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* Relating it to other polynomial families

* M-convexity and support of Lorentzian polynomials
* Hodge-Riemann relation



Agenda

* Definition and examples



Definition

» H%: polynomials in R[wj, ..., w,,] of homogeneous degree d
« P4 c HZ: those with positive coefficients

Strictly Lorentzian polynomials:
« [2 = {f € PZ: H; has Lorentzian signature (+, —, ..., =)}

« [9:= {feP%09,f € L& foranyi € [n]}

Lorentzian polynomials: take limit



Example: Bivariate polynomials

e Consider f = w3 + w3
« 0,f = 3w#,0,f = 3w# are Lorentzian (check Hessian)...
* But f is not!

e Infact, f = X% , a;wiwd ™! is strictly Lorentzian iff the sequence

(a;) is strictly ultra log-concave
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Example: Quadratics

Lemma 2.5. The following conditions are equivalent for any f = P2.

(1) The Hessian of f has the Lorentzian signature (+, —,..., —), thatis, f ¢ ]:fl.

(2) For any nonzero u € RZ, (uTﬂ{fu}E {-uTﬂ{qutrTﬂ{fv} for any v € R™ not parallel to u.

(3) Forsome ue R, (ul K ‘,rv}g Lii.Tﬂ{fu}l;-L'Tﬂ{fv} for any v € R™ not parallel to wu.

(4) For any nonzero u = R";, the univariate polynomial f(ru — v) in x has two distinct real

zeros for any v € R" not parallel to u.

(5) For some u = R, the univariate polynomial f(zu — v) in x has two distinct real zeros for
any v € ™ not parallel to w.
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Agenda

* Relating it to other polynomial families



Real Stable Polynomials

» S¢ c H?: real stable (= nonvanishing on H") with nonnegative
coefficients

Examples:
* det(A + wyBy + -+ w,,B,;) where B; > 0
 Spanning tree polynomial: }.7-([l.er We)



Properties

* f € H? is real stable iff: for any u, v € R® withu > 0 and f(u) > 0,
f(xu + v) is real-rooted as a polynomial in R[x]

* Some preservers of real stability:
* Partial derivative

Product

R-specialization

Projection

Inversion
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Proposition 2.2. Any polynomial in 5S¢ is Lorentzian.

* d = 2: comparing the statements
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* d > 2: use the fact that 0; preserves (strict) real-stability



Consequence

* Real stable polynomials form an important and well-studied
subclass of Lorentzian polynomials :)



Completely Log-Concave Polynomials

e f € HY is log-concave if f has nonnegative coefficients and:
e either f =0, or
* Hipg rlw=x < 0 forany x € RZ,

* f € H? is strongly log-concave if 0; 0y, - 0;, f is log-concave for
any sequence of partial derivatives of length 0 < k < d — 2

* Completely log-concave: replace each 9; by . ; a;;0; for a;; = 0



Theorem 2.30. The following conditions are equivalent for any homogeneous polynomial f.
(1) fis completely log-concave.
(2) [ isstrongly log-concave.

(3) f is Lorentzian.

* Proof will be deferred

* Things we know about CLC polynomials (from log-concave-{i, ii, iii,
iv}) apply to Lorentzian polynomials!
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* M-convexity and support of Lorentzian polynomials



Remedy for the f = wj + w; example

* Two ways to look at a polynomial f € R{wq,w,, ..., w,]

Function Coefficients Mo Legmcmcny:
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* We shall impose a condition on supp(f)



M-convexity w TR TR
My, - ity
* Let] € N" - ;ﬁu

* | is M-convex iff:
* Forany a,f € J and i € [n] such that @; > [5;, there is j € [n] such that
aj <Pjanda—e; +e €]

(9]
e = &:! \Q 1T 2ty
.

* This is called exchange property

« M%: polynomials in H¢ with non-negative coefficients, whose
support is M-convex



Basic properties
Lot I ba VNmeowrth

* Each element in J has the same (/;-)sum

x,g,%c«t) , Yok =B

« [f] € {0,1}", then ] is the bases of a matroid

~

» Support of f € S¢ is M-convex [Branden 07]

LR, CIXLR, ) * o

. . . . ﬂl:ﬁh,(v\]
* Intersection of / with a rectangle is again M-convex

* Splitting and aggregation preserve M-convexity
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Note

* Intersection of two M-convex sets may not be convex!
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Defining L4

*Ford < 2,14 = §¢
*Ford >2,1% = {feM?:0,f €l 1foranyi € [n]}
———
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¢ Alternatively, ‘?e‘ W"& (B*. " ‘x /

= {f €My :0;, - 0;, f €L foranyiy,..iq_, € [n]}
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Key facts about LY

Theorem 2.10. If f(w) € L2, then f( Av) € L2 for any n x m matrix A with nonnegative entries.

» Rather general class of operators that preserve L%

Theorem 2.25. The closure of Lf1 in H? is L2, In particular, L¢ is a closed subset of HY.

» L4 = Lorentzian!



Proof (sktech) of Theorem 2.10
* Prove that f € L% = (1 + Hwiaj)f € L% forany 6 = 0

* Suffices to consider the following elementary operations:
* Elementary splitting f (Wy, ..., Wy_1, Wy, + Wy41) € L%, 4
» Dilation f (W, ...,w,,_1,0w,,) € L% for 8 > 0
» Diagonalization f(Wy, ..., Wy,_p, Wy,_1,Wy,_1) € L& _
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Why general case holds
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An important consequence

s

Corollary 2.11. If f € [ then(‘;}?_l r:r,l-r])‘ = Lﬁ_“ forany aq,...,a, = 0.
* Note that f(Wy + ayWy 41, oo, Wy, + QW 41) € L8,

* Apply 0,44, thensetw,,; =0



Agenda

* Hodge-Riemann relation



Hodge-Riemann relation

* Meaning “negative semidefinite on a dimension-(n-1) subspace”

* We want to prove the following statement:

Theorem 2.16. Let f be a nonzero homogeneous polynomial in E|w, ..., w, | of degree d = 2.
(1) If f is in L4, then H¢(w) is nonsingular for all w € R2,.

(2) If f is in L2, then 3{;(w) has exactly one positive eigenvalue for all w € R" .



Theorem 2.16. Let f be a nonzero homogeneous polynomial in E|wy, ..., w, | of degree d = 2.
(1) If fisin Li then 3¢ (w) is nonsingular for all w € R ,.

(2) If fisin Ld, then {;(w) has exactly one positive eigenvalue for all w € R ,.

Proof Strategy

Use induction on d to prove (1) + (2) simultaneously
* Step 1: Prove (1) first
» Step 2: Show that (2) holds for some polynomials in L

» Step 3: Use (1) + connectedness of L% to conclude (2)



Theorem 2.16. Let f be a nonzero homogeneous polynomial in B|w, ..., w,| of degree d = 2.
(1) If fisin ]:fl, then 3 (w) is nonsingular for all w € R” .
S t e p 1 (2) If fisin Ld, then {;(w) has exactly one positive eigenvalue for all w € R ,.

Lemma 2.15. If H;, ¢(w) has exactly one positive eigenvalue for every i € [n| and w € R";, then

ker He(w) = ﬂ ker H:, s(w) forevery w e RT,,
i=1
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Theorem 2.16. Let f be a nonzero homogeneous polynomial in B|w, ..., w,| of degree d = 2.
(1) If fisin ]:fl, then 3 (w) is nonsingular for all w € R” .
S t e p 2 (2) If fisin Ld, then {;(w) has exactly one positive eigenvalue for all w € R ,.

Proposition 2.14. If f isin S2'0, then 3 ;(w) has exactly one positive eigenvalue for all w € R" .
Moreover, if f is in the interior of S¢, then H;(w) is nonsingular for all w e R .



Whiteboard



(Path-)connectedness of L¢

» For any f € L2\{0}, define

S(,f) = lfil F((L=0w; + 0wy, ..., (1 = Ow, + 0(Z; w;))

» Define the operator T,(8, f) = ([T=!(1 + Ow;0,)D)f

» Then T,,(6,5(6, f)) € L& and deforms f continuously to
T,(1, E;w)?), as 0 goes from 0 to 1



Concluding the proof

* Remains to prove (2) in the inductive step
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Remark

A similar statement is proved in log-concave-iii [ALOV ‘18]

Lemma 2.1. Let f € R[zy,..., 2] be homogeneous of degree d > 2 with nonnegative coefficients. Fix a
point a € R, with f(a) # 0, and let Q = V*f|__. The following are equivalent:

(1) f islog-concave at z = a,
(2) z = 27Qz is negative semidefinite on (Qa)",

(3) z — 27Qz is negative semidefinite on (Qb)~* for every b R%, such that Qb # 0,
(4) z — 27Qz is negative semidefinite on some linear space of dimension n — 1, and
(5) the matrix (a™Qa)Q — (Qa)(Qa)7 is negative semidefinite.

For d = 3, these are also equivalent to the condition

(6) Dygf is log-concave at z = a.



Summary



Plan for Part Il

* Negative dependence, Mason'’s conjecture

* Proof of CLC & Lorentzian

* Generating functions of (discrete) convex sets
* Operations preserving Lorentzian polynomials



