Reading Group (Spring 2022) Week 1 – ARV (Part 1)

Alex Tung 17 May 2022

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Sparsest cut background

Task: Given graph G = (V, E), find a cut $S \subseteq V$ such that $\phi(S) \coloneqq \frac{|E(S, S^c)|}{|S| \cdot |S^c|}$ is minimized.

- Spectral: $O(\frac{1}{\varphi})$ -approximation* of conductance
- Leighton-Rao: $O(\log n)$ -approximation of expansion
- Hardness of sparsest cut: O(1)-approximation is UGC-hard

* φ is conductance here

ARV

• Based on SDP

• Best of both worlds:

• Key ingredient: l_2^2 -triangle inequality

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Outline of ARV cut-finding procedure

• Step 1: solve the following SDP relaxation of sparsest cut

$$\begin{split} SDP(G) \coloneqq \min_{\substack{f: V \to \mathbb{R}^n \\ s.t.}} & \sum_{\substack{\{u,v\} \in E}} \|f(u) - f(v)\|^2 \\ & \forall u, v, w \\ s.t. & \forall u \|f(u) - f(v)\|^2 + \|f(v) - f(w)\|^2 \geq \|f(u) - f(w)\|^2 \\ & \forall (u,v) \coloneqq \|f(u) - f(v)\|^2 = n^2 \\ & \forall (u,v) \coloneqq \|f(u) - f(v)\|^2 = n^2 \\ & \forall (u,v) \coloneqq \|f(u) + \|f(v)\| \leq -c_2 \cdot \vec{1} \\ & \quad f_{vr} v \in S \\ \end{split}$$

- $||f(u) f(v)||^2 + ||f(v) f(w)||^2 \ge ||f(u) f(w)||^2$ is the $(l_2^2$ -)triangle inequality
- $\sum_{u,v \in V} ||f(u) f(v)||^2$ is normalization term

• Step 2: find two large, well-separated subsets $A, B \subseteq V$

<u>Theorem 1</u> (ARV Structure Theorem). Given solution $\{f(u)\}_{u \in V}$ to SDP(G). Let $d(u, v) \coloneqq ||f(u) - f(v)||^2$. For some $\Delta = \Theta\left(\frac{1}{\sqrt{\log n}}\right)$, we can find subsets $A, B \subseteq V$, such that:

- $|A|, |B| \ge \Omega(n)$
- $d(A,B) \coloneqq \min_{u \in A, v \in B} d(u,v) \ge \Delta$

• Step 3: find a sparse cut from threshold cuts based on d(u, A)

<u>Theorem 2</u> ("Region growing" argument). Given two sets $A, B \subseteq V$ such that $|A|, |B| \ge \Omega(n), d(A, B) \ge \Delta$ and $W \coloneqq \sum_{(u,v)\in E} ||f(u) - f(v)||^2$, there exists some $t \in (0, \Delta]$ such that the set $S_t \coloneqq \{u \in V : d(u, A) < t\}$ has expansion $O(W/\Delta)$. $S_t \coloneqq \{u \in V : d(u, A) < t\}$ has expansion $O(W/\Delta)$.

Special case...

- We can only find well-separated $A, B \subseteq V$ if $\{f(u)\}_{u \in V} \subseteq \mathbb{R}^n$ is "well-spread", i.e. no large cluster
- If there is a large cluster, use a variant of region growing
- If there is no large cluster, proceed as planned

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Motivation

- "Embedding" cut finding:
 - $\{f(u)\}_{u \in V} \subseteq \mathbb{R}^n$, project along random direction, then divide at 0

Ffus q

- + ensures size of cut set
- - edge cut probability suffers Cauchy-Schwarz loss
- "Metric" cut finding:
 - Find $u \in V$ and $r \sim [0, 1]$, return $\{v \in V : d(u, v) \not\ge r\}$
 - + edge cut probability bounded by $d(u, v) = \|f(v) f(v)\|^{2}$
 - - no control of cut set size
- ARV solution: "Metric" with control of cut set size

 $A(\cdot)))OB$ $|S_{4}| > S_{2}(m), |S_{4}| > S_{2}(m)$

Proof of Theorem 2

<u>Theorem 2</u> ("Region growing" argument). Given two sets $A, B \subseteq V$ such that $|A|, |B| \ge \Omega(n), d(A, B) \ge \Delta$ and $W \coloneqq \sum_{(u,v)\in E} ||f(u) - f(v)||^2$, there exists some $t \in (0, \Delta]$ such that the set $S_t \coloneqq \{u \in V : d(u, A) < t\}$ has expansion $O(W/\Delta)$.

•
$$\varphi(S_t) = \frac{|E(S_t, S_t)|}{|S_t| \cdot |S_t|}$$

· |St|≥ S(n), |St| ZS(n) =) Denominator 7 S(n2).

Blank Page

$$\begin{split} E_{\underline{t}} \left[E(s_{t}, s_{t}^{c}) \right] &= \sum_{(u_{i}v_{i}) \in \overline{c}} \Pr\left[(u_{i}v_{i}) \text{ is } u_{t} \right] \\ &= \sum_{(u_{i}v_{i}) \in \overline{c}} \Pr\left[ducts dv \right] \\ &= \sum_{(u_{i}v_{i}) \in \overline{c}} \Pr\left[ducts dv \right] \\ &= \sum_{(u_{i}v_{i}) \in \overline{c}} \frac{|d_{v} - d_{v}|}{\Delta} \\ &= \sum_{(u_{i}v_{i}) \in \overline{c}} \frac{|d_{v} - d_{v}|}{\Delta} \\ &= \sum_{(u_{i}v_{i}) \in \overline{c}} \frac{d(u_{i}v)}{\Delta} \\ &= W/\Delta . \end{split}$$

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Theorem 1 restated

<u>Theorem 1</u> (ARV Structure Theorem). Given well-spread vectors $\{f(u)\}_{u \in V} \subseteq \mathbb{R}^m$. Let $d(u, v) \coloneqq ||f(u) - f(v)||^2$. Suppose $\{f(u)\}_{u \in V}$ satisfies the l_2^2 -triangle inequality. For some $\Delta = \Theta(1/\sqrt{\log n})$, we can find subsets $A, B \subseteq V$, such that:

- $|A|, |B| \ge \Omega(n)$
- $d(A,B) \coloneqq \min_{u \in A, v \in B} d(u,v) \ge \Delta$

Succeeds with probability ≥ c.

- The result does not depend on dimension of the f(u)'s
- It has nothing to do with cut-finding, nor with the graph *G*!

ARV set-finding algorithm

The plan

- The goal is to show that the algorithm succeeds with $\Omega(1)$ probability
- First, we show that FAIL 1 happens with probability $\leq 1 c_1$
 - need well-spread assumption here
 - the constant in "|A|, $|B| \ge \Omega(n)$ " depends on c_1
- Then, we show that FAIL 2 happens with probability $\leq c_2$
 - $c_2 > 0$ can be made arbitrarily small
 - the constant in " $\Delta = \Theta(1/\sqrt{\log n})$ " depends on c_2
- Therefore, success probability is $\geq c_1 c_2$

Point of divergence...

- There are (at least) three known proofs of ARV:
 - ARV original
 - Rothvoss
 - Barak & Steurer
- We will follow Rothvoss's proof

Rothvoss version of set-finding

Rothvoss version of set-finding

Analysis of Pr(FAIL 1)

• Pre-processing:

Recall
$$\sum_{u,v} ||f(u) - f(v)||^2 = n^2$$

Dispose of u c.t. $||f(u)||^2 < \frac{1}{10}$ or $||f(u)||^2 > 10$.
 $well-spread$.
 $\rightarrow \frac{n}{2}$ points remaining, now $||f(u)||^2 \in [\frac{1}{10}, 10]$.

Blank Page

Blank Page

$$\alpha > 11w11 \ge 11f(w) - f(w)11 \cdot asca
 $\Rightarrow \mathcal{L}(1)$
 $\alpha < 11w11 \ge 11f(w)11 \cdot asca
 $\Rightarrow \mathcal{L}(1)$
 $\alpha < 11w11 \ge 11f(w)11 \cdot asca
 $\Rightarrow \mathcal{L}(1)$
 $ascarded a
 $\Rightarrow \mathcal{L}(1)$
 $\Rightarrow \mathcal{L}(1)$
 $ascarded a
 $\Rightarrow \mathcal{L}(1)$
 $ascarded a
 $\Rightarrow \mathcal{L}(1)$
 $\Rightarrow \mathcal{L}(1)$
 $\Rightarrow \mathcal{L}(1)$
 $ascarded a
 $\Rightarrow \mathcal{L}(1)$
 $\Rightarrow \mathcal{L}(1)$$$

Blank Page · Pr[cg,fw>> E[-2,-2]] Z Ju, since 11 fluilli² E [1/10, 10] . If live is love bounded, the Pr[<q, w> 7,+3] >, run. /

Proof idea that Pr(FAIL 2) is small

- Consider the graph of Δ -short edges: $E = \{(u, v) \in V \times V : d(u, v) < \Delta\}$
- Start from a vertex u_0 , travel along k short edges $u_0 \to u_1 \to \cdots \to u_k$, so that each $\langle u_{i+1} u_i, g \rangle$ is at least 2
- For at least one vertex u_0 , for "many" directions g, can find path $u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_k$ s.t. $\langle u_k u_0, g \rangle \ge \Omega(k)$
- On the other hand, since $||u_k u_0|| \le \sqrt{\sum_i ||u_{i+1} u_i||^2} \le \sqrt{k \Delta}$, for **any** u'_0 $\Pr(|\langle u'_k - u'_0, g \rangle| \ge C \sqrt{\log n} \cdot \sqrt{k\Delta})$ is very small
- Plug suitable $k = \Theta(\sqrt{\log n})$ and $\Delta = \Theta(1/\sqrt{\log n})$ to get contradiction

Next time

- A proof that FAIL 2 probability is small
- ARV through the lens of sos (à la Barak & Steurer)
- A comparison of ARV original, Rothvoss, and Barak & Steurer
- I will also write up some supplementary notes