Reading Group W21 Lorentzian Polynomials (Part II)

Alex Tung 17 February, 2021

Recall

Last time, we have:

- Defined Lorentzian polynomial, and discussed different ways to define/understand the polynomial class
- Discussed its relations with other polynomial classes
- Briefly talked about the discrete side of things via M-convexity
- Introduced a key property (Hodge-Riemann relation) of H_f

Today we will talk about more advanced topics :)

$$
\begin{array}{l} i=2\\ (0,1,1)+e_j-(0,1,0)\\ \text{forred to those } j=1 \text{ s.t. } dy< fi\\ (0,1,1)+(1,0,0)-(0,1,0) = (1,0,1) \end{array}
$$

Today's menu

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC ⇔ Lorentzian
- Proof of Mason's conjecture

Agenda

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC ⇔ Lorentzian
- Proof of Mason's conjecture

What is c-Rayleigh?

- Let $f \in \mathbb{R}[w_1, ..., w_n]$
	- coefficients nonnegative
	- not necessarily homogeneous
- Given $c > 0$, f is c-Rayleigh if

P[ies, jes] $\{c.P[ies] \cdot PCjes\}$
g(w). 2.2 g(w) $\leq c. P[ies] \cdot PCjes$]

$$
\overline{\rho^{\alpha}f}(w) \cdot \overline{\rho^{\alpha}f^{(w)}}(w) \leq c \cdot \overline{\rho^{a}f^{(w)}}(w) \cdot \overline{\rho^{a}f^{(w)}}(w)
$$

 \Leftrightarrow

for any $\alpha \in \mathbb{N}^n$, $i, j \in [n]$, $w \in \mathbb{R}^n_{\geq 0}$

• In other words, $\partial^{\alpha} f$ has some sort of negative dependence

Main goals

• Prove a relation between c-Rayleigh and M-convex

Theorem 2.23. If f is homogeneous and c -Rayleigh, then the support of f is M-convex.

• Prove relations between c-Rayleigh and Lorentzian

Proposition 2.19. Any polynomial in L_n^d is $2\left(1-\frac{1}{d}\right)$ -Rayleigh.

Proposition 2.24. When $n \le 2$, all polynomials in L_n^d are 1-Rayleigh. When $n \ge 3$, we have (all polynomials in L_n^d are c-Rayleigh) \Longrightarrow $c \geqslant 2\Big(1-\frac{1}{d}\Big)$.

In other words, for any $n \geq 3$ and any $c < 2(1 - \frac{1}{d})$, there is $f \in L_n^d$ that is not c -Rayleigh.

Preservers of c-Rayleigh polynomials $3-1$. 3^{n+1} , 1^{e} , $1 \leq c$. 3^{d+2} , $1 \cdot 3^{d+2}$, $1 \cdot 3^{d+1}$

Lemma 2.20. The following polynomials are c -Rayleigh whenever f is c -Rayleigh:

- (1) The contraction $\partial_i f$ of f.
- The *deletion* $f \setminus i$ of f, the polynomial obtained from f by evaluating $w_i = 0$.
- \rightarrow (3) The diagonalization $f(w_1, w_1, w_3, \ldots, w_n)$.
	- (4) The dilation $f(a_1w_1,\ldots,a_nw_n)$, for $(a_1,\ldots,a_n)\in\mathbb{R}_{\geq 0}^n$.

(5) The translation $f(a_1 + w_1, \ldots, a_n + w_n)$, for $(a_1, \ldots, a_n) \in \mathbb{R}_{\geq 0}^n$. $g(w_1,...,w_n)=f(a_1w_1,...,a_nv_n)$
 $g_1g_2=g_2g_1f$

Whiteboard

$$
M^{\natural}\text{-convexity}
$$

• Recall M-convexity:

For any $\alpha, \beta \in J$ and $i \in [n]$ s.t. $\alpha_i > \beta_i$, there exists $j \in [n]$ s.t. $\alpha_i < \beta_i$ and $\alpha - e_i + e_i \in J$

 \cdot $J^{\natural} \subseteq \mathbb{N}^{n}$ is said to be M^{\natural} -convex if " f^{\natural} is obtained from an M-convex $J \subseteq \mathbb{N}^{n+1}$ by deleting one coordinate"

$$
\{2,0,0,0,0,0,0,0,0,0,0,0,0\}
$$
 : $M=0$ and $M=0$

Key lemma

Lemma 2.22. Let f be a c-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$.

- (1) The support of f is interval convex.
- (2) If $f(0)$ is nonzero, then supp(f) is M^{\natural} -convex.
- Interval convex: If $\alpha, \beta \in J$ and $\alpha \le \gamma \le \beta$, then $\gamma \in J$
(i) $\alpha \le \beta$) Think of J = supp (f).

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$. (1) The support of f is interval convex. Whiteboard (2) Ii
f: c- Ragleigh they supplife is intered convex. (2) If $f(0)$ is nonzero, then supp (f) is M^{\sharp} -convex. Suppose not. $\Rightarrow 3e$, βe \overline{J} $\overline{5}$ of $\alpha < \beta$ and 3γ s.t. $\alpha \leq \gamma \leq \beta$ but $\gamma \notin \overline{J}$. Choose so that If-al1 is minimized. In this cause: $V \times \omega t$, $\alpha \leq \gamma \leq \beta$ and $\gamma \neq \omega, \gamma \Rightarrow \gamma \notin J$. Originally of zalod + cp wife +... $A_{P}P_{1}Y$ B_{α} , rescale \Rightarrow $f = 1 + C_8 w^8 + ...$ $\frac{1}{2} \cdot \frac{3.31^{1}}{2.21^{6}-2.29} + \cdots$
 $\frac{6}{2} \cdot \frac{1}{2} \cdot$

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$. (1) The support of f is interval convex. Whiteboard (2) If $f(0)$ is nonzero,
(2) $f(0) \ne 0$ (Desupplt)) => Suppl^t, is M^h -conver (2) If $f(0)$ is nonzero, then supp(f) is M^{\sharp} -convex. Lemma (2.21) J: intervel conver, $0.6J$. Then J is M^H -conver iff J satisfies the "auguertation property".

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$.

(1) The support of f is interval convex.

(2) If $f(0)$ is nonzero, then supp(f) is M^{\sharp} -convex.

Whiteboard

 $|dA|_1 < |P_1|$, $d_1 < P_2 \Rightarrow d_1e_2 \notin J$.
Assume that $\{i : a_1 > 0\}$ and $\{i : P_1 > 0\}$ are disjoint. $Tanget: find \qquad Y \in J \text{ } \text{s.t.}$
 $X + 0 = T$ \mathbf{Q}_1 $8 + e_1 \in J$ $Y+e$ ₂ E ι $\begin{array}{c}\n\bullet \times \\
\bullet \times \\
\bullet \end{array}$ $\gamma + 2e_{\nu} \in J$ Look at h(b): the smallest number $57.$ $\sqrt{2} \cdot 2.7 + \sqrt{2} \cdot 2.45$ $\sqrt{7} - \sqrt{2} \cdot 2.45$. . l (0) > 1 } 1 } d = 3 h (0) > 1 d 1 + 2 \cdot $\mathcal{Q}(1dU) = \Lambda$

Proof flow of Theorem 2.23

$$
q(w, ..., w) = f(w, 1, wzt, ..., wnt)
$$
\n
$$
gis c\text{ Rayleigh}
$$
\n
$$
g is c\text{ Rayleigh}
$$
\n
$$
Suspelg is cM2-convet.
$$
\n
$$
Supp(f) is just the degree d slice of supplef
$$
\n
$$
supp(f) is f is homogenous)
$$
\n
$$
supp(f) \times M-comut.
$$

c-Rayleigh and Lorentzian

Proposition 2.19. Any polynomial in L_n^d is $2\left(1-\frac{1}{d}\right)$ -Rayleigh. $\frac{1}{d}$ $R + \frac{1}{2}$ where is $\frac{1}{2}$

Proposition 2.24. When $n \leq 2$, all polynomials in L_n^d are 1-Rayleigh. When $n \geq 3$, we have

$$
\left(\text{all polynomials in } L_n^d \text{ are } c\text{-Rayleigh}\right) \Longrightarrow c \geqslant 2\left(1 - \frac{1}{d}\right).
$$

In other words, for any $n \geq 3$ and any $c < 2(1 - \frac{1}{d})$, there is $f \in L_n^d$ that is not c -Rayleigh.

$$
f = 2(1-\frac{1}{d})\omega_{1}^{d} + \omega_{1}^{d-1}\omega_{2} + \omega_{1}^{d-1}\omega_{3}
$$

Whiteboard
$$
f
$$
 herestein \Rightarrow f is $2(1-\frac{1}{d})$ -Rayleigh.

\nOnly need to use "M₊ has ≤ 1 positive eigenvalue".

\nOutline: use Euler's identity $\pm \sqrt{2\pi}$

\n, $w^T H_{\ell}w = d(d-1) f$ (6R)

\n, $w^T H_{\ell}w = d(d-1) \pm 1$

\n, $w^T H_{\ell}w = (d-1) \$

Agenda

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC ⇔ Lorentzian
- Proof of Mason's conjecture

(8) J is the set of bases of a matroid on $[n]$.

Whiteboard (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) $(4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$ (Δ) $\left(\frac{1}{2}\right)$ $(\frac{1}{2})$ $(\frac{1}{2})$ (1) There exists fold with supply) = J $(Soon)$ (4) $f_3 \in L_n^d$ GD J is M-conver. Need to check, $SMP(f_3)$ is M-conver. any 33.53 .

WhiteboardLet AE 2015 Symmetric. Then the quadratic form WTAW is M-convert if it is Lorentzian. Roally near M-conver => Lorentzian. (Remove zero Yous and Glumns) $A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1$ $A = 11^{\circ} - 161^{\circ} - ... - 161^{\circ} - ... - ...$ $0 - x^2$

Significance

- Lorentzian polynomials have M-convex supports
	- Generalized from real stable polynomials
- Generating polynomial of M-convex set is Lorentzian
	- Generalized the result proved in *log-concave-i* [AOV '18]
- Conjecture 3.12: better constant than 2 for matroids?

Agenda

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC ⇔ Lorentzian
- Proof of Mason's conjecture

Equivalence of CLC and Lorentzian

• Now we have enough tools to prove:

Theorem 2.30. The following conditions are equivalent for any homogeneous polynomial f .

- (1) *f* is completely log-concave.
- (2) *f* is strongly log-concave.
- (3) *f* is Lorentzian.

Relating different Hessians

Proposition 2.33. The following are equivalent for any $w \in \mathbb{R}^n$ satisfying $f(w) > 0$.

The Hessian of $f^{1/d}$ is negative semidefinite at w. (1)

The Hessian of $\log f$ is negative semidefinite at w . (2)

(3) The Hessian of f has exactly one positive eigenvalue at w .

$SLC \Rightarrow Lorentzian$

- Let $f \in H_n^d$ be SLC and nonzero
- Then, H_{∂} α $_f$ has exactly one positive eigenvalue on $\mathbb{R}_{>0}^n$ $(-\frac{1}{2} - 1)H(\frac{1}{2} - 1)$ f. $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ = $\frac{1}{2} + \frac{1}{2}$
	- This means f is c-Rayleigh, and so $supp(f)$ is M-convex $(5e e^{-x^2}$ Lorent 21am => 2(1-})-Rayleigh")
	- Base case satisfied, so Lorentzian

Lorentzian \Rightarrow CLC

- Let $f \in L_n^d$ be nonzero
- Hodge-Riemann + Prop. 2.33 \Rightarrow f is log-concave on $\mathbb{R}^n_{>0}$
- By last time, $(\sum_i a_i \partial_i) f \in L_n^{d-1}$ for $a_i \geq 0$
- This proves that partials of f are log-concave, so f is CLC

A Consequence

Corollary 2.32. The product of strongly log-concave homogeneous polynomials is strongly logconcave.

$$
f \in L_{n}^{d_{1}}, g \in L_{n}^{d_{2}}
$$

 $f \in L_{n}^{d_{1}}, g \in L_{n}^{d_{2}}$
Thus, $g(g(\omega_{n+1}, \dots, \omega_{2n})) \in L_{2n}^{d_{1}+d_{2}}$

Agenda

- c-Rayleigh property
- Genrating polynomial of M-convex sets
- CLC ⇔ Lorentzian
- Proof of Mason's conjecture

Summary

Note: Mason's conjecture deferred to next week. I added some prost outlines (in red) for reference.

Some loose ends…

- Give an example of $f \in H_n^d$ that is log-concave but not CLC
	- What if we require $f = f_j$ for some $J \subseteq \mathbb{N}^n$?
	- What if we require $f = f_j$ for some $J \subseteq \{0,1\}^n$?
	- What if we require $n = 2$, i.e. that f be bivariate?
-
- Are intersections of M-convex sets convex? $\frac{1}{N}$ $\frac{1}{N}$ $\frac{1}{2}$ $\left(\frac{1}{2}$ $\$ • How to prove that diagonalization preserves c-Rayleigh property?

 $2.1.2.2.3.3.1.3.$ $2,6,6$ (26 to + 6) . { (8+0)

Next time:

- Proof of Mason's conjecture
- Preservers of Lorentzian polynomials