Steurer's Conjecture and Sparsest Cut (II)

Reading Group Spring '22

Alex Tung 16 August 2022

Agenda

- Recall
- More on local distribution
- Correlation rounding
- Sparsest cut for low-rank graphs
- Technical discussions

Before start...

- I couldn't yet figure out how Steurer's conjecture implies subexponential sparsest cut, after a month
- There's some technical difficulties that we will discuss in the end

• Today we will follow [BRS] and deal with low-rank case

Agenda

• Recall

- More on local distribution
- Correlation rounding
- Sparsest cut for low-rank graphs
- Technical discussions

SDP hierarchy: setup

- Combinatorial optimization
- Objective function $g: \{0, 1\}^n \to \mathbb{R}$, extensible to $g: [0, 1]^n \to \mathbb{R}$
 - We are minimizing g(x) over $x \in \{0,1\}^n$, g convex
- Subject to linear constraints: $x \in K := \{x' : Ax' \ge b\}$

Lasserre hierarchy

Definition 1. Let $K = \{x \in \mathbb{R}^n \mid Ax \ge b\}$. We define the *t*-th level of the Lasserre hierarchy LAS_t(K) as the set of vectors $y \in \mathbb{R}^{2^{[n]}}$ that satisfy

$$M_t(y) := (y_{I \cup J})_{|I|, |J| \le t} \ge 0; \qquad M_t^{\ell}(y) := \left(\sum_{i=1}^n A_{\ell i} y_{I \cup J \cup \{i\}} - b_{\ell} y_{I \cup J}\right)_{|I|, |J| \le t} \ge 0 \quad \forall \ell \in [m]; \qquad y_{\emptyset} = 1.$$

 $Y_{I} = Pr[X_{I} = 1] = Pr[\Lambda_{i} = 1]$

The matrix $M_t(y)$ is called the *moment matrix of* y and the second type $M_\ell^t(y)$ is called *moment matrix of slacks*. Furthermore, let $\text{Las}_t^{\text{proj}}(K) := \{(y_{\{1\}}, \dots, y_{\{n\}}) \mid y \in \text{Las}_t(K)\}$ be the projection on the original variables.

- Increasingly tight relaxations of the integer program
- y_I ($I \subseteq [n]$) as joint probabilities

Geometric interpretation of $M_t(y)$

- We have $M_t(y) \coloneqq (y_{I \cup J})_{|I|,|J| \le t} \ge 0$
- Meaning: there exists vectors $\{v_I\}_{|I| \le t} \subseteq \mathbb{R}^{2^n}$ such that $\langle v_I, v_J \rangle = y_{I \cup J}$
- These vector solutions are useful in (i) interpreting rounding algorithm and (ii) relating Steurer's conjecture and sparsest cut

Projecting Lasserre solutions

Lemma 2. For $t \ge 1$, let $y \in LAS_t(K)$ and $i \in [n]$ be a variable with $0 < y_i < 1$. If we define

$$z_I^{(1)} := \frac{y_{I \cup \{i\}}}{y_i}$$
 and $z_I^{(0)} := \frac{y_I - y_{I \cup \{i\}}}{1 - y_i}$

then we have $y = y_i \cdot z^{(1)} + (1 - y_i) \cdot z^{(0)}$ with $z^{(0)}, z^{(1)} \in Las_{t-1}(K)$ and $z_i^{(0)} = 0, z_i^{(1)} = 1$.

Corresponding vector solution: $v_I^{(1)} \coloneqq \frac{v_{I \cup \{i\}}}{\|v_i\|}, v_I^{(0)} \coloneqq \frac{v_I - v_{I \cup \{i\}}}{\|v_{\emptyset} - v_i\|}$

Goals of today

- Study local distribution in more detail
- State and prove key results relating global and local correlations
- Discuss how to apply Lasserre hierarchy to sparsest cut

Agenda

• Recall

• More on local distribution

- Correlation rounding
- Sparsest cut for low-rank graphs
- Technical discussions

Local assignments

- We mentioned that Lasserre variables $y_I = \Pr[\Lambda_{i \in I} X_i = 1]$
- They are enough to give probabilities on different assignments (to variables in I) $\{j: f(j) = 1\}$
- Given level-*t* Lasserre solution (y_I) , for $|I| \le t$ and $f: I \to \{0, 1\}$ define $y_I(f) \coloneqq \sum_{I': f^{-1}(1) \subseteq I' \subseteq I} (-1)^{|I' \setminus f^{-1}(1)|} \cdot y_{I'}$ $\mathcal{J}_{I}(f) = \Pr[\bigwedge_{i \in I} X_{i} = f(i)]$ • This is the language used in [BRS] and [GS]

Explanation

- Definition: $y_I(f) \coloneqq \sum_{I':f^{-1}(1)\subseteq I'\subseteq I} (-1)^{|I' \setminus f^{-1}(1)|} \cdot y_{I'}$
- Interpret as $y_I(f) = \Pr[\wedge_{i \in I} X_i = f(i)]$
- Based on inclusion-exclusion. Example: $y_{\{1,2,3\}}(010)$

$$\begin{aligned} & \{2\} \in \underline{J}' \in \{1, 2, 5\} \\ & \{125^{(010)} = (-1)^{1-1} \cdot Y_2 + (-1)^{2-1} \cdot Y_{12} + (-1)^{2-1} \cdot Y_{23} + (-1)^{3-1} \cdot Y_{123} \\ & (\underline{J}' = \{12, 24\}) \\ & = Y_2 - Y_{12} - Y_{23} + Y_{123} \\ & = Y_2 - Y_{12} - Y_{23} + Y_{123} \\ & = Y_2 - Y_{12} - Y_{23} + Y_{123} \end{aligned}$$

Vector solutions

• For each subset $|I| \le t$ and assignment $f: I \to \{0, 1\}$, define a vector $v_I(f)$ accordingly:

$$v_{I}(f) \coloneqq \sum_{I': f^{-1}(1) \subseteq I' \subseteq I} (-1)^{|I' \setminus f^{-1}(1)|} \cdot v_{I'}$$

Properties

- We can derive properties of y_I(f) and v_I(f) from properties of y_I and v_I:
 - (a) $\langle v_I(f), v_J(g) \rangle = 0$ if f and g are inconsistent $\langle v_I, v_J \rangle = 0$ if f and g are inconsistent
 - (b) $\langle v_I(f), v_J(g) \rangle = \langle v_{I'}(f'), v_{J'}(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$
 - (c) (Marginals) $||v_i(0)||^2 + ||v_i(1)||^2 = 1 \quad \langle \bigvee_{i} | 0 \rangle, \bigvee_{i} | 0 \rangle = \Pr[Y_i = 0]$
 - (d) (Marginals) $v_I(f \cup (i \mapsto 0)) + v_I(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \rightarrow \{0, 1\}$

Properties

- We can derive properties of y_I(f) and v_I(f) from properties of y_I and v_I:
 - (e) $y_{I \cup J}(f \cup g) = \langle v_I(f), v_J(g) \rangle$ if $f: I \to \{0, 1\}$ and $g: J \to \{0, 1\}$ are consistent
 - (f) $0 \le y_I(f) \le 1$
 - (g) $y_I(f) \ge y_{I'}(f')$ if $I' \supseteq I$ and $f'|_I = f$
 - (h) (Marginals) $y_I(f \cup (i \mapsto 0)) + y_I(f \cup (i \mapsto 1)) = y_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \rightarrow \{0, 1\}$ $\begin{cases} \gamma_r [\chi_{I \setminus \{i\}} - f \land \chi_{i} = 0] \rightarrow f_r[\chi_{I \setminus \{i\}} - f \land \chi_{i} = 1] \end{cases}$

~ Pr [XI 15:4 = f]

• (i) (Total probability) $\sum_{f:I \to \{0,1\}} y_I(f) = 1$

Selected proofs

We shall prove:

- (a) $\langle v_I(f), v_I(g) \rangle = 0$ if f and g are inconsistent
- (b) $\langle v_I(f), v_J(g) \rangle = \langle v_{I'}(f'), v_{J'}(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$
- (d) (Marginals) $v_I(f \cup (i \mapsto 0)) + v_I(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f)$ for $f: I \setminus \{i\} \to \{0, 1\}$

(a) $\langle v_I(f), v_T(g) \rangle = 0$ if f and g are inconsistent

$$\begin{split} i \in I \cap \mathcal{J} & s, f(i) = 1 , g(v) \ge 0, \\ \widetilde{Z} & \widetilde{Z} & (-1)^{|I' \setminus f^{-1}(v)|} \cdot (-1)^{|J' \setminus f^{-1}(v)|} \cdot \langle V_{J'}, V_{J'} \rangle \\ f^{-1}(v) \le I' \le I & f^{-1}(v) \le \mathcal{J}' \le \mathcal{J} \\ g^{-1}(v) \\ Observe: i \in I' always, and for each $\mathcal{J}' s, t, i \notin \mathcal{J}', there corresponds \mathcal{J}' \cup \mathcal{E} is \\ (-1)^{|I' \setminus f^{-1}(v)|} \cdot [1 + (-v)] \\ \langle V_{I'}, V_{\mathcal{J}'} \vee f^{-1}(v)', V_{I'}, V_{\mathcal{J}'} \vee f^{-1}(v)', V_{\mathcal{J}'} \vee f^{-1}(v$$$

(b) $\langle v_I(f), v_J(g) \rangle = \langle v_{I'}(f'), v_{J'}(g') \rangle$ if $I \cup J = I' \cup J'$ and $f \cup g = f' \cup g'$

$$\begin{cases} V_{I}(f), V_{J}(g) 7 = \langle V_{J}v_{J}(fvg), V_{P} 7. \\ U_{I}(s) = \sum_{\substack{f'(v) \in I' \in I \\ g'(v) \in j' \in J}} (-1)^{(I' \setminus f^{1}(v))} \cdot (-1)^{(J' \setminus g^{1}(v))} \cdot \langle V_{I'}, V_{J'} 7 \\ \vdots \\ f'(v) \in j' \in J \end{cases} \xrightarrow{\sum_{\substack{I', J' \in I \\ (fvg)^{T}(v) \in K \in I \vee J}} \sum_{\substack{I', J' : \\ I' \vee J' = K}} (-1)^{(I' \setminus f^{1}(v))} \cdot \langle V_{I'}, V_{J'} 7 \\ \vdots \\ f'(v) \in K \in I \vee J \end{cases}$$

(Almost) blank page

(d) (Marginals)
$$v_{I}(f \cup (i \mapsto 0)) + v_{I}(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f)$$
 for $f: I \setminus \{i\} \rightarrow \{0, 1\}$

$$|I + S = \begin{bmatrix} \sum_{i=1}^{n} (-i)^{|I^{i} \setminus f^{-1}(j)|} & V_{I^{i}} + \sum_{i \in I^{i}} (-i)^{|I^{i} \setminus f^{-1}(i)| - i} & V_{I^{i}} \end{bmatrix}$$

$$= \sum_{i \in I^{i}} \sum_{i \in I^{i} \in I^{i}} (-i)^{|I^{i} \setminus f^{-1}(i)|} & V_{I^{i}} = V_{I \setminus \{i\}}(f) = R_{I \setminus \{i\}}$$

Dependency for the other parts

- (a) $\langle v_I(f), v_I(g) \rangle = 0$ if f and g are inconsistent $\checkmark (b) \langle v_I(f), v_I(g) \rangle = \langle v_{I'}(f'), v_{I'}(g') \rangle \text{ if } I \cup J = I' \cup J' \text{ and } f \cup g = f' \cup g'$ $(\operatorname{dire} \mathcal{U}) \cdot (c) (\operatorname{Marginals}) \|v_i(0)\|^2 + \|v_i(1)\|^2 = 1$ $(d) (\operatorname{Marginals}) v_I(f \cup (i \mapsto 0)) + v_I(f \cup (i \mapsto 1)) = v_{I \setminus \{i\}}(f) \text{ for } f: I \setminus \{i\} \rightarrow I$ $\{0, 1\}$ () (e) $y_{I \cup I}(f \cup g) = \langle v_I(f), v_I(g) \rangle$ if $f: I \to \{0, 1\}$ and $g: J \to \{0, 1\}$ are consistent (e),(h). (f) $0 \le y_I(f) \le 1$ () (g) $y_I(f) \ge y_{I'}(f')$ if $I' \supseteq I$ and $f'|_I = f$ $(\bigwedge)^{\bullet} (\text{h) (Marginals)} y_{I}(f \cup (i \mapsto 0)) + y_{I}(f \cup (i \mapsto 1)) = y_{I \setminus \{i\}}(f) \text{ for } f: I \setminus \{i\} \rightarrow \{0, 1\}$
 - (i) (Total probability) $\sum_{f:I \to \{0,1\}} y_I(f) = 1$

How projection affects $y_I(f)$ and $v_I(f)$

• Similar formula holds for $y_I^{(k)}(f)$ and $v_I^{(k)}(f)$ when conditioning on variable *i* taking value $k \in \{0, 1\}$. For example,

$$y_{I}^{(1)}(f) = y_{I\cup\{i\}}(f \cup (i \mapsto 1))/y_{i}$$

• More generally, we can condition on a partial assignment $h: J \rightarrow \{0,1\}$. For example,

$$y_I^{(h)}(f) = y_{I \cup J}(f \cup h)/y_J(h)$$

Summary

- For each partial assignment $f: I \to \{0, 1\}$, there corresponds marginal probability $y_I(f)$ and a vector $v_I(f)$
- Definition requires only y_I and v_I and uses inclusion-exclusion
- Has nice properties that justify the probability interpretation that $y_I(f) = \Pr[X_I = f]$

Agenda

• Recall

- More on local distribution
- Correlation rounding
- Sparsest cut for low-rank graphs
- Technical discussions

Propagation Sampling

Recall that we round level-*t* Lasserre solutions as follows:

- (1) Pick variables $i_t, i_{t-1}, ..., i_1$ one by one and condition on their values. Conditioning according to local distribution $y_I(f)$
- (2) For other variables i', assign value independently, according to marginal $y_{i'}$ (after conditioning)

Graphs

- Assume there is a given graph G = (V, E), and the objective is a linear combination of y_i for $i \in V$ and $y_{i,j}$ for $(i, j) \in E$
- This captures all 2-CSP's (with two labels)
- ϵ -threshold rank of $G(rank_{\geq\epsilon}(G))$ is defined as the number of eigenvalues of A(G) that are $\geq \epsilon$

Main Theorem

$$r = rank_{7,S}(6^{2})(67)/6^{4}$$
.

Theorem 5.7. Let $\varepsilon > 0$ and $r = O(k) \cdot \operatorname{rank}_{\geq \Omega(\varepsilon/k)^2}(G)/\varepsilon^4$. Suppose that the r-round Lasserre value of the Max 2-CsP instance \mathfrak{I} is \mathfrak{G} . Then, given an optimal r-round Lasserre solution, Algorithm 5.5 (Propagation Sampling) outputs an assignment with expected value at least $\sigma - \varepsilon$ for \mathfrak{I} .

- Section 5 of [BRS] works more generally for 2-CSP's with k labels
- You may assume k = 2 without loss

Intuition

- When threshold rank is low, the graph is not too badly connected
- Higher-order Cheeger says that the graph doesn't have a lot of disjoint sparse cuts
- Therefore, conditioning on enough vertices, the other vertices should be almost determined

Notations

- X_i denotes the i-th variable (distributed according to $\{y_I\}$)
- NOTE: *X_i*'s are not jointly distributed
- X_{ia} denotes the indicator variable $[X_i = a]$
- {*X_I*} denotes the distribution over possible outcomes f: $I \rightarrow \{0,1\}$. $\Pr[X_I = f(I)] = y_I(f)$.

Broad outline of proof

- Use variance $\frac{1}{n} \sum_{i} y_i (1 y_i)$ as potential function
- To show: discrepancy $\mathbb{E}_{(i,j)\in E} \| \{X_i X_j\} \{X_i\} \{X_j\} \|_1$ small in the end
- Prove that large discrepancy -> large drop in potential
- $y_1 = y_1 \cdot z_1^{(i)} + (1-y_1) \cdot z_1^{(o)}$ OBJ is linear combination of the $y_1''_1$ and $y_{ij}''_2$. Conditioning on S doesn't change the expected objective value

 - If $\mathbb{E}_{(i,j)\in E} \| \{X_i X_j | X_S\} \{X_i | X_S\} \{X_j | X_S\} \|_1 < \eta$, by independently sampling X_{V-S} we lose at most η in objective value

Variance drop and covariance

Lemma 5.2. For any two vertices $i, j \in V$,

$$\operatorname{Var} X_{i} - \mathop{\mathbb{E}}_{\{X_{j}\}} \operatorname{Var} \left[X_{i} \mid X_{j} \right] \geq \frac{1}{k} \sum_{a, b \in [k]} \operatorname{Var} X_{jb} \operatorname{Cov}(X_{ia}, X_{jb})^{2} / \operatorname{Var} X_{jb}$$

Proof:
$$Z_1, Z_2 \in \{0,1\}^2 - Variables, Then$$

 $\rightarrow Var[Z_1] - Var E Var[Z_1]Z_2] = \frac{Cov(Z_1, Z_2)^2}{Var(Z_2)}$
Take $Z_1 = Xia_1, Z_2 = Xib_2$. Sum over $Gelle]$,
 $Var[X_i] - E [X_i | X_j b] = \sum_{\substack{a \in Cv} (X_ia_i X_j b)^2} Cov(X_ia_i X_j b)^2$
Take the bent index b, $Var[X_i] - E^{Var}[X_i | X_j b'] = k \sum_{\substack{a \in V \\ a \neq b}} Cov(X_ia_i X_j b)^2$
 $Var X_j b$.

Covariance and "covariance vector"

Proposition. The matrix $(Cov(X_{ia}, X_{jb}))_{i,j\in V,a,b\in [k]}$ is PSD.

Proof: In fact we will show $Cov(X_{I}(f), X_{J}(g))$ is PSD $< V_{I}(f), V_{J}(g) = Y_{J}v_{J}(fvg) = E(X_{I}(f) X_{J}(g))$ $U_{I}(f) := V_{I}(f) - || U_{I}(f) ||^{2} \cdot V_{p}$

Covariance and "covariance vector"

Lemma 5.3. Suppose that the matrix $(Cov(X_{ia}, X_{jb}))_{i \in V, a \in [k]}$ is positive semidefinite. Then, there exists vectors $\widetilde{u}_1, \ldots, \widetilde{v}_n$ in the unit ball such that for all vertices $i, j \in V$,

$$\frac{1}{k^2} \Big(\sum_{(a,b)\in[k]^2} \left| \operatorname{Cov}(X_{ia}, X_{jb}) \right| \Big)^2 \leq \langle \widetilde{\boldsymbol{v}}_i, \widetilde{\boldsymbol{v}}_j \rangle \leq \frac{1}{k} \sum_{(a,b)\in[k]^2} \frac{1}{2} (\frac{1}{\operatorname{Var} X_{ia}} + \frac{1}{\operatorname{Var} X_{jb}}) \operatorname{Cov}(X_{ia}, X_{jb})^2.$$

What is the significance of this lemma?

Local and global correlation

So far, we have:

• (Lemma 5.3)
$$\langle \tilde{u}_i, \tilde{u}_j \rangle \leq \frac{1}{2k} \sum_{a,b} \left(\frac{1}{Var X_{ia}} + \frac{1}{Var X_{jb}} \right) Cov (X_{ia}, X_{jb})^2$$

• (Lemma 5.2) $\frac{1}{k} \sum_{a,b} \frac{Cov (X_{ia}, X_{jb})^2}{Var X_{jb}} \leq Var [X_i] - \mathbb{E}_{\{X_j\}} Var [X_i|X_j]$

• We get $\mathbb{E}_{i,j}\langle \tilde{u}_i, \tilde{u}_j \rangle \leq \mathbb{E}_{i,j}[Var[X_i] - \mathbb{E}_{\{X_j\}}Var[X_i|X_j]]$

Global correlation of $\tilde{u}_i \leq$ Expected variance drop

Local and global correlation

So far, we have:

- (Lemma 5.3) $\frac{1}{k^2} \left(\sum_{a,b} \left| Cov(X_{ia}, X_{jb}) \right| \right)^2 \le \langle \tilde{u}_i, \tilde{u}_j \rangle$
- (Easy) $\|\{X_iX_j\} \{X_i\}\{X_j\}\|_1 = \sum_{a,b} |Cov(X_{ia}, X_{jb})|$

• We get
$$\mathbb{E}_{(i,j)\in E}\langle \tilde{u}_i, \tilde{u}_j \rangle \ge \frac{1}{k^2} \Big(\mathbb{E}_{(i,j)\in E} \left\| \{X_i X_j\} - \{X_i\} \{X_j\} \right\|_1 \Big)^2$$

Local correlation of $\tilde{u}_i \geq$ Discrepancy across edges

Local and global correlation

Global correlation of $\tilde{u}_i \leq$ Expected variance drop Local correlation of $\tilde{u}_i \geq$ Discrepancy across edges

• If it is true that local correlation \leq global correlation, then:

Discrepancy across edges ≤ Expected variance drop

Local and global correlation

The following lemma shows that a violation of the local vs global correlation condition implies that the graph has high threshold rank.

Lemma 6.1. Suppose there exist vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

$$\mathop{\mathbb{E}}_{ij\sim G} \langle v_i, v_j \rangle \geq 1 - \varepsilon \,, \quad \mathop{\mathbb{E}}_{i,j \in V} \langle v_i, v_j \rangle^2 \leq \frac{1}{m} \,, \quad \mathop{\mathbb{E}}_{i \in V} ||v_i||^2 = 1 \,.$$

Then for all C > 1, $\lambda_{(1-1/C)m} \ge 1 - C \cdot \varepsilon$. In particular, $\lambda_{m/2} > 1 - 2\varepsilon$.

Lemma 6.1. Suppose there exist vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

Lemma 6.1. Suppose there exist vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ such that

$\begin{array}{ll} \text{Applying the Lemma} & \mathbb{E}_{ij\sim G} \langle v_i, v_j \rangle \geq 1-\varepsilon, & \mathbb{E}_{i,j\in V} \langle v_i, v_j \rangle^2 \leq \frac{1}{m}, & \mathbb{E}_{i\in V} \|v_i\|^2 = 1. \end{array}$ $Then \ for \ all \ C > 1, \ \lambda_{(1-1/C)m} \geq 1-C \cdot \varepsilon. \ In \ particular; \ \lambda_{m/2} > 1-2\varepsilon. \end{array}$

Lemma 4.1. Let v_1, \ldots, v_n be vectors in the unit ball. Suppose that the vectors are correlated across the edges of a regular n-vertex graph G,

 $\mathop{\mathbb{E}}_{ij\sim G} \langle v_i, v_j \rangle \ge \rho \,.$

Then, the global correlation of the vectors is lower bounded by

 $\mathbb{E}_{i,j\in V} |\langle v_i, v_j \rangle| \ge \Omega(\rho) / \operatorname{rank}_{\ge \Omega(\rho)}(G) \,.$

where $\operatorname{rank}_{\geq \rho}(G)$ is the number of eigenvalues of adjacency matrix of G that are larger than ρ .

Note that Lemma 4.1 follows directly from the previous lemma by picking $C = \frac{(1-\rho/100)}{(1-\rho)}$ and observing that $\mathbb{E}_{i,j\in V} |\langle v_i, v_j \rangle| \ge \mathbb{E}_{i,j\in V} |\langle v_i, v_j \rangle|^2$ since $|\langle v_i, v_j \rangle| \le 1$ for all $i, j \in V$

Putting things together

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(\operatorname{Cov}(X_{ia}, X_{jb} \mid X_S = x_S))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \leq r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \operatorname{rank}_{\Omega(\varepsilon/k)^2}(G)$,

 $\mathbb{E}_{ij\sim G} \left\| \{X_i X_j\} - \{X_i' X_j'\} \right\|_1 \leq \varepsilon \,.$

- *r*-local means any *r*-subset can be jointly sampled
- This implies (additive) integrality gap $\leq \epsilon$ for level-*r* Lasserre SDP

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(Cov(X_{ia}, X_{jb} | X_S = x_S))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \leq r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \operatorname{rank}_{\Omega(\varepsilon/k)^2}(G)$, Proof $\mathbb{E}_{ij\sim G} \left\| \{X_i X_j\} - \{X'_i X'_j\} \right\|_1 \leq \varepsilon.$ Er 56 (= IE 2m 56 • Imi= E E E Var(Xi|X5). Se(m) Txiliev • If Em 7 E/2, Then Pr J E [[JXiXj]Xi] - 1Xi[Xi] 1Xj][Xi]] 7 E. 5, 1Xis [(i)]) E 7/4. 15)=m If discreption large, apply lemma 5.4, IF [Var[Xi]Xs] - Vor[Xi]Xs,Xj]) 72. (167/4) Vor[Xi]Xs,Xj]) 74. (267/4)

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(Cov(X_{ia}, X_{jb} | X_S = x_S))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \leq r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \operatorname{rank}_{\Omega(\varepsilon/k)^2}(G)$,

 $\mathbb{E}_{ij\sim G} \left\| \{X_i X_j\} - \{X'_i X'_j\} \right\|_1 \leq \varepsilon.$

Em 7, 4/2. =) If v 7, (4/2) (), then EE Em EE. Suffices for vank 7, which is (61) is -) nood v 7, (4/2)

=) At most / (x²/k)/rank z s(4)k) (G) indices m sit.

Proof

Recap

Agenda

• Recall

- More on local distribution
- Correlation rounding
- Sparsest cut for low-rank graphs
- Technical discussions

Sparsest Cut

• Given graph G = (V, E), define sparsest cut (aka edge expansion) as

$$\phi(G) = \min_{S \subseteq V} \frac{|E(S, S^c)|}{|S| \cdot |S^c|}$$

Setup

Dealing with cardinality constraint

Conclusion

Theorem 5.6. Let X_1, \ldots, X_n be r-local random variables and let X'_1, \ldots, X'_n be the random variables produced by Algorithm 5.5 on input X_1, \ldots, X_n . Suppose that the matrices $(\operatorname{Cov}(X_{ia}, X_{jb} \mid X_S = x_S))_{i \in V, a \in [k]}$ are positive semidefinite for every set $S \subseteq V$ with $|S| \leq r$ and local assignment $x_S \in [k]^S$. Then, if $r \gg O(k/\varepsilon^4) \cdot \operatorname{rank}_{\Omega(\varepsilon/k)^2}(G)$,

$$\mathbb{E}_{ij\sim G} \left\| \{X_i X_j\} - \{X_i' X_j'\} \right\|_1 \leq \varepsilon.$$

For sparsest cut, by taking
$$r \gtrsim \frac{\operatorname{Vanler}(\varepsilon^2)}{\varepsilon^4}$$
,
we can get constant favor approximation.

Agenda

• Recall

- More on local distribution
- Correlation rounding
- Sparsest cut for low-rank graphs
- Technical discussions

Steurer's conjecture

Conjecture 9.2. For every $\varepsilon > 0$, there exists positive constants $\eta = \eta(\varepsilon)$ and $\delta = \delta(\varepsilon)$ such that the following holds: For every collection of unit vectors $v_1, \ldots, v_n \in \mathbb{R}^n$ with $\mathbb{E}_{i,j\in[n]} |\langle v_i, v_j \rangle| \leq n^{-\varepsilon}$, there exists two sets $S, T \subseteq \{1, \ldots, n\}$ with $|S|, |T| \geq \delta n$ and $||v_i - v_j||^2 \geq \eta$ for all $i \in S$ and $j \in T$.

In words: if a set of vectors have very low *global correlation*, there are two large cores of constant distance from each other

Sparsest cut for general graphs

- [ABS] proved that SSE can be solved in subexponential time
- High threshold rank graph is the "easy case" and dealt with using random walks
- We cannot use local-to-global correlation when rank(G) is high
- If we follow [BRS], want to do something simple when global correlation (of what?) is low
- There are several possibilities how this might proceed...

Attempt 1: look at v_i

- Corresponds to good embedding with $\sum_{(i,j)\in E} ||v_i v_j||^2 \le O(OBJ)$ and $\sum_i ||v_i||^2 = \mu$
- One way to map them to unit vectors, preserving objective:

$$w_i \coloneqq \begin{pmatrix} v_i \\ v_{\emptyset} - v_i \end{pmatrix} = \begin{pmatrix} v_i(1) \\ v_i(0) \end{pmatrix}$$

Not sure how to use E_{i,j} (w_i, w_j) to lower bound variance drop
If E_{i,j} (w_i, w_j) is large, then variance drop is large and
If E E_{i,j} (W_i, W_j) is 5 mail, then can apply Stenrer.

Attempt 2: look at \tilde{u}_i

- Can lower bound variance drop using $\mathbb{E}_{i,j}\langle \tilde{u}_i, \tilde{u}_j \rangle$ $\sum_{i \neq j} ||v_i - v_j||^2$
- Not sure how to map to unit vectors while preserving objective
- $(u_i \text{ is akin to projecting to span}(v_{\emptyset})^{\perp})$

Comments

• I haven't figured out yet how Steurer's conjecture implies SUBEXP sparsest cut

- But we don't need to limit ourselves to the exact statement!
- Based on the proof flow today, can identify what needs to be true for Lasserre-based sparsest cut algorithm to work in SUBEXP

Summary

In this two-part talk, we have:

- Introduced the Lasserre hierarchy
 - Interplay between vector solutions v_I and probabilities y_I
 - Projecting Lasserre solutions via conditioning
 - Local distributions $y_I(f)$ from y_J
- Gone through [BRS] propagation rounding
 - Role of threshold rank of constraint graph
 - After conditioning, independent rounding \approx correlated rounding
- Discussed application of Lasserre to sparsest cut

Discussions and idle thoughts

- Geometric picture of projection
- Additional properties from structure of vector solution?
- Using entropy instead of variance
- CSP's on hypergraphs
- Can use SDP hierarchy to improve experimental design?

(Almost) blank page

•

References

- David Steurer, "On the Complexity of Unique Games and Graph Expansion".
- Thomas Rothvoss, "The Lasserre hierarchy in Approximation algorithms".
- Lap Chi Lau, "Lasserre Hierarchy", Lecture 13 of CSCI5060.
- V. Guruswami and A.K. Sinop, "Lasserre Hierarchy, Higher Eigenvalues, and Approximation Schemes for Quadratic Integer Programming with PSD Objectives".
- B. Barak, P. Raghavendra, and D. Steurer. "Rounding Semidefinite Programming Hierarchies via Global Correlation".