Cheeger Inequalities for Vertex Expansion and Reweighted Eigenvalues


The classical Cheeger’s inequality relates the edge conductance of a graph and the second smallest eigenvalue of the Laplacian matrix. Recently, Olesker-Taylor and Zanetti discovered a Cheeger-type inequality connecting the vertex expansion of a graph and the maximum reweighted second smallest eigenvalue of the Laplacian matrix.In this work, we first improve their result to a logarithmic dependence on the maximum degree in the graph, which is optimal up to a constant factor. Also, the improved result holds for weighted vertex expansion, answering an open question by Olesker-Taylor and Zanetti. Building on this connection, we then develop a new spectral theory for vertex expansion. We discover that several interesting generalizations of Cheeger inequalities relating edge conductances and eigenvalues have a close analog in relating vertex expansions and reweighted eigenvalues. These include an analog of Trevisan’s result on bipartiteness, an analog of higher order Cheeger’s inequality, and an analog of improved Cheeger’s inequality. Finally, inspired by this connection, we present negative evidence to the 0/1-polytope edge expansion conjecture by Mihail and Vazirani. We construct 0/1-polytopes whose graphs have very poor vertex expansion. This implies that the fastest mixing time to the uniform distribution on the vertices of these 0/1-polytopes is almost linear in the graph size.

In 63rd IEEE Symposium on Foundations of Computer Science
Kam Chuen (Alex) Tung
Kam Chuen (Alex) Tung
PhD Candidate in Computer Science