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Definition

• 𝐻𝑛
𝑑: polynomials in ℝ 𝑤1, … , 𝑤𝑛 of homogeneous degree 𝑑

• 𝑃𝑛
𝑑 ⊂ 𝐻𝑛

𝑑: those with positive coefficients

Strictly Lorentzian polynomials:

• ሶ𝐿𝑛
2 ≔ {𝑓 ∈ 𝑃𝑛

2: 𝐻𝑓 has Lorentzian signature +,−,… ,− }

• ሶ𝐿𝑛
𝑑 ≔ {𝑓 ∈ 𝑃𝑛

𝑑: 𝜕𝑖𝑓 ∈ ሶ𝐿𝑛
𝑑−1 for any 𝑖 ∈ 𝑛 }

Lorentzian polynomials: take limit



Example: Bivariate polynomials

• Consider 𝑓 = 𝑤1
3 + 𝑤2

3

• 𝜕1𝑓 = 3𝑤1
2, 𝜕2𝑓 = 3𝑤2

2 are Lorentzian (check Hessian)…

• But 𝑓 is not!

• In fact, 𝑓 = σ𝑖=0
𝑑 𝑎𝑖𝑤1

𝑖𝑤2
𝑑−𝑖 is strictly Lorentzian iff the sequence 

𝑎𝑖 is strictly ultra log-concave



Example: Quadratics
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Real Stable Polynomials

• 𝑆𝑛
𝑑 ⊂ 𝐻𝑛

𝑑: real stable (= nonvanishing on ℍ𝑛) with nonnegative
coefficients

Examples:

• det(𝐴 + 𝑤1𝐵1 +⋯+𝑤𝑛𝐵𝑛) where 𝐵𝑖 ≽ 0

• Spanning tree polynomial: σ𝑇(ς𝑒∈𝑇𝑤𝑒)



Properties

• 𝑓 ∈ 𝐻𝑛
𝑑 is real stable iff: for any 𝑢, 𝑣 ∈ ℝ𝑛 with 𝑢 ≥ 0 and 𝑓 𝑢 > 0,

𝑓 𝑥𝑢 + 𝑣 is real-rooted as a polynomial in ℝ[𝑥]

• Some preservers of real stability:
• Partial derivative

• Product

• ℝ-specialization

• Projection

• Inversion

• …
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• 𝑑 = 2: comparing the statements

• 𝑑 > 2: use the fact that 𝜕𝑖 preserves (strict) real-stability



Consequence

• Real stable polynomials form an important and well-studied 
subclass of Lorentzian polynomials :)



Completely Log-Concave Polynomials

• 𝑓 ∈ 𝐻𝑛
𝑑 is log-concave if 𝑓 has nonnegative coefficients and:

• either 𝑓 ≡ 0, or

• 𝐻log 𝑓ȁ𝑤=𝑥 ≼ 0 for any 𝑥 ∈ ℝ>0
𝑛

• 𝑓 ∈ 𝐻𝑛
𝑑 is strongly log-concave if 𝜕𝑖1𝜕𝑖2 ⋯𝜕𝑖𝑘𝑓 is log-concave for 

any sequence of partial derivatives of length 0 ≤ 𝑘 ≤ 𝑑 − 2

• Completely log-concave: replace each 𝜕𝑖 by σ𝑗 𝑎𝑖𝑗𝜕𝑗 for 𝑎𝑖𝑗 ≥ 0



• Proof will be deferred

• Things we know about CLC polynomials (from log-concave-{i, ii, iii, 
iv}) apply to Lorentzian polynomials!
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Remedy for the 𝑓 = 𝑤1
3 +𝑤2

3 example

• Two ways to look at a polynomial 𝑓 ∈ ℝ[𝑤1, 𝑤2, … , 𝑤𝑛]

Function

• 𝑓: 𝔽𝑛 → 𝔽

• 𝑤1, … , 𝑤𝑛 ↦ 𝑓 𝑤1, … , 𝑤𝑛

Coefficients

• 𝑓 = σ𝛼∈ℕ𝑛
𝑐𝛼

𝛼!
𝑤𝛼

• 𝑐: 𝛼 ↦ 𝑐𝛼

• We shall impose a condition on 𝑠𝑢𝑝𝑝(𝑓)



M-convexity

• Let 𝐽 ⊆ ℕ𝑛

• 𝐽 is M-convex iff:
• For any 𝛼, 𝛽 ∈ 𝐽 and 𝑖 ∈ 𝑛 such that 𝛼𝑖 > 𝛽𝑖 , there is 𝑗 ∈ [𝑛] such that

𝛼𝑗 < 𝛽𝑗 and 𝛼 − 𝑒𝑖 + 𝑒𝑗 ∈ 𝐽

• This is called exchange property

• 𝑀𝑛
𝑑: polynomials in 𝐻𝑛

𝑑 with non-negative coefficients, whose
support is M-convex



Basic properties

• Each element in 𝐽 has the same (𝑙1-)sum

• If 𝐽 ⊆ {0, 1}𝑛, then 𝐽 is the bases of a matroid

• Support of 𝑓 ∈ 𝑆𝑛
𝑑 is M-convex [Bränden 07]

• Intersection of 𝐽 with a rectangle is again M-convex

• Splitting and aggregation preserve M-convexity
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Note

• Intersection of two M-convex sets may not be convex!



Defining 𝐿𝑛
𝑑

• For 𝑑 ≤ 2, 𝐿𝑛
𝑑 ≔ 𝑆𝑛

𝑑

• For 𝑑 > 2, 𝐿𝑛
𝑑 ≔ {𝑓 ∈ 𝑀𝑛

𝑑 ∶ 𝜕𝑖𝑓 ∈ 𝐿𝑛
𝑑−1 for any 𝑖 ∈ 𝑛 }

• Alternatively,

𝐿𝑛
𝑑 ≔ {𝑓 ∈ 𝑀𝑛

𝑑 ∶ 𝜕𝑖1 ⋯𝜕𝑖𝑑−2𝑓 ∈ 𝐿𝑛
2 for any 𝑖1, … 𝑖𝑑−2 ∈ 𝑛 }



Key facts about 𝐿𝑛
𝑑

• Rather general class of operators that preserve 𝐿𝑛
𝑑

• 𝐿𝑛
𝑑 = Lorentzian!



Proof (sktech) of Theorem 2.10

• Prove that 𝑓 ∈ 𝐿𝑛
𝑑 ⇒ 1 + 𝜃𝑤𝑖𝜕𝑗 𝑓 ∈ 𝐿𝑛

𝑑 for any 𝜃 ≥ 0

• Suffices to consider the following elementary operations:
• Elementary splitting 𝑓 𝑤1, … , 𝑤𝑛−1, 𝑤𝑛 + 𝑤𝑛+1 ∈ 𝐿𝑛+1

𝑑

• Dilation 𝑓 𝑤1, … , 𝑤𝑛−1, 𝜃𝑤𝑛 ∈ 𝐿𝑛
𝑑 for 𝜃 ≥ 0

• Diagonalization 𝑓 𝑤1, … , 𝑤𝑛−2, 𝑤𝑛−1, 𝑤𝑛−1 ∈ 𝐿𝑛−1
𝑑
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Why general case holds



An important consequence

• Note that 𝑓 𝑤1 + 𝑎1𝑤𝑛+1, … , 𝑤𝑛 + 𝑎𝑛𝑤𝑛+1 ∈ 𝐿𝑛+1
𝑑

• Apply 𝜕𝑛+1, then set 𝑤𝑛+1 = 0
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Hodge-Riemann relation

• Meaning “negative semidefinite on a dimension-(𝑛−1) subspace”

• We want to prove the following statement:



Proof Strategy

Use induction on 𝑑 to prove (1) + (2) simultaneously

• Step 1: Prove (1) first

• Step 2: Show that (2) holds for some polynomials in ሶ𝐿𝑛
𝑑

• Step 3: Use (1) + connectedness of ሶ𝐿𝑛
𝑑 to conclude (2)



Step 1
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Step 2
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(Path-)connectedness of ሶ𝐿𝑛
𝑑

• For any 𝑓 ∈ ሶ𝐿𝑛
𝑑\{0}, define

𝑆 𝜃, 𝑓 ≔
1

𝑓 1
𝑓( 1 − 𝜃 𝑤1 + 𝜃 σ𝑖𝑤𝑖 , … , 1 − 𝜃 𝑤𝑛 + 𝜃 σ𝑖𝑤𝑖 )

• Define the operator 𝑇𝑛 𝜃, 𝑓 = (ς𝑖=1
𝑛−1 1 + 𝜃𝑤𝑖𝜕𝑛

𝑑)𝑓

• Then 𝑇𝑛 𝜃, 𝑆 𝜃, 𝑓 ∈ ሶ𝐿𝑛
𝑑 and deforms 𝑓 continuously to 

𝑇𝑛(1, σ𝑖𝑤𝑖
𝑑), as 𝜃 goes from 0 to 1



Concluding the proof

• Remains to prove (2) in the inductive step



Remark

• A similar statement is proved in log-concave-iii [ALOV ‘18]



Summary



Plan for Part II

• Negative dependence, Mason’s conjecture

• Proof of CLC ⇔ Lorentzian

• Generating functions of (discrete) convex sets

• Operations preserving Lorentzian polynomials


