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 Problem definitions



Sparsest Cut

* Given graph ¢ = (V, E), define sparsest cut (aka edge expansion)
as
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Approximating sparsest cut

* Spectral: O(ﬁ)-approximation
* LP-based: O(log n)-approximation [LR]
* SDP-based: O(4/log n)-approximation [ARV], [AK], [Sherman]

 Fast (almost-linear time) algorithms exist

* Can we attain a better approximation ratio?



O (1)-approximation?
* [t is UGC-hard to approximate sparsest cut to an O(1) factor

* [tis unknown whether O(1)-approximation is possible in
subexponential time



Steurer’s conjecture

Conjecture 9.2. For every € > 0, there exists positive constants n =r(e) and o =
o(¢) such that the following holds: For every collection of unit vectors vy,...,v, €
R" with I; ie[n) |(vi, v}-}| < n¢, there exists two sets S, T C{1,...,n} with |S|,|T| >
on and ||v; —vj||2 =1 forallieSandjeT.

In words: if a set of vectors have very low global correlation, there
are two large cores of constant distance from each other



How to connect the dots?

(We
omit the proof at this point. It follows from extensions of the results presented
in Section 5.2, techniques in [ARV09], and an alternative characterization of
the threshold rank of a graph.)

Steurer’s idea is to combine the three:
e Subspace enumeration
* ARV region growing

 Relating threshold rank to global correlation of vectors



Steurer’s blueprint

[s the c-threshold rank of G

smaller than n¢?

No Yes

Subspace enumeration: find
solution in the top eigenspaces of
A(G

Find SDP solution with low global
correlation (?)

Apply Steurer’s conjecture to
extract 4, B

Apply ARV region growing




Our goal

* To understand how Steurer’s conjecture implies subexp-time
algorithm for sparsest cut, via Lasserre hierarchy

* Today: introduce Lasserre hierarchy and discuss how to round
Lasserre solutions

* Next week: details and proofs, complete the picture



Agenda

* Lasserre Hierarchy



SDP hierarchy: setup

* Combinatorial optimization
* Objective function g: {0, 1} — R, extensible to g:[0,1]" - R
* Subject to linear constraints: x € K := {x': Ax' > b}

 Optimizing for x € {0,1}" N K is hard in general
* Optimizing for x € K is easy, but how to round solution?

* SDP hierarchies try to balance efficiency and integrality gap



SDP hierarchy: idea

* Idea is to add additional (SDP) constraints that all integral
solutions satisfy

* Finer and finer feasible region:

K = Lasy(K) 2 Las,{(K) 2 --- 2 Las,(K)




Lasserre hierarchy

Definition 1. Let K = {x € R" | Ax = b}. We define the ¢-th level of the Lasserre hierarchy
LAS:(K) as the set of vectors y € R2" that satisfy
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The matrix M,(y) is called the moment matrix of y and the second type M i;‘;?(y) is called

moment matrix of slacks. Furthermore, let LASI;[UI(K] ={(yny,..., i) | ¥ € LAS;(K)} be
the projection on the original variables.



Interpretation

* The variables x; can be regarded as l?(r[Xl- = 1]

* The variables y; (I € [n]) represent joint probabilities

'71 = Fr[‘/e}X - 1-1

* In the t-th round of Lasserre hierarchy, y; are only constrained for
1| < 2t+1

* They define local distributions



Basic properties
Las, (K 2 Lac, CK) L., lctsn

* Lasserre hierarchy is an increasingly tight relaxation of the
original optimization problem Las, (K) 2 Kn 3o}

* The t-th level of Lasserre hierarchy has n?® variables
*ForO<|I|<|J|<t,wehave0<y; <y; <1
1<J
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(Almost) blank page
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The t-th level of Lasserre hierarchy has n°® variables:
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Geometric interpretation of M, (y)

« We have M;(y) = (y“”)lll,ljlst 70

n
» Meaning: there exists vectors {v;};j<; € R?" such that (v;, v;) =

Yiuj
e For example we immediately have ||v,||? = y,
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* Rounding Lasserre solutions



Basic rounding mechanism

* Start with Lasserre solution y € Las;(K)
* x; =y are between 0 and 1

* Goal: round to an integral solution

* We don't quite know how to do that without suffering loss in
objective...



“Lift and Project”

* But we can have t integral entries!

* [dea: project solution y € Las;(K) to solution y' € Las;_(K),
such that x; = y{;; € {0,1}

* In the end, t entries will be in {0, 1}
* Round the rest according to the marginal distribution



Projection lemma

Lemma 2. Fort =1, let y € LAS;(K) and i € [n] be a variable with 0 < y; < 1. If we define

(1) ._ Yiuti} ) . YI—Yiuti
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then we have y = y; -2V + (1 - y;) - 29 with 2%, 2V € Las,— (K) and zlf:m =0,z" =1.
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This should remind us of conditional probability



Lemma 2. For t =1, let y € LAS;(K) and i € [n] be a variable with 0 < y; < 1. If we define
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Remark

* The order of conditioning does not matter!

Cgﬂd:'\'o\‘\ o S| o lo(' 1
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* Correlation rounding



Correlation rounding

* From y € Las;(K), we can obtain solutions with at most t integral
entries

* For non-integral entries, we just use marginals to round randomly

* When does this yield a good integral solution?



Good rounding when? 0 %

* Ideal case: entries are independent
* Close to ideal case: entries are almost independent

1
 For graph CSP’s, only (Xl-,Xj) over (i,j) € E matter

* We expect rounding to be good if local correlation is small



Definitions

* From y € Las;,,(K), we can obtain solutions with t integral
entries

 Define local correlation as \ P([X:“XS - 1] - B (xs 5(’] P QXf*Ql
E peel|yi; — vivil]
un‘s(-'c’m A fun,

* Define global correlation as
E; jev[|yi; — viv;l]




Global correlation

» Use variance );; x; (1 — x;) as potential function

* If global correlation is high, can project one level down while
decreasing variance by a lot

 Variance is bounded in the beginning and is always = 0
* Therefore, at some point global correlation must be low



Local-to-global correlation

* We expect rounding to be good if local correlation is small

* At some point global correlation must be low

* If low global correlation -> low local correlation, then we are good!
\,\‘\%\,\ \o Corrhaiion, — \/\‘\GJL. 3\0\4«\ Cone \GYTom .

* For example, expanders has this property
* In fact lo&ln*es’mld.:rank graphs have this property too!
Ay 3o \erf




Back to sparsest cut...

* Suppose we have an appropriate Lasserre hierarchy for sparsest
cut

* At some point global correlation must be low

* If we can extract a vector configuration from the respective
Lasserre solution, we can apply Steurer’s conjecture!



Summary

We have seen:
 What Lasserre hierarchy is
* How to round a Lasserre solution

* An overview of correlation rounding



Next time...

* Proving main results about correlation rounding

* Application to sparsest cut
* How Steurer’s conjecture -> subexp-time sparsest cut
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