Reading Group W21 Lorentzian Polynomials (Part II)

Alex Tung 17 February, 2021

Recall

Last time, we have:

- Defined Lorentzian polynomial, and discussed different ways to define/understand the polynomial class
- Discussed its relations with other polynomial classes
- Briefly talked about the discrete side of things via M-convexity
- Introduced a key property (Hodge-Riemann relation) of H_f

Today we will talk about more advanced topics :)

Bug fix

$$\begin{cases} \beta \\ (2,0,0) \\ (1,1,0) \\ (0,1,1) \\$$

$$i=2$$

(0,1,1) + e; - (0, 1, 0)
forced to choose $j=1$ sit. $d_j \in \beta_i$
(0,1,1) + (1,0,0) - (0,1,0) = (1,0,1)

Today's menu

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC \Leftrightarrow Lorentzian
- Proof of Mason's conjecture

Agenda

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC \Leftrightarrow Lorentzian
- Proof of Mason's conjecture

What is c-Rayleigh?

- Let $f \in \mathbb{R}[w_1, \dots, w_n]$
 - coefficients nonnegative
 - not necessarily homogeneous
- Given *c* > 0, *f* is c-Rayleigh if

 $P[i \in S, j \in S] \leq c. P[i \in S] \cdot P[j \in S]$ $g(w) \cdot \partial_i \partial_j g(w) \leq c \partial_i g(w) \cdot \partial_i g(w)$

$$\partial^{\alpha} f(w) \cdot \partial^{\alpha + e_i + e_j} f(w) \le c \cdot \partial^{\alpha + e_i} f(w) \cdot \partial^{\alpha + e_j} f(w)$$

4-7

for any $\alpha \in \mathbb{N}^n$, $i, j \in [n], w \in \mathbb{R}^n_{\geq 0}$

• In other words, $\partial^{\alpha} f$ has some sort of negative dependence

Main goals

• Prove a relation between c-Rayleigh and M-convex

Theorem 2.23. If *f* is homogeneous and *c*-Rayleigh, then the support of *f* is M-convex.

• Prove relations between c-Rayleigh and Lorentzian

Proposition 2.19. Any polynomial in L_n^d is $2\left(1-\frac{1}{d}\right)$ -Rayleigh.

Proposition 2.24. When $n \leq 2$, all polynomials in L_n^d are 1-Rayleigh. When $n \geq 3$, we have (all polynomials in L_n^d are *c*-Rayleigh) $\implies c \geq 2\left(1 - \frac{1}{d}\right)$.

In other words, for any $n \ge 3$ and any $c < 2\left(1 - \frac{1}{d}\right)$, there is $f \in L_n^d$ that is not *c*-Rayleigh.

Preservers of c-Rayleigh polynomials $\Im_{f} \cdot \Im_{f} \leq c \cdot \Im_{f} \leq c \cdot \Im_{f} \cdot \Im_{f} \leq c \cdot \Im_{f} \cdot \Im_{f}$

Lemma 2.20. The following polynomials are c-Rayleigh whenever f is c-Rayleigh:

- (1) The *contraction* $\partial_i f$ of f.
- (2) The *deletion* $f \setminus i$ of f, the polynomial obtained from f by evaluating $w_i = 0$.
- (3) The diagonalization $f(w_1, w_1, w_3, \ldots, w_n)$.
 - (4) The dilation $f(a_1w_1, \ldots, a_nw_n)$, for $(a_1, \ldots, a_n) \in \mathbb{R}^n_{\geq 0}$.

(5) The translation $f(a_1 + w_1, \dots, a_n + w_n)$, for $(a_1, \dots, a_n) \in \mathbb{R}^n_{\geq 0}$. $g(\omega_1, \dots, \omega_n) = f(a_1, \omega_1, \dots, a_n, \omega_n)$ $g(\omega_1, \dots, \omega_n) = a_1, a_1, f$

Whiteboard
If
$$f: multi affine, then f being c Rayleigh
 $\iff \forall i, j \in [n], f : \partial_i \partial_j f \leq c : \partial_i f : \partial_i g = 0 n |h_{20}^n$, (i)
 $d \in S_{0,1} g^n$, $f = g + w^2 \cdot h$
 $Wout to Show that h. \partial_i \partial_i h \leq c : \partial_i h : dr i_N \in [n] \in [n] \setminus [n] \cap [n]$
 $B_j(w)$, $(g + w^2 \cdot h) \cdot (\partial_i \partial_j g + w^2 \cdot \partial_i h) \leq (\partial_j + w^2 \cdot \partial_i h) \cdot (\partial_j + w^2 \cdot \partial_j h)$
Just let $w_i \Rightarrow w for j \in a$.$$

• Recall M-convexity:

For any $\alpha, \beta \in J$ and $i \in [n]$ s.t. $\alpha_i > \beta_i$, there exists $j \in [n]$ s.t. $\alpha_j < \beta_j$ and $\alpha - e_i + e_j \in J$

• $J^{\natural} \subseteq \mathbb{N}^{n}$ is said to be M^{\natural} -convex if " J^{\natural} is obtained from an M-convex $J \subseteq \mathbb{N}^{n+1}$ by deleting one coordinate"

$$\{(2,0), (1,0,1), (1,1,0), (0,1)\}: M-convec$$

 $\{(2,0), (1,0,1), (1,1), (0,1)\}: M^4-convec$.

Key lemma

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$.

(1) The support of f is interval convex.

(2) If f(0) is nonzero, then supp(f) is M^{\natural} -convex.

• Interval convex: If $\alpha, \beta \in J$ and $\alpha \leq \gamma \leq \beta$, then $\gamma \in J$ (if $\alpha \leq \beta$) Think of J = supp(f).

(1) The support of *f* is interval convex. Whiteboard (2) If f(0) is nonzero, then supp(f) is M^{\natural} -convex. f: c-Ragleigh then supplies is interval convex. Suppose not, \$30, B&J sit, d<B and 37 sit, as 858 but X&J. Choose so that 18-011 is minimized. In this are: VY it. a < 1 < B and & # d. & * V&]. Originally f zglod + CB with t... Apply Za, rescale => f= 1 + CB, WB + .-

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$.

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$. (1) The support of *f* is interval convex. Whiteboard (2) If f(0) is nonzero, then supp(f) is M^{\natural} -convex. (2) flo)=0 (Desupplf)) => Supplf, is MA-conver Lemma (2.21) J. intervel convex, OEJ. Then J is MH-convex iff J Satisfies the "augnentation property", $(\alpha, \beta \in J, |\alpha|_{1} < |\beta|_{1}, \text{ then you can find item})$ still dik β i and dike i δJ .

Lemma 2.22. Let *f* be a *c*-Rayleigh polynomial in $\mathbb{R}[w_1, \ldots, w_n]$.

(1) The support of f is interval convex.

(2) If f(0) is nonzero, then supp(f) is M^{\natural} -convex.

Whiteboard

Idly < IBL, d: <Br => dier &J. Assume that Fi : airos and Fi : Biros are disjoint. Jarget: find dej sit. X+0 cT R, Stere J Yte, 6J 1. • × • X { • • X 8+2e, eJ Look at h(h): the smallest number sit. b.e, + b(k).e, #J 878,7024J. · L(0) > 181 7 100 > & (0) > 101 +2 · A(101) = A

Proof flow of Theorem 2.23

c-Rayleigh and Lorentzian

Proposition 2.19. Any polynomial in L_n^d is $2\left(1-\frac{1}{d}\right)$ -Rayleigh. IR + Euler's identities

Proposition 2.24. When $n \leq 2$, all polynomials in L_n^d are 1-Rayleigh. When $n \geq 3$, we have

(all polynomials in
$$L_n^d$$
 are *c*-Rayleigh) $\Longrightarrow c \ge 2\left(1 - \frac{1}{d}\right)$.

In other words, for any $n \ge 3$ and any $c < 2\left(1 - \frac{1}{d}\right)$, there is $f \in L_n^d$ that is not *c*-Rayleigh.

$$f = 2(1-\frac{1}{2})\omega_{1}^{d} + \omega_{1}^{d-1}\omega_{2} + \omega_{3}^{d+1}\omega_{3}$$

Agenda

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC \Leftrightarrow Lorentzian
- Proof of Mason's conjecture

(8) J is the set of bases of a matroid on [n].

Whiteboard (1) = (2) = (2) = (4)(ち) しいしい) しょう (1) ((4) =) (7) (1) There exists feld with supplied =] (500n) (4) fj 6 La (7) J is M-conver. Neek to check; Supp(f3) is M-conver. 243 is Lorentzion for Aldi=d-2.

Whiteboard Let AEZO,13^{nun}, symmetric. Then the quadratic form When is M-convex iff it is Lorentzian. Really need M-convex => Lorentzian. (Remove zero Kows and columns) A = 11 - 1s, 15, - ... - Isris, cartainly has ≤1 positive o-vale

Significance

- Lorentzian polynomials have M-convex supports
 - Generalized from real stable polynomials
- Generating polynomial of M-convex set is Lorentzian
 - Generalized the result proved in *log-concave-i* [AOV '18]
- Conjecture 3.12: better constant than 2 for matroids?

Agenda

- c-Rayleigh property
- Generating polynomial of M-convex sets
- CLC \Leftrightarrow Lorentzian
- Proof of Mason's conjecture

Equivalence of CLC and Lorentzian

• Now we have enough tools to prove:

Theorem 2.30. The following conditions are equivalent for any homogeneous polynomial *f*.

- (1) f is completely log-concave.
- (2) f is strongly log-concave.
- (3) f is Lorentzian.

Relating different Hessians

Proposition 2.33. The following are equivalent for any $w \in \mathbb{R}^n$ satisfying f(w) > 0.

(1) The Hessian of $f^{1/d}$ is negative semidefinite at w.

(2) The Hessian of $\log f$ is negative semidefinite at w.

(3) The Hessian of *f* has exactly one positive eigenvalue at *w*.

$SLC \Rightarrow Lorentzian$

- Let $f \in H_n^d$ be SLC and nonzero
- Then, $H_{\partial \alpha_f}$ has exactly one positive eigenvalue on $\mathbb{R}^n_{>0}$ $(==)_{\tau=})H(w_{\tau}) \quad f \in \partial_{\tau}\partial_{\tau}f \quad \leq c \cdot \partial_{\tau}f \cdot \partial_{j}f$
 - This means f is c-Rayleigh, and so supp(f) is M-convex
 (See "Lorent210n ⇒ 2(1-±)-Rayleigh")
 - Base case satisfied, so Lorentzian

Lorentzian \Rightarrow CLC

- Let $f \in L_n^d$ be nonzero
- Hodge-Riemann + Prop. 2.33 $\Rightarrow f$ is log-concave on $\mathbb{R}^n_{>0}$ Concequence of $f(A_{\omega})$
- By last time, $(\sum_i a_i \partial_i) f \in L_n^{d-1}$ for $a_i \ge 0$
- This proves that partials of *f* are log-concave, so *f* is CLC

A Consequence

Corollary 2.32. The product of strongly log-concave homogeneous polynomials is strongly log-concave.

Agenda

- c-Rayleigh property
- Genrating polynomial of M-convex sets
- CLC \Leftrightarrow Lorentzian
- Proof of Mason's conjecture

Summary

Note: Mason's conjecture déferréed to next week. I added some proof outlines (in red) for référence.

Some loose ends...

- Give an example of $f \in H_n^d$ that is log-concave but not CLC
 - What if we require $f = f_I$ for some $J \subseteq \mathbb{N}^n$?
 - What if we require $f = f_I$ for some $J \subseteq \{0,1\}^n$?
 - What if we require n = 2, i.e. that f be bivariate?
- Are intersections of M-convex sets convex? $J_{1} = \{(1,0,0,0), (0,1,0,0), (0,0,0,0), (0,$
- How to prove that diagonalization preserves c-Rayleigh property?

 $\partial_i f \cdot \partial_i \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ $\partial_i f \cdot \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ $\partial_i f \cdot \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ $\partial_i f \cdot \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ $\partial_i f \cdot \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ $\partial_i f \cdot \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ $\partial_i f \cdot \partial_i \partial_j f \leq (\cdot \partial_i \partial_i f \cdot \partial_i \partial_j f)$ (9,+92) f. (9,+92) 9, 9, 5

Next time:

- Proof of Mason's conjecture
- Preservers of Lorentzian polynomials