Reading Group (W21) Sector Stable Polynomials

Alex Tung 24 March, 2021

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Agenda

Introduction

- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Motivation

- Given a distribution $\mu: 2^{[n]} \to \mathbb{R}_{\geq 0}$
- Task: efficiently sample set $S \subseteq [n]$ according to μ
- Question: what can properties of the generating polynomial $g_\mu(z)\coloneqq \sum_S \mu(S) z^S$

inform us about sampling?

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

• Simplicial complex: $X \in \Sigma_{cuj}$ downward-closed. dimension of X: (# of elements of biggert face JEX)-1. din 4 · dim o dim 2 • Pure simplicial complex: all maximal faces have same size

• Weights on faces:

 $\omega: X \rightarrow IR_{\geq 0}$ balanced: for any $\nabla \in X$, $\omega(\nabla) = \sum_{\substack{\tau \geq \sigma \\ |\tau| < |\sigma| + 1}} \omega(\tau)$

• Links and walks on links: X: dim d QCX: 12129-1 $\chi_{\sigma} := \{\tau \mid \sigma : \tau \geq \sigma, \tau \in X\}$ $\chi^{a} = \chi$ 1 - faces as vertices Walles on links: take 2-faces as edges weight given by w

• *α*-expander:

for any VEX, WIEd.I,
Walk on link XV has
$$\lambda_2 \leq \alpha$$
.

•
$$(\alpha_0, \alpha_1, ..., \alpha_{d-2})$$
-expander:
for any $\sigma \in X$, $|\sigma| = let i$,
walk on link $\chi \sigma$ has $\lambda_2 \preceq \alpha_k$.

Down-up walk

<>l

- $k \leftrightarrow l$ down-up walk:
 - Start with $S_0 \in X$ of size k
 - Repeat:
 - Choose uniformly random $T_{i+1} \subset S_i$ of size l (down)
 - Choose $S_{i+1} \supset T_{i+1}$ of size k, according to w(S) (up)
- [Opp18] Down-up walks on HDX mix quickly
- This is the sampling algorithm that we'll analyze in this talk

Examples

- Expander graphs nour of Gr 1-face of XG edges of Gr - 2-face of XG
- Matchings

1/2/3

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Correlation/Influence matrix $F_{\mu}^{\mu}(i_{j},j) := \begin{cases} 0 & j \\ 0 & j$

 $\underline{\mathbf{T}}_{\mathbf{P}}^{\mathbf{r}}(i,j) := \begin{cases} \boldsymbol{\Gamma} \cdot \boldsymbol{P} \boldsymbol{\Gamma} i \end{cases}, \quad \tilde{\boldsymbol{\Gamma}} \cdot \boldsymbol{J} \\ \boldsymbol{P} \boldsymbol{\Gamma}_{j}(i,j) \cdot \boldsymbol{P} \boldsymbol{\Gamma}_{j} \end{cases}, \quad \tilde{\boldsymbol{\Gamma}} \cdot \boldsymbol{J} \cdot \boldsymbol{P} \boldsymbol{\Gamma}_{j} \boldsymbol{\Gamma}_{j} .$

Spectral independence

Consider vou sun instead.

Why spectral independence is good

[AL20], [AL020]

Spectral independence (µ and its conditionals)

- \Rightarrow bound on λ_2 of down-up walk
- \Rightarrow fast mixing!

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

What is a sector-stable polynomial?

- Stable: no roots in upper half space
- Hurwitz stable: no roots in right half space $\begin{bmatrix} f(z_1, ..., z_n), & Re(z_1, ..., Re(z_n) > 2 & f(z_1, ..., z_n) + 2 \end{bmatrix} \begin{bmatrix} f(z_1, ..., z_n) + 2 \end{bmatrix} \begin{bmatrix} f(z_1, ..., z_n) & f(z_1, ..., z_n) \end{bmatrix}$
- Sector stable: no roots in Γ_{α}^{n}

 $\begin{bmatrix} f(z_1,...,z_n), |Arg(z_i)| < \alpha T \\ = f(z_1,...,z_n) \neq 0. \end{bmatrix}$ + Hurwith Stability = $T_1 - stability$.

Why do we care?

• Because of this main theorem:

Theorem 50. Consider a multi-affine $f \in \mathbb{R}_{\geq 0}[z_1, \dots, z_n]$ polynomial that is Γ_{α} -stable with $\alpha \leq 1$. Let $\mu : 2^{[n]} \to \mathbb{R}_{\geq 0}$ be the distribution generated by f, then Ψ_{μ}^{inf} and Ψ_{μ}^{cor} have bounded row norms. Specifically,

 $\sum_{j} |\Psi_{\mu}^{inf}(i,j)| \le 2/\alpha - 1,$

and

 $\sum_{j} |\Psi_{\mu}^{cor}(i,j)| \leq 2/\alpha.$

As a corollary, the same bounds hold for maximum eigenvalues, i.e., $\lambda_{\max}(\Psi_{\mu}^{inf}) \leq 2/\alpha - 1$ and $\lambda_{\max}(\Psi_{\mu}^{cor}) \leq 2/\alpha$.

• "Sector stability implies spectral independence"

Proof
$$\mathbb{I}_{\mu}^{\text{inf}}(i,j) = \begin{cases} 0, & i=j \\ P(j) = P(j) = P(j) = \\ P(j) = P$$

• Step 1: rewrite the row sum as $\phi'(0)$ (say i=n) $f = g + w_n h$, $g = f|_{w_n=0}$, $h = \partial_n f$. P<jIn] = Ptjn] P(n] $\sum_{j\neq n} \left| \overline{\mathbf{J}}_{\mu}^{inf}(n_{j}) \right| = \sum_{j\neq n} \left| P[j|n] - P[j|n] \right|$ $= \sum_{j \neq n} \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} - \left\{ \begin{array}{c} \partial_{j} g(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} g(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c} \partial_{j} h(4) \\ \partial_{j} h(4) \end{array} \right\} - \left\{ \begin{array}{c}$ $\begin{aligned} &= \frac{1}{2} \int_{a_{1}} \frac{1}{2} \int_{a_{2}} \frac{1}{2} \int_{a_{2}} \frac{1}{2} \int_{a_{1}} \frac{1}{2} \int_{a_{2}} \frac{1}{2} \int_{a_{1}} \frac{1}{2} \int_{a_{2}} \frac{1}{$ $\bar{q}(y) = q(w)$, $\bar{h}(y) = h(w)$ Verify = hort $(x) = \bar{q}'(A)$, $\bar{h}(A) = \log \bar{q}(A) - \log \bar{h}(A) = \phi'(w)$

• Step 2: recall Schwarz's lemma

 $\phi: D \longrightarrow D \quad (D:=\xi:=1<1)$ S.T. ϕ is holomorphic, $\phi(o) = 0$. Then $|\phi(z)| \leq |z|$. $\Rightarrow |\phi(o)| \leq 1$. Want to madify our function so that we can apply Sunanz's lemma

• Step 5: obtain bound on $\phi'(0)$

 $\hat{\phi} = \varphi_{1-\Theta+1}^{-1} \circ \varphi \circ \varphi_{\Theta}$ $\hat{\varphi}: D \rightarrow D$, $\hat{\varphi}(o) = o$. Schwarz's lemma $\Rightarrow |\hat{\varphi}'(o)| \leq 1$. $\Rightarrow |\psi_{\pi,\Theta^{+}}^{2}(\omega)(\cdot)|\phi(\omega)| \cdot |\psi_{\Theta}(\omega)| \leq 1$ $\frac{\pi}{4(\pi, \theta^{+6})} \cdot |\phi'(\omega)| \cdot \frac{4\theta}{\pi} \geq 1$

$$\begin{array}{c}
\Theta = \frac{\alpha T_{1}}{2}, \quad \varepsilon \longrightarrow \circ; \\
\left(\frac{1}{2}(\omega)\right) \lesssim \frac{\pi - \theta}{0} \\
= \frac{2}{3} - 1.
\end{array}$$

** The complete framework **

- Given distribution $\mu: 2^{[n]} \to \mathbb{R}_{\geq 0}$
- Algorithm: natural $k \leftrightarrow l$ down-up walk for k l = O(1)
- Analysis:
 - Show that $g_{\mu}(z) \coloneqq \sum_{S} \mu(S) z^{S}$ (and conditionals) is Γ_{α} -stable
 - Sector-stability implies spectral independence
 - Spectral independence implies fast mixing of $k \leftrightarrow l$ down-up walk

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

Application: *k*-planar matchings

- Given a *planar* graph
- Want to sample size-*k* matchings uniformly at random
- [FKT] Counting perfect matchings in planar graphs is in #P $\ensuremath{\textcircled{\odot}}$
- [Jer87] Counting size-k matchings is #P-hard \otimes

Idea: sample "monomers" first

- Sample vertex set $S \subseteq V$ of size 2k
- Want:
 - Perfect matching on S
 - No edge incident to vertices in $V \setminus S$
- Corresponding generating polynomial is

$$g(z) \coloneqq \sum_{|S|=2k} m_S z^S$$

• This polynomial (and conditionals) are $\Gamma_{1/2}$ -stable!

$\Gamma_{1/2}$ -stability of the *k*-matching polynomial

Here's the strategy -

• Step 1: the (modified) matching polynomial

$$g_0(z) \coloneqq \sum_{M:matching} z^M = \sum_S m_S z^S$$

is Hurwitz (Γ_1 -) stable

• Step 2: imposing cardinality constraint on Γ_1 -stable, constant partiy polynomial makes it $\Gamma_{1/2}$ -stable (+ monomial wave The)

Proof Step 2. g constant parity, T. - Stable · Zmin, Zmax are T, - stable. · fix Zu, Zn E Tyz and Consider h(z) = g(z,z,z,z,, zn2). Extrur degree-le part from this.

Conclusion: a not-so-fuzzy roadmap

Agenda

- Introduction
- Background on HDX
- Spectral independence
- Sector-stable polynomials
- Application to sampling planar matchings
- Bonus

J- Fractional log-concavity

• Definition: for $z \in \mathbb{R}_{>0}$, $\log(f(\zeta z_i^{\alpha} \zeta))$ is concar

• Relation to sector stability:

Lemma 67. For $\alpha \in [0, 1/2]$, if polynomial $f \in \mathbb{R}_{\geq 0}[z_1, \dots, z_n]$ is $\Gamma_{2\alpha}$ -sector-stable then f is α fractionally log-concave.

(Proof strategy: relate fractional log-concavity to bound on λ_{max} of correlation matrix)

Sector stability and Newton polytope

Lemma 66. Let $\mu : 2^{[n]} \to \mathbb{R}$ be a $\Gamma_{1/k}$ -sector-stable distribution, then the length of edges of $\operatorname{newt}(\mu)$ is at most 2k.

A Conjecture

Remark 77. In Lemma 66, we show the convex hull of the support of a Γ_{α} -sector stable polynomial has edge length bounded by $O(1/\alpha)$. We can show a similar result for α -fractionally log-concave polynomial. We leave the problem of characterizing the support of α -fractionally log-concave polynomial to future work.

Conjecture 22. Suppose that μ is the uniform distribution on a subset of the hypercube $F \subseteq \{0,1\}^n$, such that the convex hull conv(*F*) has edges of bounded length O(1). Then we conjecture that the polynomial

$$\sum_{e \in F} \mu(S) \prod_{i \in S} z_i$$

is fractionally log-concave for a parameter $\alpha > \Omega(1)$.

Related questions

- Characterize the support of sector-stable/fractionally log-concave polynomials
- Γ_{α} -stable polynomials are $\frac{\alpha}{2}$ -fractionally log-concave. Is there a reverse implication?

End