclusion-exclusion. Example: 𝑦 1,2,3 (010)



Vector solutions

• For each subset 𝐼 ≤ 𝑡 and assignment 𝑓: 𝐼 → {0, 1}, define a 
vector 𝑣𝐼(𝑓) accordingly:

𝑣𝐼 𝑓 ≔ σ𝐼′:𝑓−1 1 ⊆𝐼′⊆𝐼 −1
|𝐼′\f−1 1 | ⋅ 𝑣𝐼′



Properties 

• We can derive properties of 𝑦𝐼 𝑓 and 𝑣𝐼(𝑓) from properties of 𝑦𝐼
and 𝑣𝐼:
• (a) 𝑣𝐼 𝑓 , 𝑣𝐼 𝑔 = 0 if 𝑓 and 𝑔 are inconsistent

• (b) 𝑣𝐼 𝑓 , 𝑣𝐽 𝑔 = 𝑣𝐼′ 𝑓′ , 𝑣𝐽′ 𝑔′ if 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′ and 𝑓 ∪ 𝑔 = 𝑓′ ∪ 𝑔′

• (c) (Marginals) 𝑣𝑖 0
2 + 𝑣𝑖 1

2 = 1

• (d) (Marginals) 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 0 + 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 1 = 𝑣𝐼∖ 𝑖 (𝑓) for 𝑓: 𝐼 ∖
𝑖 → {0, 1}



Properties 

• We can derive properties of 𝑦𝐼 𝑓 and 𝑣𝐼(𝑓) from properties of 𝑦𝐼 and 
𝑣𝐼:
• (e) 𝑦𝐼∪𝐽 𝑓 ∪ 𝑔 = ⟨𝑣𝐼 𝑓 , 𝑣𝐽 𝑔 ⟩ if 𝑓: 𝐼 → {0, 1} and 𝑔: 𝐽 → {0, 1} are consistent

• (f) 0 ≤ 𝑦𝐼 𝑓 ≤ 1

• (g) 𝑦𝐼 𝑓 ≥ 𝑦𝐼′(𝑓
′) if 𝐼′ ⊇ 𝐼 and 𝑓′|𝐼 = 𝑓

• (h) (Marginals) 𝑦𝐼 𝑓 ∪ 𝑖 ↦ 0 + 𝑦𝐼 𝑓 ∪ 𝑖 ↦ 1 = 𝑦𝐼∖ 𝑖 (𝑓) for 𝑓: 𝐼 ∖ 𝑖 →
{0, 1}

• (i) (Total probability) σ𝑓:𝐼→{0,1}𝑦𝐼 𝑓 = 1



Selected proofs

We shall prove:

• (a) 𝑣𝐼 𝑓 , 𝑣𝐼 𝑔 = 0 if 𝑓 and 𝑔 are inconsistent

• (b) 𝑣𝐼 𝑓 , 𝑣𝐽 𝑔 = 𝑣𝐼′ 𝑓′ , 𝑣𝐽′ 𝑔′ if 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′ and 𝑓 ∪ 𝑔 = 𝑓′ ∪ 𝑔′

• (d) (Marginals) 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 0 + 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 1 = 𝑣𝐼∖ 𝑖 (𝑓) for 𝑓: 𝐼 ∖ 𝑖 →
{0, 1}



(a) 𝑣𝐼 𝑓 , 𝑣𝐼 𝑔 = 0 if 𝑓 and 𝑔 are inconsistent



(b) 𝑣𝐼 𝑓 , 𝑣𝐽 𝑔 = 𝑣𝐼′ 𝑓′ , 𝑣𝐽′ 𝑔′ if 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′ and 𝑓 ∪ 𝑔 = 𝑓′ ∪ 𝑔′



(Almost) blank page



(d) (Marginals) 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 0 + 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 1 = 𝑣𝐼∖ 𝑖 (𝑓) for 𝑓: 𝐼 ∖ 𝑖 →
{0, 1}



Dependency for the other parts

• (a) 𝑣𝐼 𝑓 , 𝑣𝐼 𝑔 = 0 if 𝑓 and 𝑔 are inconsistent

• (b) 𝑣𝐼 𝑓 , 𝑣𝐽 𝑔 = 𝑣𝐼′ 𝑓′ , 𝑣𝐽′ 𝑔′ if 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′ and 𝑓 ∪ 𝑔 = 𝑓′ ∪ 𝑔′

• (c) (Marginals) 𝑣𝑖 0
2 + 𝑣𝑖 1

2 = 1

• (d) (Marginals) 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 0 + 𝑣𝐼 𝑓 ∪ 𝑖 ↦ 1 = 𝑣𝐼∖ 𝑖 (𝑓) for 𝑓: 𝐼 ∖ 𝑖 →
{0, 1}

• (e) 𝑦𝐼∪𝐽 𝑓 ∪ 𝑔 = ⟨𝑣𝐼 𝑓 , 𝑣𝐽 𝑔 ⟩ if 𝑓: 𝐼 → {0, 1} and 𝑔: 𝐽 → {0, 1} are consistent

• (f) 0 ≤ 𝑦𝐼 𝑓 ≤ 1

• (g) 𝑦𝐼 𝑓 ≥ 𝑦𝐼′(𝑓
′) if 𝐼′ ⊇ 𝐼 and 𝑓′|𝐼 = 𝑓

• (h) (Marginals) 𝑦𝐼 𝑓 ∪ 𝑖 ↦ 0 + 𝑦𝐼 𝑓 ∪ 𝑖 ↦ 1 = 𝑦𝐼∖ 𝑖 (𝑓) for 𝑓: 𝐼 ∖ 𝑖 →
{0, 1}

• (i) (Total probability) σ𝑓:𝐼→{0,1}𝑦𝐼 𝑓 = 1



How projection affects 𝑦𝐼 𝑓 and 𝑣𝐼(𝑓)

• Similar formula holds for 𝑦𝐼
𝑘
(𝑓) and 𝑣𝐼

𝑘
𝑓 when conditioning 

on variable 𝑖 taking value 𝑘 ∈ {0, 1}. For example,

𝑦𝐼
1

𝑓 = 𝑦𝐼∪ 𝑖 (𝑓 ∪ 𝑖 ↦ 1 )/𝑦𝑖

• More generally, we can condition on a partial assignment ℎ: 𝐽 →
0,1 . For example,

𝑦𝐼
ℎ

𝑓 = 𝑦𝐼∪𝐽(𝑓 ∪ ℎ)/𝑦𝐽(ℎ)



Summary

• For each partial assignment 𝑓: 𝐼 → {0, 1}, there corresponds 
marginal probability 𝑦𝐼(𝑓) and a vector 𝑣𝐼(𝑓)

• Definition requires only 𝑦𝐼 and 𝑣𝐼 and uses inclusion-exclusion

• Has nice properties that justify the probability interpretation that 
𝑦𝐼 𝑓 = Pr[𝑋𝐼 = 𝑓]
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• More on local distribution

• Correlation rounding

• Sparsest cut for low-rank graphs

• Technical discussions



Propagation Sampling

Recall that we round level-𝑡 Lasserre solutions as follows:

• (1) Pick variables 𝑖𝑡 , 𝑖𝑡−1, … , 𝑖1 one by one and condition on their 
values. Conditioning according to local distribution 𝑦𝐼(𝑓)

• (2) For other variables 𝑖′, assign value independently, according to 
marginal 𝑦𝑖′ (after conditioning)



Graphs

• Assume there is a given graph 𝐺 = (𝑉, 𝐸), and the objective is a 
linear combination of 𝑦𝑖 for 𝑖 ∈ 𝑉 and 𝑦𝑖,𝑗 for 𝑖, 𝑗 ∈ 𝐸

• This captures all 2-CSP’s (with two labels)

• 𝜖-threshold rank of 𝐺 (𝑟𝑎𝑛𝑘≥𝜖(𝐺)) is defined as the number of 
eigenvalues of 𝐴(𝐺) that are ≥ 𝜖



Main Theorem

• Section 5 of [BRS] works more generally for 2-CSP’s with 𝑘 labels

• You may assume 𝑘 = 2 without loss



Intuition

• When threshold rank is low, the graph is not too badly connected

• Higher-order Cheeger says that the graph doesn’t have a lot of 
disjoint sparse cuts

• Therefore, conditioning on enough vertices, the other vertices 
should be almost determined



Notations

• 𝑋𝑖 denotes the i-th variable (distributed according to {𝑦𝐼})

• NOTE: 𝑋𝑖’s are not jointly distributed

• 𝑋𝑖𝑎 denotes the indicator variable [𝑋𝑖 = 𝑎]

• {𝑋𝐼} denotes the distribution over possible outcomes f: 𝐼 → {0,1}. 
Pr 𝑋𝐼 = 𝑓 𝐼 = 𝑦𝐼(𝑓).



Broad outline of proof

• Use variance 
1

n
σ𝑖 𝑦𝑖(1 − 𝑦𝑖) as potential function

• To show: discrepancy 𝔼 𝑖,𝑗 ∈𝐸 𝑋𝑖𝑋𝑗 − 𝑋𝑖 𝑋𝑗 1
small in the end

• Prove that large discrepancy -> large drop in potential

• Conditioning on 𝑆 doesn’t change the expected objective value

• If 𝔼 𝑖,𝑗 ∈𝐸 𝑋𝑖𝑋𝑗|𝑋𝑆 − 𝑋𝑖|𝑋𝑆 𝑋𝑗|𝑋𝑆 1
< 𝜂, by independently 

sampling 𝑋𝑉−𝑆 we lose at most 𝜂 in objective value



Variance drop and covariance

Proof:



Covariance and “covariance vector”

Proposition. The matrix 𝐶𝑜𝑣 𝑋𝑖𝑎, 𝑋𝑗𝑏
𝑖,𝑗∈𝑉,𝑎,𝑏∈[𝑘]

is PSD.

Proof: 



Covariance and “covariance vector”

What is the significance of this lemma?



Proof:

Define ෤𝑢𝑖 ≔ 𝑘−
1

2σ𝑎 𝑢𝑖𝑎
⊗2/‖𝑢𝑖𝑎‖. Then:

Upper bound:

Lower bound:

Unit ball:



Local and global correlation

So far, we have:

• (Lemma 5.3) ෤𝑢𝑖 , ෤𝑢𝑗 ≤
1

2𝑘
σ𝑎,𝑏

1

𝑉𝑎𝑟 𝑋𝑖𝑎
+

1

𝑉𝑎𝑟 𝑋𝑗𝑏
𝐶𝑜𝑣 𝑋𝑖𝑎, 𝑋𝑗𝑏

2

• (Lemma 5.2) 
1

𝑘
σ𝑎,𝑏

𝐶𝑜𝑣 𝑋𝑖𝑎,𝑋𝑗𝑏
2

𝑉𝑎𝑟 𝑋𝑗𝑏
≤ 𝑉𝑎𝑟 𝑋𝑖 − 𝔼 𝑋𝑗

𝑉𝑎𝑟 𝑋𝑖 𝑋𝑗]

• We get 𝔼𝑖,𝑗 ෤𝑢𝑖 , ෤𝑢𝑗 ≤ 𝔼𝑖,𝑗[𝑉𝑎𝑟 𝑋𝑖 − 𝔼 𝑋𝑗
𝑉𝑎𝑟 𝑋𝑖 𝑋𝑗]]

Global correlation of ෤𝑢𝑖 ≤ Expected variance drop



Local and global correlation

So far, we have:

• (Lemma 5.3) 
1

𝑘2
σ𝑎,𝑏 𝐶𝑜𝑣 𝑋𝑖𝑎, 𝑋𝑗𝑏

2
≤ ෤𝑢𝑖 , ෤𝑢𝑗

• (Easy) 𝑋𝑖𝑋𝑗 − 𝑋𝑖 𝑋𝑗 1
= σ𝑎,𝑏 |𝐶𝑜𝑣 𝑋𝑖𝑎, 𝑋𝑗𝑏 |

• We get 𝔼 𝑖,𝑗 ∈𝐸 ෤𝑢𝑖 , ෤𝑢𝑗 ≥
1

𝑘2
𝔼 𝑖,𝑗 ∈𝐸 𝑋𝑖𝑋𝑗 − 𝑋𝑖 𝑋𝑗 1

2

Local correlation of ෤𝑢𝑖 ≥ Discrepancy across edges



Local and global correlation

Global correlation of ෤𝑢𝑖 ≤ Expected variance drop

Local correlation of ෤𝑢𝑖 ≥ Discrepancy across edges

• If it is true that local correlation ≤ global correlation, then:

Discrepancy across edges ≤ Expected variance drop



Local and global correlation



Proof



Applying the Lemma



Putting things together

• 𝑟-local means any 𝑟-subset can be jointly sampled

• This implies (additive) integrality gap ≤ 𝜖 for level-𝑟 Lasserre SDP



Proof



Proof



Recap
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• Technical discussions



Sparsest Cut

• Given graph 𝐺 = (𝑉, 𝐸), define sparsest cut (aka edge expansion) 
as

𝜙 𝐺 = min
𝑆⊆𝑉

|𝐸 𝑆, 𝑆𝑐 |

𝑆 ⋅ |𝑆𝑐|



Setup



Dealing with cardinality constraint



Conclusion
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Steurer’s conjecture

In words: if a set of vectors have very low global correlation, there 
are two large cores of constant distance from each other



Sparsest cut for general graphs

• [ABS] proved that SSE can be solved in subexponential time

• High threshold rank graph is the “easy case” and dealt with using 
random walks

• We cannot use local-to-global correlation when 𝑟𝑎𝑛𝑘(𝐺) is high

• If we follow [BRS], want to do something simple when global 
correlation (of what?) is low

• There are several possibilities how this might proceed…



Attempt 1: look at 𝑣𝑖

• Corresponds to good embedding with σ 𝑖,𝑗 ∈𝐸 𝑣𝑖 − 𝑣𝑗
2
≤ 𝑂(𝑂𝐵𝐽)

and σ𝑖 𝑣𝑖
2 = 𝜇

• One way to map them to unit vectors, preserving objective:

𝑤𝑖 ≔
𝑣𝑖

𝑣∅−𝑣𝑖
= 𝑣𝑖(1)

𝑣𝑖(0)

• Not sure how to use 𝔼𝑖,𝑗⟨𝑤𝑖 , 𝑤𝑗⟩ to lower bound variance drop



Attempt 2: look at ෤𝑢𝑖

• Can lower bound variance drop using 𝔼𝑖,𝑗 ෤𝑢𝑖 , ෤𝑢𝑗

• Not sure how to map to unit vectors while preserving objective

• (𝑢𝑖 is akin to projecting to span 𝑣∅
⊥)



Comments

• I haven’t figured out yet how Steurer’s conjecture implies SUBEXP 
sparsest cut

• But we don’t need to limit ourselves to the exact statement!

• Based on the proof flow today, can identify what needs to be true 
for Lasserre-based sparsest cut algorithm to work in SUBEXP



Summary

In this two-part talk, we have:

• Introduced the Lasserre hierarchy
• Interplay between vector solutions 𝑣𝐼 and probabilities 𝑦𝐼
• Projecting Lasserre solutions via conditioning

• Local distributions 𝑦𝐼 𝑓 from 𝑦𝐽

• Gone through [BRS] propagation rounding
• Role of threshold rank of constraint graph

• After conditioning, independent rounding ≈ correlated rounding

• Discussed application of Lasserre to sparsest cut



Discussions and idle thoughts

• Geometric picture of projection

• Additional properties from structure of vector solution?

• Using entropy instead of variance

• CSP’s on hypergraphs

• Can use SDP hierarchy to improve experimental design?



(Almost) blank page
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