Reading Group W21 Lorentzian Polynomials (Part I)

Alex Tung 10 February, 2021

Agenda

- Definition and examples
- Relating it to other polynomial families
- M-convexity and support of Lorentzian polynomials
- Hodge-Riemann relation

Agenda

• Definition and examples

- Relating it to other polynomial families
- M-convexity and support of Lorentzian polynomials
- Hodge-Riemann relation

Definition

- H_n^d : polynomials in $\mathbb{R}[w_1, \dots, w_n]$ of homogeneous degree d
- $P_n^d \subset H_n^d$: those with **positive** coefficients

Strictly Lorentzian polynomials:

- $\dot{L}_n^2 \coloneqq \{f \in P_n^2 : H_f \text{ has Lorentzian signature } (+, -, ..., -)\}$
- $\dot{L}_n^d \coloneqq \{f \in P_n^d : \partial_i f \in \dot{L}_n^{d-1} \text{ for any } i \in [n]\}$

Lorentzian polynomials: take **limit**

Example: Bivariate polynomials

- Consider $f = w_1^3 + w_2^3$
 - $\partial_1 f = 3w_1^2$, $\partial_2 f = 3w_2^2$ are Lorentzian (check Hessian)...
 - But *f* is not!
- In fact, $f = \sum_{i=0}^{d} a_i w_1^i w_2^{d-i}$ is strictly Lorentzian iff the sequence (a_i) is strictly ultra log-concave

$$\left(\frac{a_{i}}{\binom{d}{i}}\right)^{2} = \frac{a_{i+1}}{\binom{d}{\binom{d}{i+1}}} \cdot \frac{a_{i+1}}{\binom{d}{\binom{d}{i+1}}}$$

Example: Quadratics

Lemma 2.5. The following conditions are equivalent for any $f \in P_n^2$.

- (1) The Hessian of f has the Lorentzian signature (+, -, ..., -), that is, $f \in \mathring{L}_n^2$.
- (2) For any nonzero $u \in \mathbb{R}^n_{\geq 0}$, $(u^T \mathcal{H}_f v)^2 > (u^T \mathcal{H}_f u)(v^T \mathcal{H}_f v)$ for any $v \in \mathbb{R}^n$ not parallel to u.
- (3) For some $u \in \mathbb{R}^n_{\geq 0}$, $(u^T \mathcal{H}_f v)^2 > (u^T \mathcal{H}_f u)(v^T \mathcal{H}_f v)$ for any $v \in \mathbb{R}^n$ not parallel to u.
- (4) For any nonzero u ∈ ℝⁿ_{≥0}, the univariate polynomial f(xu − v) in x has two distinct real zeros for any v ∈ ℝⁿ not parallel to u.
- (5) For some u ∈ ℝⁿ_{≥0}, the univariate polynomial f(xu − v) in x has two distinct real zeros for any v ∈ ℝⁿ not parallel to u.

Whiteboard

(1) => (1)
He has separature
$$(t_1, ..., -)$$

What we need to prove:
 $\exists U \ge 0, U \ddagger 3, sit, (U^T H_{fV})^2 > (U^T H_{fU}) \cdot (V^T H_{fV})$
for any v (ost 11 to v_2)
 $\left(-U^T - \right) \left(H_{f}\right) \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right) = \left(\begin{array}{c} u^T H_{fU} & u^T H_{fV} \\ v^T H_{fU} & v^T H_{fV} \end{array}\right)$
He projected on span(30, v_2) has signature $(t, -)$
 $=> det$ is negative

Whiteboard
(1) => (4)
$$\exists u = 0$$
, $u \neq 3$, ζ_{i+1} , the universite poly
 $f(\chi u + \Lambda v)$ has two distinct real roots for τ net
 $I(\tau = 0) = \sum_{i < j} C_{ij}(\chi u_i + \nu_i)(\chi u_j + \sigma_j)$
 $= \sum_{i < j} C_{ij}(\chi^2 u_i u_j + \chi(u_i \nu_j + u_j \nu_i) + \nu_i \nu_j)$
 $f(u_i > 2) distinut real roots ($\Rightarrow \Delta > 0$
 $(\Rightarrow (u^T H_f \nu)^2 > (u^T H_f \mu)(\nu^T H_f \nu)$$

Agenda

- Definition and examples
- Relating it to other polynomial families
- M-convexity and support of Lorentzian polynomials
- Hodge-Riemann relation

Real Stable Polynomials

• $S_n^d \subset H_n^d$: *real stable* (= nonvanishing on \mathbb{H}^n) with nonnegative coefficients

Examples:

- det $(A + w_1B_1 + \dots + w_nB_n)$ where $B_i \ge 0$
- Spanning tree polynomial: $\sum_T (\prod_{e \in T} w_e)$

Properties

- $f \in H_n^d$ is real stable iff: for any $u, v \in \mathbb{R}^n$ with $u \ge 0$ and f(u) > 0, f(xu + v) is real-rooted as a polynomial in $\mathbb{R}[x]$
- Some preservers of real stability:
 - Partial derivative
 - Product
 - \mathbb{R} -specialization
 - Projection
 - Inversion

```
• ...
```

Whiteboard

Proposition 2.2. Any polynomial in S_n^d is Lorentzian.

•
$$d = 2$$
: comparing the statements
strictly Lorentzian $\ll 220$, $u \neq 3$, then $f(xu + v)$ has two distinus
real roots.
quadratic real stable $\ll 3.20$, $u \neq 3$, then $f(xu + v)$ is real rooted.

• d > 2: use the fact that ∂_i preserves (strict) real-stability

Consequence

• Real stable polynomials form an important and well-studied subclass of Lorentzian polynomials :)

Completely Log-Concave Polynomials

- $f \in H_n^d$ is *log-concave* if f has nonnegative coefficients and:
 - either $f \equiv 0$, or
 - $H_{\log f}|_{w=x} \leq 0$ for any $x \in \mathbb{R}^{n}_{>0}$
- $f \in H_n^d$ is strongly log-concave if $\partial_{i_1} \partial_{i_2} \cdots \partial_{i_k} f$ is log-concave for any sequence of partial derivatives of length $0 \le k \le d 2$
- Completely log-concave: replace each ∂_i by $\sum_j a_{ij} \partial_j$ for $a_{ij} \ge 0$

Theorem 2.30. The following conditions are equivalent for any homogeneous polynomial *f*.

- (1) f is completely log-concave.
- (2) f is strongly log-concave.
- (3) f is Lorentzian.
- Proof will be deferred
- Things we know about CLC polynomials (from *log-concave-{i, ii, iii, iv}*) apply to Lorentzian polynomials!

Agenda

- Definition and examples
- Relating it to other polynomial families
- M-convexity and support of Lorentzian polynomials
- Hodge-Riemann relation

Remedy for the $f = w_1^3 + w_2^3$ example

• Two ways to look at a polynomial $f \in \mathbb{R}[w_1, w_2, \dots, w_n]$

Function

- $f \colon \mathbb{F}^n \to \mathbb{F}$
- $(w_1, \dots, w_n) \mapsto f(w_1, \dots, w_n)$

Coefficients
•
$$f = \sum_{\alpha \in \mathbb{N}^n} \frac{c_\alpha}{\alpha!} W^{\alpha}$$
• $f = \sum_{\alpha \in \mathbb{N}^n} \frac{c_\alpha}{\alpha!} W^{\alpha}$
• $c: \alpha \mapsto c_\alpha$

• We shall impose a condition on supp(f)

M-convexity

• Let $J \subseteq \mathbb{N}^n$

$$U_2$$

 $i=2$ =) pick $j=1$
 i , $d-e_i$ tej
 B
 W_i

- *J* is M-convex iff:
 - For any $\alpha, \beta \in J$ and $i \in [n]$ such that $\alpha_i > \beta_i$, there is $j \in [n]$ such that

<
$$\beta_j$$
 and $\alpha - e_i + e_j \in J$
 $e_i = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right) + t-thentony$

- This is called *exchange property*
- M_n^d : polynomials in H_n^d with non-negative coefficients, whose support is M-convex

 α_j

Basic properties

Let J be M-convex.

 $x, \beta \in J$, $\Sigma \alpha_i = \Sigma \beta_i$

- Each element in J has the same $(l_1$ -)sum
- If $J \subseteq \{0, 1\}^n$, then J is the bases of a matroid
- Support of $f \in S_n^d$ is M-convex [Bränden 07]
- El,, (,]×El,, (,] × ...
 ×Eln, (n]
- Intersection of *J* with a rectangle is again M-convex
- Splitting and aggregation preserve M-convexity

Whiteboard

Whiteboard
$$f(w_{1},...,w_{n}) \rightarrow f(w_{1},...,w_{n+1},(u_{n+1},u_{n+1}))$$

Splitting: $J \rightarrow J'$
 $(a_{1},...,a_{n}) \rightarrow (a_{1},...,a_{n+1},a_{n+1})$ sit. $a_{n} + a_{n+1} = a_{n}$.
Aggregation: $J \rightarrow J''$
 $(a_{1},...,a_{n},a_{n+1}) \rightarrow (a_{1},...,a_{n+1},a_{n+1},a_{n+1})$
 $a_{i}^{i} = (a_{1},...,a_{n-1},a_{n},a_{n+1},a_{n+1},a_{n+1})$
 $a_{i}^{i} = (a_{1},...,a_{n-1},a_{n+1},a_{n+1},a_{n+1},a_{n+1})$
 $a_{i}^{i} = (a_{1},...,a_{n-1},a_{n+1},a_{n+1},a_{n+1},a_{n+1})$
 $a_{i}^{i} = (a_{1},...,a_{n-1},a_{n+1},a_{n+1},a_{n+1},a_{n+1},a_{n+1})$
 $a_{i}^{i} = (a_{1},...,a_{n+1}$

Note

• Intersection of two M-convex sets may not be convex!

$$J_{1} = \{(2,0,0), (1,1,0), (0,1,1)\}$$

$$J_{2} = \{(2,0,0), (1,0,1), (0,1,1)\}$$

$$J_{1} = \{(2,0,0), (0,1,1)\}, \text{Not } M-\text{convex} \}$$

$$M_{1} := \min\{d_{1}, b_{1}\}$$

$$M_{1} := \min\{d_{1}, b_{1}\}$$

Defining L_n^d

- For $d \leq 2$, $L_n^d \coloneqq S_n^d$
- For d > 2, $L_n^d \coloneqq \{f \in M_n^d : \partial_i f \in L_n^{d-1} \text{ for any } i \in [n]\}$
- Alternatively, for any $\partial_{i_1} \dots \partial_{i_k} f$, it is in M_n^{d-k} .

$$L_n^d \coloneqq \{ \underbrace{f \in M_n^d} : \partial_{i_1} \cdots \partial_{i_{d-2}} f \in L_n^2 \text{ for any } i_1, \dots i_{d-2} \in [n] \}$$

$$f \coloneqq \bigcup_{i=1}^n \bigcup_{i=$$

Key facts about L_n^d

Theorem 2.10. If $f(w) \in L_n^d$, then $f(Av) \in L_m^d$ for any $n \times m$ matrix A with nonnegative entries.

• Rather general class of operators that preserve L_n^d

Theorem 2.25. The closure of \mathring{L}_n^d in H_n^d is L_n^d . In particular, L_n^d is a closed subset of H_n^d .

• L_n^d = Lorentzian!

Proof (sktech) of Theorem 2.10

- Prove that $f \in L_n^d \Rightarrow (1 + \theta w_i \partial_j) f \in L_n^d$ for any $\theta \ge 0$
- Suffices to consider the following elementary operations:
 - Elementary splitting $f(w_1, ..., w_{n-1}, w_n + w_{n+1}) \in L^d_{n+1}$
 - Dilation $f(w_1, ..., w_{n-1}, \theta w_n) \in L_n^d$ for $\theta \ge 0$
 - Diagonalization $f(w_1, \dots, w_{n-2}, w_{n-1}, w_{n-1}) \in L^d_{n-1}$

Whiteboard Weapon: feld, (1+0w; 2;)feld. (1) Splitting. flus, ..., whit -> flus, ..., white twati). $\lim_{k \to \infty} \left(\left| + \frac{\omega_{n+1} \partial_n}{k} \right|^k f = f(\omega_{1,...,} \omega_{n+1} \omega_{n+1}) \right)$ f= Wn. RHS we get (Wint Wint)?. Fixk. $L_{MS} = (I + (U_{M1} - \partial_n)^k) \cdot (U_n) = \sum_{i=0}^k {\binom{k}{i}} \cdot (U_{M1} - \partial_n)^i \cdot (U_n)^k$ $\frac{k(k-1)\cdots(k-i+1)}{i!} \int for large = \sum_{i=0}^{k} \binom{k}{i} \cdot \underbrace{\operatorname{Uni}_{i}}_{k^{i}} \cdot \underbrace{\operatorname{Uni}_{i}} \cdot \underbrace{\operatorname{Uni}_{i}} \cdot \underbrace{\operatorname{Uni}_{i}}_{k^{i}} \cdot \underbrace{\operatorname{Uni}_{i}} \cdot \underbrace{\operatorname{Uni}_{i}} \cdot \underbrace{\operatorname{Uni}_{i}} \cdot \underbrace{\operatorname{Uni}_{$ $k \rightarrow \infty = \sum_{i=1}^{k} \binom{q}{i} \cdot \omega_{n+i} \cdot \omega_{n}$

Whiteboard (2) Dilaton f(w, m, wn) -> f(w, m, own)

Why general case holds m= ? Vars 2=n vars $f(\omega_1, \omega_2) \longrightarrow f(z_1 + z_2, 2z_1 + z_2z_2)$ Splitting non times 1 Z11, Z12, Z13 Z21, Z22, Z23 $f(W_1 + Z_1, + Z_2 + Z_3, W_2 + Z_2, + Z_2 + Z_2)$ 1 Pilation f(0.0,+1.2,+1.2,+0.2,,0.0,+2.2,+0.2,+2,2) = f(=1, + Z12, 221+ 223) Drugonalization: identify Zij and Zi'j. f(2,+22,22,+223)

An important consequence

Corollary 2.11. If $f \in L_n^d$, then $\sum_{i=1}^n a_i \partial_i f \in L_n^{d-1}$ for any $a_1, \ldots, a_n \ge 0$.

- Note that $f(w_1 + a_1 w_{n+1}, ..., w_n + a_n w_{n+1}) \in L^d_{n+1}$
- Apply ∂_{n+1} , then set $w_{n+1} = 0$

Agenda

- Definition and examples
- Relating it to other polynomial families
- M-convexity and support of Lorentzian polynomials
- Hodge-Riemann relation

Hodge-Riemann relation

- Meaning "negative semidefinite on a dimension-(n-1) subspace"
- We want to prove the following statement:

Theorem 2.16. Let f be a nonzero homogeneous polynomial in $\mathbb{R}[w_1, \ldots, w_n]$ of degree $d \ge 2$. (1) If f is in $\hat{\mathbb{L}}_{n'}^d$ then $\mathcal{H}_f(w)$ is nonsingular for all $w \in \mathbb{R}_{>0}^n$. (2) If f is in $\mathbb{L}_{n'}^d$ then $\mathcal{H}_f(w)$ has exactly one positive eigenvalue for all $w \in \mathbb{R}_{>0}^n$.

Proof Strategy

Theorem 2.16. Let f be a nonzero homogeneous polynomial in $\mathbb{R}[w_1, \ldots, w_n]$ of degree $d \ge 2$. (1) If f is in $\mathring{L}^d_{n'}$, then $\mathcal{H}_f(w)$ is nonsingular for all $w \in \mathbb{R}^n_{\ge 0}$. (2) If f is in $L^d_{n'}$, then $\mathcal{H}_f(w)$ has exactly one positive eigenvalue for all $w \in \mathbb{R}^n_{\ge 0}$.

Use induction on d to prove (1) + (2) simultaneously

- Step 1: Prove (1) first
- Step 2: Show that (2) holds for *some* polynomials in \dot{L}_n^d
- Step 3: Use (1) + connectedness of \dot{L}_n^d to conclude (2)

Theorem 2.16. Let f be a nonzero homogeneous polynomial in $\mathbb{R}[w_1, \ldots, w_n]$ of degree $d \ge 2$. (1) If f is in \hat{L}_n^d , then $\mathcal{H}_f(w)$ is nonsingular for all $w \in \mathbb{R}_{>0}^n$. (2) If f is in L_n^d , then $\mathcal{H}_f(w)$ has exactly one positive eigenvalue for all $w \in \mathbb{R}_{>0}^n$.

Step 1

Lemma 2.15. If $\mathcal{H}_{\partial_i f}(w)$ has exactly one positive eigenvalue for every $i \in [n]$ and $w \in \mathbb{R}^n_{>0}$, then

$$\ker \mathfrak{H}_f(w) = \bigcap_{i=1}^n \ker \mathfrak{H}_{\partial_i f}(w) \ \text{ for every } w \in \mathbb{R}^n_{>0}.$$

Whiteboard

Step 2

Theorem 2.16. Let f be a nonzero homogeneous polynomial in $\mathbb{R}[w_1, \ldots, w_n]$ of degree $d \ge 2$. (1) If f is in $\mathring{L}^d_{n'}$, then $\mathcal{H}_f(w)$ is nonsingular for all $w \in \mathbb{R}^n_{>0}$. (2) If f is in $L^d_{n'}$, then $\mathcal{H}_f(w)$ has exactly one positive eigenvalue for all $w \in \mathbb{R}^n_{>0}$.

Proposition 2.14. If f is in $S_n^d \setminus 0$, then $\mathcal{H}_f(w)$ has exactly one positive eigenvalue for all $w \in \mathbb{R}_{>0}^n$. Moreover, if f is in the interior of S_n^d , then $\mathcal{H}_f(w)$ is nonsingular for all $w \in \mathbb{R}_{>0}^n$.

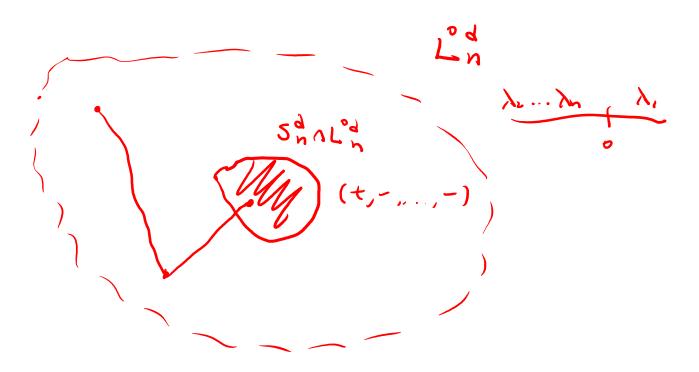
Whiteboard

(Path-)connectedness of \dot{L}_n^d

- For any $f \in \dot{L}_n^d \setminus \{0\}$, define $S(\theta, f) \coloneqq \frac{1}{|f|_1} f((1 - \theta)w_1 + \theta(\sum_i w_i), \dots, (1 - \theta)w_n + \theta(\sum_i w_i))$
- Define the operator $T_n(\theta, f) = (\prod_{i=1}^{n-1} (1 + \theta w_i \partial_n)^d) f$
- Then $T_n(\theta, S(\theta, f)) \in \dot{L}_n^d$ and deforms f continuously to $T_n(1, (\sum_i w_i)^d)$, as θ goes from 0 to 1

Concluding the proof

• Remains to prove (2) in the inductive step



Remark

• A similar statement is proved in *log-concave-iii* [ALOV '18]

Lemma 2.1. Let $f \in \mathbb{R}[z_1, ..., z_n]$ be homogeneous of degree $d \ge 2$ with nonnegative coefficients. Fix a point $a \in \mathbb{R}^n_{>0}$ with $f(a) \ne 0$, and let $Q = \nabla^2 f|_{z=a}$. The following are equivalent:

(1) f is log-concave at z = a,

(2) $z \mapsto z^{\mathsf{T}} Q z$ is negative semidefinite on $(Qa)^{\perp}$,

(3) $z \mapsto z^{\intercal}Qz$ is negative semidefinite on $(Qb)^{\perp}$ for every $b \in \mathbb{R}^{n}_{\geq 0}$ such that $Qb \neq 0$,

(4) $z \mapsto z^{\intercal}Qz$ is negative semidefinite on some linear space of dimension n - 1, and

(5) the matrix $(a^{\mathsf{T}}Qa)Q - (Qa)(Qa)^{\mathsf{T}}$ is negative semidefinite.

For $d \ge 3$, these are also equivalent to the condition

(6) $D_a f$ is log-concave at z = a.

Summary

Plan for Part II

- Negative dependence, Mason's conjecture
- Proof of CLC \Leftrightarrow Lorentzian
- Generating functions of (discrete) convex sets
- Operations preserving Lorentzian polynomials