Reading Group (W21) Sector Stable Polynomials

Alex Tung 24 March, 2021

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Agenda

• Introduction

- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Motivation

- Given a distribution $\mu\colon 2^{[n]}\to \mathbb{R}_{\geq 0}$
- Task: efficiently sample set $S \subseteq [n]$ according to μ
- Question: what can properties of the *generating polynomial* $g_{\mu}(z) \coloneqq \sum_{S} \mu(S) z^{S}$

inform us about sampling?

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

• Simplicial complex: $X \subseteq 2^{cn}$ dounward-closed. $divension$ of $X : (# of elements)$ on of bigger face $G \in X$) -1. dim 1 · dim 0 dim 2 • Pure simplicial complex:all maximal faces have some SIL

• Weights on faces:

 $w: X \rightarrow R_{>o}$ $balan$ $ed:$ $\frac{1}{\sqrt{2\pi}} \int \frac{\pi c X}{\pi} dx$ $T \geq 0$ $1 - 10^{11}$

• Links and walks on links: $X : dim d$ $TC(X : |T| \leq d - 1)$ $X_{\sigma} := \{ \tau | \sigma : \tau \geq \sigma, \tau \in X \}$ $X_4 = X$ 1 - faces as vertices Walles on links: take 2-falls as lages weight given by w

• α -expander:

for any
$$
r \in X
$$
, $kr \in d-1$,
toale on link Xr has $\lambda_2 \le \alpha$.

$$
\bullet (\alpha_0, \alpha_1, ..., \alpha_{d-2})
$$
-expander:
For any $\sigma \in X$, $|\sigma| = k+1$
walk on link $\chi \sigma$ has $\lambda_2 \le \alpha_k$.

Down-up walk

 $k > l$

- $k \leftrightarrow l$ down-up walk:
	- Start with $S_0 \in X$ of size k
	- Repeat:
		- Choose uniformly random $T_{i+1} \subset S_i$ of size l (down)
		- Choose $S_{i+1} \supset T_{i+1}$ of size k, according to $w(S)$ (up)
- k° • [Gpp18] Down-up walks on HDX mix quickly
- This is the sampling algorithm that we'll analyze in this talk

Examples

• Matroids
$$
X_M = 0 - expandW
$$
.

- Expander graphs nove of G -> 1-face of x_{G}
edges of G -> 2-face of x_{G}
- Matchings

 $\begin{picture}(180,170) \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,170){\line(1,0){156}} \put(150,17$

$$
\begin{array}{cccc}\n & 8 & 13 & 22 & 23 \\
& 21 & 3 & 22 & 23 \\
& 21 & 3 & 22 & 23\n \end{array}
$$

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Correlation/Influence matrix
 $\mathbb{F}_{r}^{\mathbb{R}^{k+2^{c_{m}}}\to R_{2}}$ $\left\{\begin{array}{c} 0 \ 0 \ 0 \end{array}, \begin{array}{c} 0 \ 0 \end{array}, \begin{array}{c} 0 \ 0 \end{array}, \begin{array}{c} \end{array}, \begin{array}{c} \end{array}$

 $\mathbb{E}_{\mu}^{\mathbf{S}^{f}}(\cdot,j):=\begin{cases}1-PL_{i}\end{cases}$, $i-j$
 $\mathbb{E}_{\mu}^{\mathbf{S}^{f}}(\cdot,j):=\begin{cases}1-PL_{i}\end{cases}$, $i-j$

Spectral independence

$$
\alpha
$$
 speutally independent.
\n $\lambda_{max}(\pm \frac{C^{or}}{\mu}) \leq \alpha$

Consider vou sun instead.

$$
\sum_{j} \left| \Psi_{\mu}^{cr}(i,j) \right| \leq \alpha
$$

Why spectral independence is good

[AL20], [ALO20]

Spectral independence (p and its conditionals)

- \Rightarrow bound on λ_2 of down-up walk
- \Rightarrow fast mixing!

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

What is a sector-stable polynomial?

- Stable: no roots in upper half space
- Hurwitz stable: no roots in right half space
 $\left[\int f(z_1,...,z_n)$, $Re(z_0,...,Re(z_n)) \gg \Rightarrow f(z_1,...,z_n) + o\right]$
- Sector stable: no roots in Γ^n_α

 $[f(z_{1},...,z_{n}), |Arg(z_{i})| < \frac{d\pi}{2} \Rightarrow f(z_{1},...,z_{n}) \neq 0]$ \rightarrow Hurwitz stability = T_{1} - stability.

Why do we care?

• Because of this main theorem:

Theorem 50. Consider a multi-affine $f \in \mathbb{R}_{\geq 0}[z_1,\cdots,z_n]$ polynomial that is Γ_α -stable with $\alpha \leq 1$. Let $\mu: 2^{[n]} \to$ $\mathbb{R}_{\geq 0}$ be the distribution generated by f, then Ψ_{μ}^{inf} and Ψ_{μ}^{cor} have bounded row norms. Specifically,

 $\sum_i |\Psi_{\mu}^{inf}(i,j)| \leq 2/\alpha - 1,$

and

 $\sum_i |\Psi_{\mu}^{cor}(i,j)| \leq 2/\alpha.$

As a corollary, the same bounds hold for maximum eigenvalues, i.e., $\lambda_{\max}(\Psi_\mu^{inf}) \leq 2/\alpha - 1$ and $\lambda_{\max}(\Psi_\mu^{cor}) \leq 2/\alpha$.

• "Sector stability implies spectral independence"

Proof
$$
\overline{\Psi}_{\mu}^{inf}(i,j) = \begin{cases} 0, & i \in j \\ P[j|i] - P[j|\overline{v}] , i \neq j \end{cases}
$$

• Step 1: rewrite the row sum as $\phi'(0)$ $P\zeta_{j}|m]=\frac{P\zeta_{j}m!}{P[n]}$ $\sum_{j\neq n} \left| \underline{\mathcal{I}}_{\mu}^{inf}(n_{j}) \right| = \sum_{j\neq n} \left| P[j|n] - P[j|\overline{n}] \right|$ = $\frac{1}{2}$ a $\frac{d^{2}y}{dx^{2}}$ = $\frac{d^{2}y}{dx^{2}}$ = $\frac{d^{2}y}{dx^{2}}$ = $\frac{d^{2}y}{dx^{2}}$ 1) $\frac{1}{2}$ framformation = 1 pc (j 1 m) - Pc (j 1 m) < 0 pc (2) = 1 pc ($\frac{q(2)}{R(2)}$) - 1 eq ($\frac{q(4)}{R(2)}$) - 1 eq ($\$ $\overline{q}(y) = q(\omega)$, $\overline{l}(y) = \frac{2(\omega)}{q(\omega)}$, $\overline{l}(y) = \frac{2(\omega)}{q(\omega)} - \overline{l}(y) = \log \overline{q}(1) - \log \overline{l}(x) = \phi'(x)$

• Step 2: recall Schwarz's lemma

 $\phi : D \longrightarrow D \quad (D = \{ia|<1\})$ $5t. 4 is holomorphic, 4(0)=0.$ Then $|\phi(z)| \leq |z|$. $\Rightarrow |\phi(0)| \leq 1$. Ward to mediby our function so that we can apply Survey's lemma

Proof
$$
\tilde{\varphi} := \frac{1}{\sqrt{12}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\frac{1}{\sqrt{12}} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\frac{1}{\sqrt{12
$$

• Step 5: obtain bound on $\phi'(0)$

 $47 = 47.046$ $\hat{\phi}: D \to D$, $\hat{\phi}(0) = 0$.
Schwarz's lemma => $|\hat{\phi}'(0)| \le 1$. $\Rightarrow |\psi_{\pi^{\Theta+t}}^{'}(0)| \cdot |\phi'(0)| \cdot |\psi'_{\theta}(0)| \leq 1$ $\frac{\pi}{4\pi\,8\,r^6}$. $|\phi'(x)|$. $\frac{49}{\pi} \leq 1$

$$
\theta = \frac{\alpha \bar{h}}{2}, \quad \epsilon \to 0:
$$
\n
$$
|\phi'(0)| \leq \frac{\pi - \theta}{\theta}
$$
\n
$$
= \frac{2}{\alpha} - 1
$$

** The complete framework **

- Given distribution μ : 2 $^{[n]} \to \mathbb{R}_{\geq 0}$
- Algorithm: natural $k \leftrightarrow l$ down-up walk for $k l = O(1)$
- Analysis:
	- Show that $g_{\mu}(z) \coloneqq \sum_{S} \mu(S) z^{S}$ (and conditionals) is Γ_{α} -stable
	- Sector-stability implies spectral independence
	- Spectral independence implies fast mixing of $k \leftrightarrow l$ down-up walk

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Application: k -planar matchings

- Given a *planar* graph
- Want to sample size- k matchings uniformly at random
- [FKT] Counting perfect matchings in planar graphs is in #P \odot
- [Jer87] Counting size-k matchings is #P-hard \odot

Idea: sample "monomers" first

- Sample vertex set $S \subseteq V$ of size $2k$
- Want:
	- Perfect matching on S
	- No edge incident to vertices in $V\setminus S$
- Corresponding generating polynomial is

$$
g(z) := \sum_{|S|=2k} m_S z^S
$$

• This polynomial (and conditionals) are $\Gamma_{1/2}$ -stable!

$\Gamma_{1/2}$ -stability of the *k*-matching polynomial

Here's the strategy -

• Step 1: the (modified) matching polynomial

$$
g_0(z) := \sum_{M:matching} z^M = \sum_S m_S z^S
$$

is Hurwitz $(\Gamma_1$ -) stable

• Step 2: imposing cardinality constraint on Γ_1 -stable, constant partiy polynomial makes it $\Gamma_{1/2}$ -stable $\left(+ \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \right)$

Proof $S+ep^2$. eg constant party, T . Stable
g constant party, T . Stable. 9 union , grave are T_1 -stable.
. gran , grave are T_1 -stable. 3^{m} , $3^{m} \in T_{12}$ and Consider $g(x, y) = g(z, z, z, z, z, z, z).$ Betaur degree-le part from the.

Conclusion: a not-so-fuzzy roadmap

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

α - Fractional log-concavity

$f \in R_{20}(2)$
• Definition: for $z \in R_{20}$, $\log(f(\{3\}))$ is concarred

• Relation to sector stability:

Lemma 67. For $\alpha \in [0,1/2]$, if polynomial $f \in \mathbb{R}_{\geq 0}[z_1,\dots,z_n]$ is $\Gamma_{2\alpha}$ -sector-stable then f is α fractionally log-concave.

(Proof strategy: relate fractional log-concavity to bound on λ_{max} of correlation matrix)

Sector stability and Newton polytope

Lemma 66. Let μ : $2^{[n]} \to \mathbb{R}$ be a $\Gamma_{1/k}$ -sector-stable distribution, then the length of edges of newt(μ) is at most $2k.$

$$
Next(\mu) \subseteq \mathbb{R}^n : Conv(\begin{matrix} 1 & \text{supp}(\mu) \\ 2 & \text{supp}(\mu) \end{matrix})
$$

A Conjecture

Remark 77. In Lemma 66, we show the convex hull of the support of a Γ_{α} -sector stable polynomial has edge length bounded by $O(1/\alpha)$. We can show a similar result for α -fractionally log-concave polynomial. We leave the problem of characterizing the support of α -fractionally log-concave polynomial to future work.

Conjecture 22. Suppose that u is the uniform distribution on a subset of the hypercube $F \subset \{0,1\}^n$, such that the convex hull conv(F) has edges of bounded length $O(1)$. Then we conjecture that the polynomial

$$
\sum_{j \in F} \mu(S) \prod_{i \in S} z_i
$$

is fractionally log-concave for a parameter $\alpha > \Omega(1)$.

Related questions

- Characterize the support of sector-stable/fractionally log-concave polynomials
- Γ_α -stable polynomials are $\frac{\alpha}{2}$ 2 -fractionally log-concave. Is there a reverse implication?

End