Reading Group (Spring 2022) Week $1 - ARV$ (Part 1)

Alex Tung 17 May 2022

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Sparsest cut background

Task: Given graph $G = (V, E)$, find a cut $S \subseteq V$ such that $\phi(S) \coloneqq$ $|E(S, S^c)|$ $S \cdot |S^c|$ is minimized.

- Spectral: O(1 $\boldsymbol{\varphi}$)-approximation* of conductance
- Leighton-Rao: $O(log n)$ -approximation of expansion
- Hardness of sparsest cut: $O(1)$ -approximation is UGC-hard

ARV

• Based on SDP

• Best of both worlds:

• Key ingredient: l_2^2 -triangle inequality

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Outline of ARV cut-finding procedure

• Step 1: solve the following SDP relaxation of sparsest cut

$$
SDP(G) := \min_{f:V \to \mathbb{R}^n} \sum_{(u,v) \in E} ||f(u) - f(v)||^2
$$

s.t. $\forall w \, ||f(u) - f(v)||^2 + ||f(v) - f(w)||^2 \ge ||f(u) - f(w)||^2$

$$
\frac{\partial (u,v) := ||f(u) - f(v)||^2}{\partial (u,v) := ||f(u) - f(v)||^2} = \frac{\sum_{u,v \in V} ||f(u) - f(v)||^2}{\sum_{u,v \in V} ||f(u) - f(v)||^2} = \frac{n^2}{n^2}
$$

for $u \in S$

- $||f(u) f(v)||^2 + ||f(v) f(w)||^2 \ge ||f(u) f(w)||^2$ is the $(l_2^2$ -)triangle inequality
- $\sum_{u,v\in V} ||f(u)-f(v)||^2$ is normalization term

• Step 2: find two large, well-separated subsets $A, B \subseteq V$

<u>Theorem 1</u> (ARV Structure Theorem). Given solution $\{f(u)\}_{u\in V}$ to $SDP(G)$. Let $d(u, v) := ||f(u) - f(v)||^2$. For some $\Delta = \Theta$ 1 $\log n$, we can find subsets $A, B \subseteq V$, such that:

- $|A|, |B| \geq \Omega(n)$
- $d(A, B) \coloneqq \min$ $u \in A, v \in B$ $d(u, v) \geq \Delta$

• Step 3: find a sparse cut from threshold cuts based on $d(u, A)$

<u>Theorem 2</u> ("Region growing" argument). Given two sets $A, B \subseteq V$ such that $|A|, |B| \ge \Omega(n)$, $d(A, B) \ge \Delta$ and $W \coloneqq \sum_{(u,v) \in E} ||f(u) - f(v)||$ $f(v)$ ||², there exists some $t \in (0,\Delta]$ such that the set $S_t := \{u \in V : d(u, A) < t\}$ has expansion $O(W/\Delta)$.

Special case…

- We can only find well-separated $A, B \subseteq V$ if $\{f(u)\}_{u \in V} \subseteq \mathbb{R}^n$ is "well-spread", i.e. no large cluster
- If there is a large cluster, use a variant of region growing
- If there is no large cluster, proceed as planned

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Motivation

- "Embedding" cut finding:
	- ${f(u)}_{u\in V} \subseteq \mathbb{R}^n$, project along random direction, then divide at 0

 $\{f(u)\}$

- + ensures size of cut set
- - edge cut probability suffers Cauchy-Schwarz loss
- "Metric" cut finding:
	- $\begin{aligned} \mathbf{F} & \text{if } \mathbf{F} & \text{if } \mathbf{F} \text{ is the following:} \\ \bullet \text{ Find } u \in V \text{ and } r &\sim [0, 1], \text{ return } \{v \in V : d(u, v) \not\Rightarrow r\} \end{aligned}$
	- + edge cut probability bounded by $d(u, v)$ = $\sqrt{2(u)}$
	- - no control of cut set size
- ARV solution: "Metric" with control of cut set size

$$
A \bigodot (3.524)
$$

Proof of Theorem 2

<u>Theorem 2</u> ("Region growing" argument). Given two sets $A, B \subseteq V$ such that $|A|, |B| \ge \Omega(n)$, $d(A, B) \ge \Delta$ and $W \coloneqq \sum_{(u,v) \in E} ||f(u) - f(u)||$ $f(v)$ ||², there exists some $t \in (0,\Delta]$ such that the set $S_t := \{u \in V : d(u, A) < t\}$ has expansion $O(W/\Delta)$. $\cdot \phi(\zeta_t) = \frac{|\overline{E}(\zeta_t, \zeta_t^{\zeta})|}{|\zeta_t| \cdot |\zeta_t^{\zeta}|}$

 \bullet $|5t|$ \geq $\Omega(n)$, $|5t|$ \geq $\Omega(n)$ \Rightarrow Denominator \geq $\Omega(n^2)$.

•
$$
Wurt: upper bound \in |E(s_t, s_t)|
$$
.

Blank Page

$$
\frac{d}{dt} |E(s_{t}, s_{t}')| = \sum_{(u,v)\in E} P_{r} [(u,v) \text{ is cut}]
$$
\n
$$
= \sum_{(u,v)\in E} P_{r} [du < t \le dv]
$$
\n
$$
= \sum_{(u,v)\in E} \frac{P_{r} [du < t \le dv]}{t^{2} \log u}
$$
\n
$$
= \sum_{(u,v)\in E} \frac{d(v - du)}{\Delta}
$$
\n
$$
(asumu du < dv) \le \sum_{(u,v)\in E} \frac{d(u,v)}{\Delta}
$$
\n
$$
= W/\Delta.
$$

Agenda

- Sparsest cut background
- ARV outline
- Region growing argument
- Structure theorem

Theorem 1 restated

Theorem 1 (ARV Structure Theorem). Given well-spread vectors $f(u)\}_{u\in V} \subseteq \mathbb{R}^m$. Let $d(u, v) \coloneq ||f(u) - f(v)||^2$. Suppose $\{f(u)\}_{u\in V}$ satisfies the l_2^2 -triangle inequality. For some $\Delta = \Theta\big(\mathbb{1}/\sqrt{\log n}\big)$, we can find subsets $A, B \subseteq V$, such that:

- $|A|, |B| \geq \Omega(n)$
- $d(A, B) \coloneqq \min$ $u \in A, v \in B$ $d(u, v) \geq \Delta$

Succedes with probability >c.

- The result does not depend on dimension of the $f(u)$'s
- It has nothing to do with cut-finding, nor with the graph $G!$

ARV set-finding algorithm

The plan

- The goal is to show that the algorithm succeeds with $\Omega(1)$ probability
- First, we show that FAIL 1 happens with probability $\leq 1 c_1$
	- need well-spread assumption here
	- the constant in " $|A|, |B| \geq \Omega(n)$ " depends on c_1
- Then, we show that FAIL 2 happens with probability $\leq c_2$
	- $c_2 > 0$ can be made arbitrarily small
	- the constant in " $\Delta = \Theta(1/\sqrt{\log n})$ " depends on c_2
- Therefore, success probability is $\geq c_1 c_2$

Point of divergence…

- There are (at least) three known proofs of ARV:
	- ARV original
	- Rothvoss
	- Barak & Steurer
- We will follow Rothvoss's proof

Rothvoss version of set-finding

Rothvoss version of set-finding

Analysis of Pr(FAIL 1)

• Pre-processing:

Recall
$$
\sum_{u,v} ||f(u) - f(v)||^2 = n^2
$$

\n• D:Spec f u s.f. ||f(u)||^2 < $\frac{1}{10}$ or ||f(u)||^2 > 10.
\n→ M/2 points remaining, new ||f(u)||^2 ∈ [10,10].

FAILI if IAIcm, or IBIcm.

\n
$$
E[IA\cdot 1B1] \approx \Omega(n^{2}) \Rightarrow P_{r}[IA\cdot IB1\times cn^{2}] \le 1-c
$$
\n
$$
E[IA\cdot 1B1] \approx \Omega(n^{2}) \Rightarrow P_{r}[IA\cdot IB1\times cn^{2}] \le 1-c
$$
\n
$$
f_{n^{\prime}} \sin t a b l \gamma \text{ when } c, c...
$$

Blank Page

$$
\begin{array}{lll}\n\overline{H}[|A| \cdot |B|] & = & \sum_{u,v \in V} \text{Pr}[u \in A, v \in B] \\
& \geq & \sum_{u \in V} \sum_{v : d(u,v) \geq V_{1}} \text{Pr}[u \in A, v \in B] \\
& \geq & \sum_{u \in V} \sum_{v : d(u,v) \geq V_{1}} \text{Pr}[u \in A, v \in B] \\
& \Rightarrow & \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \\
& \Rightarrow & \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in A} \text{Pr}[u \in A, v \in B] \geq & \sum_{v \in
$$

Blank Page

\n\n
$$
\alpha > \lim_{n \to \infty} \lim_{n \to
$$

Blank Page
 $. \gamma_{\gamma} [c_{\beta}, f\omega] \in [c_1, -1]$ $\geq \sum_{(\gamma)}$ Since $\sqrt{f(w)}$ ² E [/10, 10] . If IIWII is lover bounded, the $Pr[z+3] >sup$

Proof idea that Pr(FAIL 2) is small

- Consider the graph of Δ -short edges: $E = \{(u, v) \in V \times V : d(u, v) < \Delta\}$
- Start from a vertex u_0 , travel along k short edges $u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_k$, so that each $\langle u_{i+1} - u_i, g \rangle$ is at least 2
- For at least one vertex u_0 , for "many" directions g, can find path $u_0 \rightarrow u_1 \rightarrow u_2$ $\cdots \rightarrow u_k$ s.t. $\langle u_k - u_0, g \rangle \geq \Omega(k)$
- On the other hand, since $||u_k u_0|| \leq \sqrt{\sum_i ||u_{i+1} u_i||^2} \leq \sqrt{k \Delta}$, for any u_0' Pr \overline{g} $(|\langle u'_k - u'_0, g \rangle| \ge C \sqrt{\log n} \cdot \sqrt{k\Delta})$ is very small
- Plug suitable $k = \Theta(\sqrt{\log n})$ and $\Delta = \Theta(1/\sqrt{\log n})$ to get contradiction

Next time

- A proof that FAIL 2 probability is small
- ARV through the lens of sos (à la Barak & Steurer)
- A comparison of ARV original, Rothvoss, and Barak & Steurer
- I will also write up some supplementary notes